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Abstract Kernel density estimation in domains with boundaries is known to suffer
from undesirable boundary effects. We show that in the case of smooth densities, a
general and elegant approach is to estimate an extension of the density. The resulting
estimators in domains with boundaries have biases and variances expressed in terms of
density extensions and extension parameters. The result is that they have the same rates
at boundary and interior points of the domain. Contrary to the extant literature, our
estimators require no kernel modification near the boundary and kernels commonly
used for estimation on the real line can be applied. Densities defined on the half-axis
and in a unit interval are considered. The results are applied to estimation of densities
that are discontinuous or have discontinuous derivatives, where they yield the same
rates of convergence as for smooth densities on R.
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1 Introduction

Kernel estimation of densities on the real line is a well-developed area. The core of the
theory is a series of results covering smooth densities that do not exhibit extreme curva-
ture.Let K denote a kernel, an integrable functiononR,which satisfies

∫
R K (t)dt = 1,

h > 0 be a bandwidth and f be a density onR. Assuming that {Xi }ni=1 is an indepen-
dent and identically distributed (IID) sample from f , the traditional Rosenblatt–Parzen

kernel estimator of f (x) is defined by f̂ R(x) = 1
nh

∑n
i=1 K

(
x−Xi
h

)
. This estimator

has three desirable characteristics: (1) there exists a great profusion of kernels that can
be used to construct the estimator (usually Epanechnikov, Gaussian or triangular den-
sities); they are usually symmetric and do not depend on the point (x) of estimation, or
on the class of densities being estimated; (2) there is a simple link between the degree
of smoothness of the density and the order of estimator’s bias: if f ∈ Csb(�) and the

kernel is of order s, then E f̂R(x)− f (x) = O(hs).1 The use of higher-order kernels in
the case of smooth densities is also a standard feature; (3) the optimal bandwidth is of
order n−1/(2s+1) for all estimation points, unless there are areas of extreme curvature
or discontinuities.

In cases where the domain of f has a boundary, the main problem is bad estimator
behavior in the vicinity of the boundary. This problem has called into being a range
of estimation methods. Among the widely used ones are the reflection, the boundary
kernel, the transformation and the local linear methods (see, inter alia, Schuster 1985;
Jones 1993; Cheng 1994; Karunamuni and Alberts 2005; Malec and Schienle 2014;
Wen and Wu 2015, and their references). Other methods have proposed the use of
asymmetric kernels and kernel adjustments near the boundary (Chen 1999, 2000).
Such techniques, alternatively, require variable bandwidths, two-step estimation pro-
cedures, separation of densities into subclasses that vanish or not at the boundary,
densities that have derivatives of a certain sign at the boundary, etc. The difficulties in
estimation near the boundary precluded researchers from identifying a core class of
estimators for which analogs of the standard results mentioned above would be true.
In particular, we have not seen in the literature results that would guarantee a better
bias rate for densities of higher smoothness.

In this paper, we propose density estimators that permit a unified theoretical
study of their properties under bounded or unbounded domains. We show that
smoothness is all one needs to have a good bias rate, and for smooth densities
the behavior at the boundary is irrelevant. (Derivatives at endpoints are one-sided
derivatives.) For densities on the half-axis [0,∞) and on the unit interval [0, 1]
we introduce new estimators for which all standard facts given above hold. The
usual symmetric kernels and constant bandwidths can be used across the domain,
and for f ∈ Csb(�) the biases of our estimators are of order O(hs). The band-
width depends on the sample size in the same way as in case of estimation on
the whole line. In the case of estimation of piece-wise continuous densities, with

1 Let s ∈ N and � ⊆ R. The class of functions f : � → R which are s-times differentiable with∣
∣
∣ f (s)(x)

∣
∣
∣ ≤ C for some 0 < C < ∞ is denoted by Csb(�). We say that the kernel K is of order s ≥ 2 if

∫
t j K (t)dt = 0 for j = 1, . . . , s − 1 and

∫
ts K (t)dt �= 0.
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Estimation of densities on bounded and unbounded domains

known discontinuity points, our estimators supply the required jumps at those points.
As in some boundary correction estimators (Jones and Foster 1993; Cheng 1994),
for densities in classes where s ≥ 1 is our estimator is not necessarily nonnega-
tive, because the estimation essentially involves higher-order kernels. Our theoretical
results do not hold for densities or densities with derivatives with poles at end-
points.

Our estimators are based on Hestenes’ extension (Hestenes 1941) of continuously
differentiable functions from subsets � ⊂ R to R. Let D f be the domain of the
density f and denote by g its Hestenes’ extension. (The definitions for the half-
axis and intervals are given below in the respective sections.) The key observation
is that g can be viewed as a linear combination of densities. The sample generated
from f is used to estimate each of these densities, and the linear combination of
the estimators estimates g. The restriction of the estimator of g to D f estimates
f . We show that the theory of estimation on a domain with boundaries for smooth
densities in effect becomes a chapter in estimation on the whole line. The essential
link between the proposed estimators f̂ (x) of f (x) and the properties of g is of
type

E f̂ (x) − f (x) =
∫

R

K (t) (g(x − ht) − g(x)) dt, x ∈ D f .

This representation has eluded previous work and can be used for evaluating the
asymptotic behavior of bias. Our estimation procedure does not require knowledge
of g. There seems to be a slight loss in the speed of convergence as compared to
convergence on the line because the same data are exploitedmore than once to estimate
different parts of g. However, this loss does not affect the rate in E f̂ (x) − f (x) =
chs + o(hs); it affects only the constant c, in comparison with the classical estimator
for densities on the line. In Sect. 2, we start with estimation of a density on [0,∞).
Section 3 treats densities on a bounded interval. In Sect. 4, the approach is extended
to estimation of discontinuous densities. Section 5 provides two methods to satisfy
zero boundary conditions, and Sect. 6 provides results from aMonte Carlo simulation.
Section 7 concludes the paper and gives directions for future research. All proofs are
collected in an “Appendix”.

2 Estimation of densities defined on [0,∞)

Let w1, . . . , ws+1 be pairwise different positive numbers for s = 0, 1, . . .. Of special
interest are the decreasing sequence wi = 1/ i, i = 1, . . . , s + 1 (used by Hestenes
1941) and the increasing sequence wi = i . Let the numbers k1, . . . , ks+1 be defined
from the following system

s+1∑

i=1

(−wi )
j ki = 1, j = 0, . . . , s. (1)

Since this system has the Van der Monde determinant
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∣
∣
∣
∣
∣
∣
∣
∣

1 1 . . . 1
−w1 −w2 . . . −ws+1
. . . . . . . . .

(−w1)
s (−w2)

s . . . (−ws+1)
s

∣
∣
∣
∣
∣
∣
∣
∣

�= 0,

k1, . . . , ks+1 are uniquely defined. If f ∈ Csb on its domain D f = [0,∞), its Hestenes’
extension to (−∞, 0) is given by

φs(x) =
s+1∑

j=1

k j f (−w j x), x < 0. (2)

Note that if f is a density function, φs is not a density, but a linear combination of
densities w j f (−w j x) with coefficients k j/w j . Assuming that f has s right-hand
derivatives f (0+), . . . , f (s)(0+) at zero (s = 0 means continuity), we see that the
following sewing conditions at zero are satisfied due to (1):

φ(m)
s (0−) =

s+1∑

j=1

(−w j )
mk j f

(m)(0+) = f (m)(0+), m = 0, 1, . . . , s.

Now, define gs on R by

gs(x) =
{
f (x), x ≥ 0
φs(x), x < 0

, (3)

with gs being s times differentiable. Moreover, if, for example, f belongs to the
Sobolev space Ws

p([0,∞)), then gs belongs to Ws
p(R), where 1 ≤ p < ∞ (see

Burenkov 1998).
Suppose f ∈ Csb, the kernel K is m times differentiable, where m = 0, 1, . . . , s,

and let {Xi }ni=1 be an IID sample from f . We define the estimator of f (m)(x), for
x ≥ 0, by

f̂ (m)
s (x) = 1

nhm+1

n∑

i=1

⎡

⎣K (m)

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

K (m)

(
x + Xi/w j

h

)
⎤

⎦ . (4)

When the kernel K is an even function and m = s = 0 in (4), f̂ (0)
0 (x) ≡ f̂S(x) is the

“reflection estimator” from Schuster (1985), i.e.,

f̂S(x) = 1

nh

n∑

i=1

[

K

(
x − Xi

h

)

+ K

(
x + Xi

h

)]

.

We note that Schuster’s estimator does not depend on s, the index on Csb. Thus, knowl-
edge that s > 0 is not used in constructing his estimator, whereas it is central in the
definition of f̂ (m)

s (x). The next assumption is used only for m ≥ 1, when integration
by parts is needed.
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Estimation of densities on bounded and unbounded domains

Assumption 1 (a) K is even, m times differentiable and max0≤ j≤m−1 |K ( j)(t)||t | =
o(1) as |t | → ∞; (b) max0≤ j≤m−1 | f ( j)(x)| = O(x) as x → ∞.

The estimator in Eq. (4) can be constructed using kernels in the class {Mk(x)}k∈N
proposed by Mynbaev and Martins-Filho (2010), where

Mk(x) = − 1

Ck
2k

k∑

|l|=1

(−1)lCl+k
2k

|l| K
( x

l

)

with Cl
2k = 2k!

(2k−l)!l! for l = 0, . . . , 2k. In this context, K is called the seed of Mk .
These kernels are used together with an order 2k finite difference

�2k
h gs(x) =

k∑

|l|=0

(−1)l+kCl+k
2k gs(x − lh)

when Besov-type norms are employed to measure smoothness (see Mynbaev and
Martins-Filho 2010;Mynbaev et al. 2016).We let f̂ (m)

s,k (x) denote the estimator defined
in (4) with K replaced by Mk , i.e.,

f̂ (m)
s,k (x) = 1

nhm+1

n∑

i=1

⎡

⎣M (m)
k

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

M (m)
k

(
x + Xi/w j

h

)
⎤

⎦ ,

for x ≥ 0. (5)

Note that when K is even, M1(x) = K (x) and f̂ (m)
s,1 (x) = f̂ (m)

s (x).

Theorem 1 Suppose f ∈ Csb on D f = [0,∞) and the kernel K is m times differen-
tiable on R with m = 0, 1, . . . , s. In case m ≥ 1 suppose that Assumption 1 holds.
Then,

(1) The bias of f̂ (m)
s (x) has the representation

E f̂ (m)
s (x) − f (m)(x) =

∫

R

K (t)
[
g(m)
s (x − ht) − g(m)

s (x)
]
dt, x ∈ D f . (6)

(2) If in Eq. (4) a kernel Mk with seed K is used, then

E f̂ (m)
s,k (x) − f (m)(x) = (−1)k+1

Ck
2k

∫

R

K (t)�2k
ht g

(m)
s (x)dt, x ∈ D f . (7)

The integral representations for biases obtained in Theorem 1 depend on the exten-
sion gs , not the density f . Consequently, existing results for smooth functions (not
densities) on R allow us to easily obtain bias estimates. If classical smoothness char-
acteristics in terms of derivatives and Taylor expansions are used, then part (1) of The-
orem 1 is relevant. This approach can be used for derivatives of ordersm ≤ s−1 when
the bias order isO(hs−m) andguaranteed to tend to zero as h → 0. If, on the other hand,
smoothness is characterized in terms of finite differences and Besov spaces, then the
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second representation should be applied. It is appropriate form = s−1 orm = s when
the derivative of order s may have a residual fractional smoothness of order 0 < r < 1.

For 1 ≤ p, q ≤ ∞ and � an open subset of R put �2k
h,� f (x) = �2k

h f (x) if

[x − kh, x + kh] ⊂ � and �2k
h,� f (x) = 0 otherwise and let

‖ f ‖brp,q (�) =

⎧
⎪⎨

⎪⎩

∫

R

⎡

⎢
⎣

(∫
�

∣
∣
∣�2k

h,� f (x)
∣
∣
∣
p
dx
)1/p

|h|r

⎤

⎥
⎦

q

dh

|h|

⎫
⎪⎬

⎪⎭

1/q

where k is any integer satisfying 2k > r, and in case p = ∞ and/or q = ∞ the
integral(s) is (are) replaced by sup . Further, ‖ f ‖Br

p,q (�) = ‖ f ‖brp,q (�) + ‖ f ‖L p(�).
The Hestenes’ extension is known to be bounded from Br

p,q(�) to Br
p,q(R).

Assumption 2 For 0 ≤ m ≤ s,
∥
∥ f (m)

∥
∥
Br∞,q (0,∞)

< ∞ with some r > 0 and 1 ≤
q ≤ ∞ and

(∫
|K (t)|q ′ |t |(r+1/q)q ′

dt

)q ′

< ∞

where 1/q + 1/q ′ = 1.

Note that when q = 1, q ′ becomes infinity and the norm becomes sup norm.

Theorem 2 (1) Let Assumption 1 hold when m ≥ 1 and assume that
∫
R K (t)t jdt =

0, for j = 1, . . . , s − m − 1,
∫
R

∣
∣K (t)t s−m

∣
∣ dt < ∞ and

∣
∣ f (s)(x)

∣
∣ < C for all

x ≥ 0, then
E f̂ (m)

s (x) − f (m)(x) = O(hs−m) for all x ∈ D f . (8)

(2) Let f and K satisfy Assumption 2, then

E f̂ (m)
s,k (x) − f (m)(x) = O(hr ) for all x ∈ D f . (9)

Remark 1 In the density estimation literature, it is usually assumed that f ∈ C2. In
this case, under the conditions in Theorem 2, when m = 0 we have E f̂2(x)− f (x) =
h2
2 f (2)(x)

∫
R t2K (t)dt + o(h2) for all x ∈ D f . This expression, similar to what is

obtained for the classical Rosenblatt–Parzen estimator when D f = R, contrasts with
what is obtained for Schuster’s reflection estimator. In particular, for boundary points,
viz., x = ch for 0 ≤ c < ∞, we have (see Marron and Ruppert 1994)

E f̂S(x) − f (x) =
∫

K (t)(g0(x − ht) − g0(x))dt

=
∫ x/h

−∞
K (t) f (x − ht)dt +

∫ ∞

x/h
K (t) f (−(x − ht))dt

= h2

2
f (2)(x)

∫

R

t2K (t)dt − 2h f (1)(x)
(
cμ0,−c + μ1,−c

)

+ 2h2 f (2)(x)(c2μ0,−c + cμ1,−c) + o(h2)
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Estimation of densities on bounded and unbounded domains

where μ�,−c = ∫ −c
−∞ u�K (u)du for � = 0, 1, 2. The additional bias terms result from

the fact that Schuster’s estimator does not use the additional smoothness (beyond
continuity) of f in its construction.

Remark 2 Theorems 1 and 2, require the existence of densities and their derivatives
up to order s at x = 0. As such, in the case of densities that either diverge to infinity,
or have derivatives that diverge to infinity near the boundary, the bias order we have
derived does not hold. In particular, when f (x) → ∞ as x → 0 (a pole at x = 0) the
bias diverges to infinity at x = 0. If f (0) is finite, but f (1)(x) → ∞ as x → 0, the
bias decays at a speed that is slower than hs .

The following theorem provides the order of the variance of our proposed estimator.
In this case, it will be necessary to consider the boundary x = 0 and interior points
(x > 0) separately. Let k0 = w0 = −1. The quantities

� =
∫

R

F2(t)dt and �l =
∫ ∞

0

⎡

⎣
s+1∑

j=0

k j
w j

F

(
t

w j

)
⎤

⎦

2

dt,

will appear in variance expressions inside the domain and at the left boundary, respec-
tively.

Theorem 3 Suppose the conditions in Theorem 2 hold, sup
x≥0

f (x) < ∞, sup
x

∣
∣K (m)(x)

∣
∣

< ∞ and
∫
R

∣
∣K (m)(t)

∣
∣ dt < ∞. In particular, when m ≥ 1 let Assumption 1 hold.

Denote F(t) = M (m)
k (t). Then, (I) for fixed x > 0

V
(
f̂ (m)
s,k (x)

)
= 1

nh2m+1
{ f (x)� + o(1)} , (10)

(II) at the left boundary

V
(
f̂ (m)
s,k (0)

)
= 1

nh2m+1
{ f (0)�l + o(1)} . (11)

The estimator f̂ (m)
s (x) has a similar property with F(t) = K (m)(t).

The proof is omitted because it is similar to, and simpler than, that of Theorem 5,
which is given in full.

Remark 3 It is a direct consequence of Theorem 3 that, if
∫ |K (m)(u)|2+δdu < C for

m ≤ s for some δ > 0, by Lyapunov’s central limit theorem we have for x > 0

√
nh2m+1

(
f̂ (m)
s (x) − E

(
f̂ (m)
s (x)

))
d→ N (0, f (x)�) , (12)

and for x = 0,

√
nh2m+1

(
f̂ (m)
s (0) − E

(
f̂ (m)
s (0)

))
d→ N (0, f (0)�l) . (13)
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Remark 4 For m = 0 and f ∈ C2, Eq. (13) together with the expression for E f̂2(x)
in Remark 1 gives

√
nh

(

f̂2(0) −
(

f (0) + h2

2
f (2)(0+)

∫

R

t2K (t)dt + o(h2)

))
d→ N (0, f (0)�l) ,

which can be used to construct confidence intervals and conduct hypothesis testing as
in McCrary (2008).

3 Estimation on a bounded interval

Let f be defined on D f = [0, 1], and let the vectors w, k be as before. We would
like to extend f to the left of zero using (2). To obtain a common domain for the
components of φ, we put a = mini (1/wi ) and let

φ1,s(x) =
s+1∑

j=1

k j f (−w j x), −a < x < 0.

The sewing conditions at 0 are satisfied as before. Put

φ2,s(x) =
s+1∑

j=1

k j f (1 − w j (x − 1)), 1 < x < 1 + a,

and define the extension by

gs(x) =
⎧
⎨

⎩

φ1,s(x), −a < x < 0
f (x), 0 ≤ x ≤ 1
φ2,s(x), 1 < x < 1 + a.

(14)

The sewing condition holds at x = 1:

φ
( j)
2,s (1+) =

s+1∑

m=1

(−wm) j km f ( j)(1−) = f ( j)(1−), j = 0, . . . , s.

Suppose f is s times differentiable, m is an integer, 0 ≤ m ≤ s, the kernel K is m
times differentiable, and let X1, . . . , Xn be an IID sample from f . The estimator of
f (m)(x), x ∈ [0, 1], is defined by
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f̂ (m)
s (x) = 1

nhm+1

⎧
⎨

⎩

n∑

i=1

K (m)

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

⎡

⎣
∑

Xi<aw j

K (m)

(
x + Xi/w j

h

)

+
∑

Xi>1−aw j

K (m)

(
x − 1 + (Xi − 1)/w j

h

)
⎤

⎦

⎫
⎬

⎭
. (15)

If m = s = 0, then f̂ (0)
0 (x) = f̂ S(x) the estimator suggested by Schuster (1985) in

his equation (2.5).2

Theorem 4 Let f ∈ Cs on D f = [0, 1] and let K be an m times differentiable kernel
with finite support, 0 ≤ m ≤ s. Let h > 0 be small (specifically, it should satisfy the
condition suppK ⊂ (−a/h, a/h)). Then, the following statements hold:

(1) For a classical kernel K , Eq. (6) holds for the estimator given in (15).
(2) If in (15) K is replaced by Mk, then (7) holds for the estimator given in (15).

Remark 5 Instead of requiring K to have compact support, one can define the exten-
sion so that it is sufficiently smooth and has compact support. Take a smooth function
h such that h(x) = 1 on (−a/2, 1 + a/2) and h(x) = 0 for x outside (−a, 1 + a).

Instead of (14) consider the extension g∗
s (x) = h(x)gs(x) and change (15) accord-

ingly. Then the statement of Theorem 4 will be true for g∗
s without the assumption that

K has compact support. When m = 0 and integration by parts is not necessary, the
function h does not have to be smooth. gs can be extended by zero outside (−a, 1+a)

or, equivalently, one can take h(x) = 1 on (−a, 1 + a) and h(x) = 0 for x outside
(−a, 1 + a).

Theorem 5 Under conditions of Theorem 4, the following is true.

(1) For a classical kernel K

(I) for x ∈ (0, 1) we have V
(
f̂ (m)
s (x)

)
= 1

nh2m+1 { f (x)� + o(1)},
(II) at the left boundary V

(
f̂ (m)
s (0)

)
= 1

nh2m+1 { f (0)�l + o(1)},
(III) at the right boundary V

(
f̂ (m)
s (1)

)
= 1

nh2m+1 { f (1)�r + o(1)}, where �r =
∫ 0
−∞
[∑s+1

j=0
k j
w j

F
(

t
w j

)]2
dt .

(2) If Mk is used in place of K , then the same asymptotic expressions are true with
F(x) = M (m)

k (x).

4 Estimation of smooth pieces of densities

Ideas developed in the previous sections can be applied to estimation of densities
with discontinuities or with discontinuous derivatives. Here we provide two results.

2 Note that there is a typographical mistake in Schuster’s expression. Using his notation, the last kernel in
his equation (2.5) should be evaluated at (x − 2d + Xi )/a.
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Cline and Hart (1991) used Schuster’s symmetrization device to improve bias around
a discontinuity point.

The first result in this section applies, for example, to the Laplace distribution
which is continuous everywhere but has a discontinuous derivative at zero. The usual
kernel density estimator on the whole line will inevitably have a large bias at zero.
The suggestion is to estimate its smooth restrictions f+ and f− on the right half-axis
[0,∞) and left half-axis (−∞, 0]. Also, the first result in this section, together with
the asymptotic distributional convergence in Remark 4, allows for the construction of
a test for discontinuity as in McCrary (2008).

As a second example, consider a piece-wise constant density on the interval [0, 1].
The restriction of the density on each interval where it is constant is smooth and can
be estimated using our approach. Obviously, the jumps of the estimators will estimate
the jumps of the density.

f+ and f− do not need to have the same degree of smoothness. Suppose that the
right part f+ is s times differentiable and 0 ≤ m ≤ s. The estimator of f (m)

+ (x),
x ≥ 0, is defined by

f̂ (m)
+,s (x) = 1

nhm+1

∑

Xi≥0

⎡

⎣K (m)

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

K (m)

(
x + Xi/w j

h

)
⎤

⎦ .

Theorem 6 In Theorem 1 and in definition (3) let f = f+ and D f = [0,∞). If the
conditions of Theorem 1 are satisfied for f and K , then (1) (6) and (7) are true and
(2) for the variance of f̂ (m)

+,s (x) one has (10) for x > 0 and (11) for x = 0.

Remark 6 As inRemark3, a direct consequenceofTheorem6 is that, if
∫ |K (m)(u)|2+δ

du < C for m ≤ s for some δ > 0, by Lyapunov’s central limit theorem we have for
x > 0 √

nh2m+1
(
f̂ (m)
+,s (x) − E

(
f̂ (m)
+,s (x)

))
d→ N (0, f+(x)�) , (16)

and for x = 0,

√
nh2m+1

(
f̂ (m)
+,s (0) − E

(
f̂ (m)
+,s (0)

))
d→ N (0, f+(0)�l) . (17)

Equivalent results hold for f̂ (m)
−,s (x).

Remark 7 As a consequence of Remark 6, we have that for m = 0 and f+ ∈ C2b , Eq.
(17) together with the expression for E f̂+,2(x) obtained from using Remark 1, gives

√
nh

(

f̂+,2(0) −
(

f+(0) + h2

2
f (2)
+ (0+)

∫

R

t2K (t)dt + o(h2)

))

d→ N (0, f+(0)�l) ,

and an equivalent expression holds for f̂−,2(0). Consequently, if we define δ =
lim
x↓0 f (x) − lim

x↑0 f (x) = f+(0) − f−(0) and δ̂H,s = f̂+,2(0) − f̂−,2(0), following

the arguments in McCrary (2008) we have, for x = 0,
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√
nh(δ̂H,s − δ − Bδ)

d→ N (0, ( f+(0) + f−(0)) �l) , (18)

where Bδ = h2
2 f (2)

+ (0+)
∫
R t2K (t)dt − h2

2 f (2)
− (0−)

∫
R t2K (t)dt + o(h2).

Now suppose that the domain D f of a density f contains a finite segment [c, d]
such that the restriction fr of f onto [c, d] is smooth. Denote

φ1(x) =
s+1∑

j=1

k j fr (c − w j (x − c)), c − a1 < x < c,

the extension of fr to the left of c and

φ2(x) =
s+1∑

j=1

k j fr (d − w j (x − d)), d < x < d + a1,

the extension of fr to the right of d. Here we choose a1 = a(d − c), to make sure that
c − w j (x − c) and d − w j (x − d) belong to [c, d]. The extended restriction then is
defined by

gr (x) =
⎧
⎨

⎩

φ1(x), c − a1 < x < c,
fr (x), c ≤ x ≤ d,

φ2(x), d < x < d + a1.
(19)

Definition (15) guides us to define

f̂ (m)
s (x) = 1

nhm+1

⎧
⎨

⎩

∑

c≤Xi≤d

K (m)

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

⎡

⎣
∑

c<Xi<c+a1w j

K (m)

(
x − c + (Xi − c)/w j

h

)

+
∑

d−a1w j<Xi<d

K (m)

(
x − d + (Xi − d)/w j

h

)
⎤

⎦

⎫
⎬

⎭
, x ∈ (c, d).

Theorem 7 Let fr be s times differentiable, 0 ≤ m ≤ s, and let K have compact
support. For h sufficiently small (such that suppK ⊆ (−a1/h, a1/h)), we have

E f̂ (m)
s (x) − f (m)

r (x) =
∫

R

K (u)
[
g(m)
r (x − hu) − g(m)

r (x)
]
du, c < x < d. (20)

Further, for x ∈ [c, d] we have V
(
f̂ (m)
s (x)

)
= 1

nh2m+1 { f (x)� + o(1)} , at the

left boundary V
(
f̂ (m)
s (c)

)
= 1

nh2m+1 { f (c)�l + o(1)} , and at the right boundary

V
(
f̂ (m)
s (d)

)
= 1

nh2m+1 { f (d)�r + o(1)} where F(t) = K (m)(t) or F(t) = M (m)
k (t)

depending on which kernel is used in the definition of f̂ (m)
s (x).
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5 Estimators satisfying zero boundary conditions

For simplicity, we consider only densities on D f = [0,∞). For estimator (4), we pro-
vide two modifications designed to satisfy zero boundary conditions for the estimator
itself and/or its derivatives. In both cases, the bias rate is retained and the variance at
zero becomes zero. The main difference between the estimators is in the number of
derivatives that are guaranteed to vanish. Everywhere it is assumed that f is s times
differentiable, 0 ≤ m ≤ s and the purpose is to estimate f (m)(x).

In the first result, we start with any estimator of the derivative with property (8). We
assume that some consecutive derivatives of f , starting with f (m)(0+), are zero, and
we want an estimator of f (m) which has at least as many derivatives vanishing at zero.
Let l be an integer between m and s, and let ψ be a function on D f with properties

ψ(0+) = · · · = ψ(l−m)(0+) = 0, ψ(l−m+1)(0+) �= 0, (21)

ψ(x) = 1 for x ≥ 1, 0 ≤ ψ(x) ≤ 1 everywhere. If

f (m)(0+) = · · · = f (s)(0+) = 0, (22)

put α = 1. Otherwise, let k be such that f (m)(0+) = · · · = f (k−1)(0+) = 0,
f (k)(0+) �= 0 and m < k ≤ s, and put α = s−m

k−m . For any estimator f̂ (m)(x) of

f (m)(x) define another estimator f̃ (m)(x) = ψ(xh−α) f̂ (m)(x).

Theorem 8 Let the estimator f̂ (m)(x) of f (m)(x) satisfy (8). Then f̃ (m)(x) satisfies

f̃ (m)(0+) = d

dx
f̃ (m)(0+) = · · · = dl−m

dxl−m
f̃ (m)(0+) = 0, (23)

E f̃ (m)(x) − f (m)(x) = O(hs−m) for all x ∈ D f , (24)

and

V
(
f̃ (m)(x)

)
=
⎧
⎨

⎩

V
(
f̂ (m)(x)

)
, x ≥ hα

V
(
f̂ (m)(x)

)
ψ(l−m+1)(0+)(xh−α)2(l−m+1), x < hα.

(25)

In the second result, we modify estimator (4) so as to satisfy zero boundary condi-
tions. Letψ be a functionwith properties:ψ ism times differentiable on D f ,ψ(x) = 1
for x ∈ (0, 2], ψ(x) = 0 for x ≥ 3, 0 ≤ ψ(x) ≤ 1 everywhere. Define for x ≥ 0

f̂ (m)(x) = 1

nhm+1

n∑

i=1

ψ(Xi/x)

[

K (m)

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

K (m)

(
x + Xi/w j

h

)
⎤

⎦ .

In this definition, we take 0/0 = 0 and for x > 0, x/0 = ∞.
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Theorem 9 All derivatives of f̂ (m)(x) that exist vanish at zero and

E f̂ (m)(x) − f (m)(x) =
∫

R

K (t)
[
g(m)
x (x − ht) − g(m)

x (x)
]
dt, x ∈ D f , (26)

where gx is the Hestenes’ extension of fx (t) = f (t)ψ (t/x) . Besides, for x > 0

V
(
f̂ (m)(x)

)
satisfies (10) (for x = 0 variance is zero).

6 Simulations

We conducted a series of simulations to provide some evidence of the finite sample
performances of our estimators and to contrast them with that of some of the most
commonly used estimators for densities with supports that are subsets ofR. We focus
on two broad cases: first, we consider densities that are defined on [0,∞); second, we
consider the case of a density with a discontinuity at x = 0. In the second case, we
are particularly interested in the size of the jump at the point of discontinuity.

In the first case, we consider random variables with the following densities:

1. Normal density left-truncated at x = 0: fT N (x) = 2√
2π

exp(− 1
2 x

2),

2. Gamma density: fG(x) = 1
βα�(α)

xα−1exp(− 1
β
x) with α = 2, β = 1,

3. Chi-squared density: fχ (x) = 1
2v/2�(v/2)

xv/2−1exp(− 1
2 x) with v = 5,

4. Exponential density: fE (x) = λexp(−λx) with λ = 1.

For each density, we generated samples of size n = 250, 500 and calculated the
following estimators: f̂ R , f̂ S and f̂s,k for k = 1, 2, 3, wi = i, i−1 and s = 1, 2.3 In
each case, we used a Gaussian kernel, or a Gaussian seed kernel, as necessary. We
also calculated the gamma kernel estimator of Chen (2000), which we denote by f̂C ,
and the generalized jackknife estimator proposed by Jones (1993), which we denote
by f̂ J .4 For each estimator, we selected an optimal bandwidth by minimizing their
integrated squared error, i.e., for an arbitrary estimator denoted by f̂ (x; h) and an
arbitrary density denoted by f , we choose

h0 = argmin
h

∫ ∞

0
( f̂ (u; h) − f (u))2du.

We then calculate the value of each estimator over a fixed grid on the interval (0, 4)
with step 10−1. For each sample, and each estimator, an average root-squared error
across the grid is calculated (RASE). The average of these RASE across all 1000
generated samples are reported in Table 1. Figure 1 gives a set of estimates for one of
the generated samples of size n = 250 associated with the exponential density.

3 Results for f̂s,k when wi = i−1 are not shown, as the performance of these estimators is generally
dominated by the case where wi = i . The full set of results, including experiments where n = 1000, is
available from the authors upon request.
4 Specifically, we consider the estimator constructed using the kernel KL defined on his equation (3.4).
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Table 1 Average RASE × 102 f̂ R and f̂ constructed using K (x) = 1√
2π

e−
1
2 x

2
, wi = i

f̂R f̂C f̂S f̂ J f̂s,1 f̂s,2 f̂s,3

s = 1 s = 2 s = 1 s = 2 s = 1 s = 2

n = 250

fT N 7.7974 3.6718 2.3328 2.7958 2.6234 2.9859 2.6436 3.2551 2.7526 3.3983

fG 2.9336 2.7331 3.7670 2.7409 3.0848 2.9242 3.0915 3.0707 3.1172 3.1062

fχ 1.3586 1.3469 1.5957 1.1949 1.2369 1.2979 1.1873 1.3300 1.1958 1.3256

fE 9.7433 3.8200 3.8134 2.9546 2.9241 3.1386 2.9346 2.9570 2.9432 2.8879

n = 500

fT N 7.3139 2.9312 1.8576 2.1673 2.0838 2.2882 2.0629 2.5569 2.1377 2.6658

fG 2.3973 2.1511 3.0778 2.1556 2.4199 2.2914 2.4140 2.3933 2.4345 2.4090

fχ 1.0756 1.0382 1.2487 0.9261 0.9501 1.0206 0.9109 1.0306 0.9212 1.0226

fE 9.1800 3.0807 3.1162 2.3264 2.2932 2.4399 2.2840 2.2589 2.2841 2.1926

As expected, the average RASE, for each estimator, and across all densities,
decreases as n increases from 250 to 500. Except for data generated from the fχ
density, all estimators that are based on Hestenes’ extension and constructed using
the Mk kernels (including the case where k = 1 and M1 = K ) have smaller aver-
age RASE when wi = i . Also, for estimators f̂s,2 and f̂s,3, choosing s = 1 reduces
average RASE (compared to s = 2) for all densities, except fG and fE when n = 500.

Except for the case of the truncated normal density— fT N—all Hestenes-based
estimators outperform the estimator f̂S proposed by Schuster (1985). The good per-
formance of f̂S in the case of fT N is expected since, in this case, f (1)

T N (0) = 0. It is

also the case that f (1)
χ (0) = 0, but for this density all Hestenes-based estimators have

smaller average RASE than f̂ S . Also, except for the case of the gamma density—
fG—all Hestenes-based estimators outperforms the estimator f̂C proposed by Chen
(2000). A similar conclusion can also be reached regarding the relative performance
of Hestenes-based estimators and the estimator f̂ J proposed by Jones (1993). Lastly,
as expected, the traditional Rosenblatt–Parzen estimator has the poorest performance
across all densities and all estimators, except for the case of fχ , where fχ (0) = 0. The
choice of kernel, or seed kernel, does not qualitatively impact the relative performance
described above.

Although a complete theoretical treatment of the optimal choice of wi , s and k
for finite n is beyond the scope of this paper, the preliminary experimental evidence
seems to support the use of wi = i and the choice of s = 1 relative to s = 2.
Also, our results here confirm the simulation results in Mynbaev and Martins-Filho
(2010) suggesting k < 3. Results for s, k ≥ 3 (not reported here) suggest rapid
deterioration of the performance of f̂s,k as measured by average RASE. In summary,
the simulation results suggest that Hestenes-based estimators can outperform the well-
known estimators proposed by Schuster (1985), Jones (1993) and Chen (2000). In the
few cases where this does not hold, additional information about the true density
is needed to avail oneself of other estimators, while our estimators are universally
applicable.
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Fig. 1 Plots of the exponential density fE with λ = 1 and the estimators f̂ R , f̂C , f̂S , f̂ J and f̂s,k for
s = 1, k = 2,wi = i . The bandwidths for each estimator are obtained byminimizing the integrated squared
error. Excepting f̂ R , the estimators differ mostly in the vicinity of zero

In the second broad case, we consider two densities that have a discontinuity at
x = 0. The first is given by

f (x) =
{

1√
2πσ 2

exp
(
− 1

2
x2

σ 2

)
if x < 0

1√
2π

exp
(− 1

2 x
2
)

if x ≥ 0,
(27)

where σ 2 controls the size of the jump. If σ 2 = 1 the density is continuous everywhere,
and for 0 < σ 2 < 1 the jump at x = 0 is given by J f (0) = f (0−) − f (0+) =
1√
2π

( 1
σ

− 1
)

> 0. The second is given by,

f (x) =
{ 1

2
√
2π�(−μ1)

exp
(− 1

2 (x − μ1)
2
)

if x < 0
1

2
√
2π(1−�(−1))

exp
(− 1

2 (x − 1)2
)

if x ≥ 0,
(28)

where �(x) is the distribution function associated with a standard Gaussian density
andμ1 controls the size of the jump. Ifμ1 = −1 the density is continuous everywhere,
and for μ1 > −1 the jump at x = 0 is given by
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J f (0) = f (0−) − f (0+)

= 1

2
√
2π

(
1

�(−μ1)
exp

(

−1

2
μ2
1

)

− 1

1 − �(−1)
exp (−1/2)

)

> 0. (29)

The top two panels of Fig. 2 provide graphs of the first density for σ 2 = 0.5 and
σ 2 = 0.25. The bottom two panels provide graphs of the second density for μ1 = 0
and μ1 = 1.5.

With knowledge of the point of discontinuity (x = 0), we assess the performance
of two estimators for the size of the jump at x = 0. The first is based on a local
linear density estimator proposed by Cheng (1994). As in McCrary (2008), for each
sample {Xi }ni=1 we first compute a histogram with bin size b = 2σ̂n−1/2 where

σ̂ =
√
n−1

∑n
i=1(Xi − X̄)2 and X̄ = n−1∑n

i=1 Xi . Using 2J bins with centers

G j ∈ {· · · ,− 3
2b,− 1

2b,
1
2b,

3
2b, . . .} and J = �

max
i

{Xi }−min
i

{Xi }
b � + 2, we obtain the

number of observations C j that fall in each bin and define the standardized frequency
counts Y j = 1

nbC j . f̂ LL+ (0) is the local linear estimator obtained from regressing Y j

on G j > 0 evaluated at x = 0 for the part of f defined on [0,∞). Similarly, f̂ LL− (0)
is the local linear estimator obtained from regressing Y j on G j < 0 for the part of f
defined on (−∞, 0].

We consider two parameters that capture the jump discontinuity at x = 0: 1)
δ = f+(0) − f−(0), where f−(0) = lim

x↑0 f (x) and f+(0) = lim
x↓0 f (x); 2) follow-

ing McCrary (2008), θ = log f+(0) − log f−(0). Hence, we define the local linear
estimators δ̂LL = f̂ LL+ (0) − f̂ LL− (0) and θ̂LL = log f̂ LL+ (0) − log f̂ LL− (0).

The second estimator we consider is our Hestenes-based estimator from Sect. 4.
We define

f̂+,s(0) = 1

nh

∑

Xi≥0

⎡

⎣K

(−Xi

h

)

+
s+1∑

j=1

k j
w j

K

(
Xi/w j

h

)
⎤

⎦ and

f̂−,s(0) = 1

nh

∑

Xi≤0

⎡

⎣K

(−Xi

h

)

+
s+1∑

j=1

k j
w j

K

(
Xi/w j

h

)
⎤

⎦

for the part of f defined on [0,∞) and (−∞, 0], respectively. As such, we propose
the estimators δ̂H,s = f̂+,s(0) − f̂−,s(0) and θ̂H,s = log f̂+,s(0) − log f̂−,s(0).

Tables 2 and 3 provide biases and variances for local linear and Hestenes-based
estimators for the left and right limits of the densities given in Eqs. (27) and (28)
at x = 0, as well as the root-mean-squared error (M) of δLL , δH,s , θLL and θH,s at
x = 0 for n = 500, 1000 based on 2000 samples. Given our Theorems 1 and 3, and
Theorem 3 in Cheng (1994), we calculate each density estimator using optimal plug-in
bandwidths that minimize the asymptotic mean integrated squared error at x = 0, i.e.,

h = n−1/5∗

( ∫
K 2(x)dx

μ2
2

∫
f (2)(x)2dx

)1/5

, where μ2 =
∫

x2K (x)dx .
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Fig. 2 Densities f (x) with a discontinuity at x = 0. Top panels are for f (x) =⎧
⎨

⎩

1√
2πσ2

exp
(
− 1

2
x2

σ2

)
if x < 0

1√
2π

exp
(
− 1

2 x
2
)

if x ≥ 0
, with σ 2 = 0.5 on top left panel and σ 2 = 0.25 on top right panel.

Bottom panels are for f (x) =
⎧
⎨

⎩

1
2
√
2π�(−μ1)

exp
(
− 1

2 (x − μ1)
2
)

if x < 0

1
2
√
2π(1−�(−1))

exp
(
− 1

2 (x − 1)2
)

if x ≥ 0
, with μ1 = 0 on bottom

left panel and μ1 = 1.5 on bottom right panel

Note that in this case, n∗ is either the number of observations on the positive or
negative sides ofR, and

∫
f (2)(x)2dx is calculated using the corresponding expression
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for f (2)(x) and limits of integration on the positive or negative sides ofR. In the case
of the Hestenes-based estimators, we focus on the case where wi = i (results for the
case where wi = 1/ i are available upon request).

We start by observing some general regularities for Tables 2 and 3. First, for all
density estimators, the bias and variance decrease when the sample size grows from
n = 500 to n = 1000. Also, for both densities given by Eqs. (27) and (28) the
local linear estimator has, in general, smaller bias than the Hestenes-based estimators.
The latter, however, have smaller variances, with the exception of the case where the
Hestenes-based estimators are calculated using s = 2 for density given by Eq. (28),
where the variances are largely equal. The root-mean-squared errors (M) for θ̂LL and
δ̂LL are greater than or equal to that for θ̂H,s for s = 1 for both densities and all sample
sizes. When s = 2, this relationship is essentially reversed for all sample sizes when
the density is given by Eq. (28). If the density is given by Eq. (27), then the root-mean-
squared errors for δ̂LL and θ̂LL are generally smaller than those for δ̂H,s and θ̂H,s when
n = 1000. The size of the jump discontinuity, as regulated by the values of σ 2 and
μ1, has little impact on the root-mean-squared error (M) of both θ̂LL and θ̂H,s . In this
case, samples that resulted in negative estimated densities at x = 0 were discarded, so
that θ̂LL and θ̂H,s can be defined. For δ̂LL and δ̂H,s , where the samples that produce
negative estimated densities are not discarded, the size of the jump discontinuity, as
regulated by μ1, increases the root- mean-squared error of both δ̂LL and δ̂H,s . This
does not occur for the density given by Eq. (27), where no sample in our experiments
produced negative density estimates. Overall, our simulations are largely inconclusive
regarding the finite sample relative performance of the local linear (LL) and Hestenes-
based estimators for the size of a jump discontinuity. The latter normally exhibiting
smaller variances, while the former normally carrying smaller biases.

7 Summary and conclusions

We provided a set of easily implementable kernel estimators for densities defined
on subsets of R that have boundaries. The use of Hestenes’ extensions allows us to
obtain theoretical representations for bias and variance of our proposed estimators
that preserve the orders of traditional kernel estimators for densities defined on R. In
effect, the insights gained from using Hestenes’ extensions make the study of suitably
defined kernel estimators in sets that have boundaries a special case of the theory
developed for densities defined onR. Preliminary simulations reveal very good finite
sample performance relative to a number of commonly used alternative estimators.
Further work should investigate the possible existence of optimal choices for s and
w1, . . . , ws+1 under a suitably defined criterion. If possible, this would produce a best
estimator in the class we have defined.

Appendix: Proofs

Proof of Theorem 1 (1) By the IID assumption
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In the first integral we have x − hu > 0 and f (x − hu) = gs(x − hu); in the second
one x − hu < 0, so
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(2) Plug the definition of Mk in (30) to get
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which is (7). ��
Proof of Theorem 2 For part (1), we note that since
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Proof of Theorem 4 (1) Let IA denote the indicator of a set A. Then, for an arbitrary
function g,

∑
Xi<aw j

g(Xi ) =∑n
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= 1

hm

∫ (x+a)/h

(x−1−a)/h
K (m) (u) gs(x − hu)du. (35)

Regardless of x ∈ [0, 1], the interval ((x−1−a)/h, (x+a)/h) contains (−a/h, a/h)

which contains suppK for all small h. Therefore,

E f̂ (m)
s (x) = 1

hm

∫

R

K (m) (u) gs(x − hu)du.

For this to hold formally, gs should be extended outside (−a, 1 + a) smoothly; the
manner of extension does not affect the above integral. Finally, integration by parts
and the condition

∫
R K (t)dt = 1 prove the statement.

(2) Since K is assumed to have finite support, we do not need Assumption 1. Calcu-
lations done in the proof of Theorem 2 after Eq. (33) include change of variables and
integration by parts and can be easily repeated here. ��
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Proof of Theorem 5 Define

ui = 1

hm+1

⎧
⎨

⎩
K (m)

(
x − Xi

h

)

+
s+1∑

j=1

k j
w j

[

I{Xi<aw j }K (m)

(
x + Xi/w j

h

)

+ I{Xi>1−aw j }K (m)

(
x − 1 + (Xi − 1)/w j

h

)]
⎫
⎬

⎭
.

Then V
(
f̂ (m)
s (x)

)
= 1

n [Eu21−(Eu1)2]. It will be shown that Eu21 is of order h−(2m+1)

in all cases. Since Eu1 = O(1) by Theorem 4, it is enough to find the exact order of
Eu21. Letting F = K (m), denote

g = F

(
x − X1

h

)

, gli = I{X1<awi }F
(
x + X1/wi

h

)

,

gri = I{X1>1−awi }F
(
x − 1 + (X1 − 1)/wi

h

)

.

g is used at internal points of the domain, gli and gri are used for correction at the left
and right boundaries, respectively. Their contributions to variances reflect this. From

u1 = 1

hm+1

⎛

⎝g +
s+1∑

j=1

k j
w j

(
glj + grj

)
⎞

⎠

we see that Eu21 contains (a) Eg2, (b) Eggli , (c) Egli g
l
j , (d) Eggrj , (e) Egli g

r
j , (f)

Egri g
r
j .

(I) Let x ∈ (0, 1).
(a) Replacing x−t

h = u, we have

1

h
Eg2 = 1

h

∫ 1

0
F2
(
x − t

h

)

f (t)dt =
∫ x/h

(x−1)/h
F2(u) f (x − hu)du. (36)

Since x/h → ∞, (x −1)/h → −∞ and f is bounded and continuous, in the
equation

1

h
Eg2 = −

∫ ∞

x/h
F2(u) f (x − hu)du −

∫ (x−1)/h

−∞
F2(u) f (x − hu)du

+
∫

R

F2(u) f (x − hu)du

the first two integrals on the right tend to zero and the last integral tends to
f (x)� by the dominated convergence theorem. Thus,
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1

h
Eg2 = f (x)� + o(1). (37)

Similar arguments below will be omitted.
(b) Here we use boundedness of f, F and integrability of F :

∣
∣
∣
∣
1

h
Eggli

∣
∣
∣
∣ =

∣
∣
∣
∣
1

h

∫ awi

0
F

(
x − t

h

)

F

(
x + t/wi

h

)

f (t)dt

∣
∣
∣
∣

(

replacing
x + t/wi

h
= u and using dots in place of inconsequential arguments

)

= wi

∣
∣
∣
∣
∣

∫ (x+a)/h

x/h
F (· · · ) F (u) f (· · · )du

∣
∣
∣
∣
∣
≤ wi sup | f F |

∫ (x+a)/h

x/h
|F (u) |du → 0.

(38)

(c) Denoting λ = min{wi , w j }, we have

1

h
Egli g

l
j = 1

h

∫ aλ

0
F

(
x + t/wi

h

)

F

(
x + t/w j

h

)

f (t)dt

(

replacing
x + t/wi

h
= u

)

= wi

∫ (x+aλ/wi )/h

x/h
F (· · · ) F (u) f (· · · )du → 0. (39)

(d) Replacing x−1+(t−1)/wi
h = u, we get

1

h
Eggri = 1

h

∫ 1

1−awi

F

(
x − t

h

)

F

(
x − 1 + (t − 1)/wi

h

)

f (t)dt

= wi

∫ (x−1)/h

(x−1−a)/h
F (· · · ) F (u) f (· · · )du → 0. (40)

(e) Replacing x+t/wi
h = u

1

h
Egli g

r
j = 1

h

∫ awi

1−aw j

F

(
x + t/wi

h

)

F

(
x − 1 + (t − 1)/w j

h

)

f (t)dt

= wi

∫ (x+a)/h

[x+(1−aw j )/wi ]/h
F (u) F (· · · ) f (· · · )du → 0. (41)

Here we take into account that aw j ≤ 1 for all j.
(f) Letting λ = min{wi , w j } we have

1

h
Egri g

r
j = 1

h

∫ 1

1−aλ

F

(
x − 1 + (t − 1)/wi

h

)

×F

(
x − 1 + (t − 1)/w j

h

)

f (t)dt
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(

replacing
x − 1 + (t − 1)/wi

h
= u

)

= wi

∫ (x−1)/h

(x−1−aλ/wi )/h
F (u) F (· · · ) f (· · · )du → 0. (42)

The conclusion from (37) to (42) is that Eu21 = 1
h2m+1 { f (x)� + o(1)} which

proves statement I).
(II) Let x = 0.

(a) From (36)

1

h
Eg2 =

∫ 0

−1/h
F2(u) f (−hu)du → f (0)

∫ 0

−∞
F2(u)du

= f (0)
∫ ∞

0
F2
(

u

w0

)

du. (43)

(b) By (38)

1

h
Eggli = 1

h

∫ awi

0
F

(

− t

h

)

F

(
t

hwi

)

f (t)dt

(

replacing
t

h
= u

)

=
∫ awi /h

0
F (−u) F

(
u

wi

)

f (hu)du → f (0)

×
∫ ∞

0
F (−u) F

(
u

wi

)

du

= f (0)
∫ ∞

0
F

(
u

w0

)

F

(
u

wi

)

du. (44)

(c) By (39)

1

h
Egli g

l
j = 1

h

∫ aλ

0
F

(
t/wi

h

)

F

(
t/w j

h

)

f (t)dt

(

replacing
t

h
= u

)

=
∫ aλ/h

0
F

(
u

wi

)

F

(
u

w j

)

f (hu)du → f (0)

×
∫ ∞

0
F

(
u

wi

)

F

(
u

wi

)

du. (45)

(d) By (40)

1

h
Eggrj = w j

∫ −1/h

(−1−a)/h
F (· · · ) F (u) f (· · · )du → 0. (46)

(e) From (41)

1

h
Egli g

r
j = 1

h

∫ awi

1−aw j

F

(
t/wi

h

)

F

(−1 + (t − 1)/w j

h

)

f (t)dt
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(

here we replace
−1 + (t − 1)/w j

h
= u

)

= w j

∫ [−1+(awi−1)/w j ]/h

(−1−a)/h
F (· · · ) F (u) f (· · · )du → 0. (47)

Here we remember that awi ≤ 1.
(f) From (42)

1

h
Egri g

r
j = wi

∫ −1/h

(−1−aλ/wi )/h
F (u) F (· · · ) f (· · · )du → 0. (48)

From (43) to (48), we conclude that

Eu21 = 1

h2m+1

⎧
⎨

⎩
f (0)

∫ ∞

0
F2
(

u

w0

)

du

+ 2 f (0)
s+1∑

i=1

ki
wi

∫ ∞

0
F

(
u

w0

)

F

(
u

wi

)

du

+ f (0)
s+1∑

i, j=1

ki
wi

k j
w j

∫ ∞

0
F

(
u

wi

)

F

(
u

w j

)

du + o(1)

⎫
⎬

⎭

= 1

h2m+1

⎧
⎨

⎩
f (0)

∫ ∞

0

[
s+1∑

i=0

ki
wi

F

(
u

wi

)]2

du + o(1)

⎫
⎬

⎭
.

(III) Let x = 1.
(a) From (36)

1

h
Eg2 =

∫ 1/h

0
F2(u) f (1 − hu)du → f (1)

∫ ∞

0
F2 (u) du

= f (1)
∫ 0

−∞
F2
(

u

w0

)

du. (49)

(b) From the second line of (38)

1

h
Eggli = wi

∫ (1+a)/h

1/h
F (· · · ) F (u) f (· · · )du → 0. (50)

(c) From the last line of (39)

1

h
Egli g

l
j = wi

∫ (1+aλ/wi )/h

1/h
F (· · · ) F (u) f (· · · )du → 0. (51)
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(d) From (40)

1

h
Eggri = 1

h

∫ 1

1−awi

F

(
1 − t

h

)

×F

(
(t − 1)/wi

h

)

f (t)dt

(

replacing
t − 1

h
= u

)

=
∫ 0

−awi /h
F (−u) F

(
u

wi

)

f (1 + hu)du

→ f (1)
∫ 0

−∞
F (−u) F

(
u

wi

)

du

= f (1)
∫ 0

−∞
F

(
u

w0

)

F

(
u

wi

)

du. (52)

(e) From (41)

1

h
Egli g

r
j = 1

h

∫ awi

1−aw j

F

(
1 + t/wi

h

)

F

(
(t − 1)/w j

h

)

f (t)dt

(

replace
1 + t/wi

h
= u

)

= wi

∫ (1+a)/h

[1+(1−aw j )/wi ]/h
F (u) F (· · · ) f (· · · )du → 0. (53)

(f) From (42)

1

h
Egri g

r
j = 1

h

∫ 1

1−aλ

F

(
t − 1

hwi

)

×F

(
t − 1

hw j

)

f (t)dt

(

replacing
t − 1

h
= u

)

=
∫ 0

−aλ/h
F

(
u

wi

)

F

(
u

w j

)

f (1 + hu)du

→ f (1)
∫ 0

−∞
F

(
u

wi

)

F

(
u

w j

)

du. (54)

Collecting nonzero limits from (49), (52), (54)

Eu21 = 1

h2m+1

⎧
⎨

⎩
f (1)

∫ 0

−∞
F2
(

u

w0

)

du

+ 2 f (1)
s+1∑

i=1

ki
wi

∫ 0

−∞
F

(
u

w0

)

F

(
u

wi

)

du
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+ f (1)
s+1∑

i, j=1

ki
wi

k j
w j

∫ 0

−∞
F

(
u

wi

)

F

(
u

wi

)

du + o(1)

⎫
⎬

⎭

= 1

h2m+1

⎧
⎨

⎩
f (1)

∫ 0

−∞

[
s+1∑

i=0

ki
wi

F

(
u

wi

)]2

du + o(1)

⎫
⎬

⎭
.

��
Proof of Theorem 6 (1) Instead of (30), we have

E f̂ (m)
+,s (x) = 1

hm+1 E

⎧
⎨

⎩
I{X1≥0}

⎡

⎣K (m)

(
x − X1

h

)

+
s+1∑

j=1

k j
w j

K (m)

(
x + X1/w j

h

)
⎤

⎦

⎫
⎬

⎭

= 1

hm+1

⎡

⎣
∫ ∞

0
K (m)

(
x − t

h

)

f+(t)dt

+
s+1∑

j=1

k j
w j

∫ ∞

0
K (m)

(
x + t/w j

h

)

f+(t)dt

⎤

⎦ .

Repeating calculations that led from (30) to (32), we get

E f̂ (m)
+,s (x) =

∫

R

K (s) g(m)
+,s(x − hs)ds

(those calculations did not use the fact that f was a density).
(2) The proof is similar to that of Theorem 5.

��
Proof of Theorem 7 By the i.i.d. assumption

E f̂ (m)
s (x) = 1

hm+1

{∫ d

c
K (m)

(
x − t

h

)

fr (t)dt

+
s+1∑

j=1

k j
w j

[∫ c+a1w j

c
K (m)

(
w j (x − c) + (t − c)

w j h

)

fr (t)dt

+
∫ d

d−a1w j

K (m)

(
w j (x − d) + (t − d)

w j h

)

fr (t)dt

]}

.

The obvious changes of variables are:

x − t

h
= u,

w j (x − c) + (t − c)

w j h
= u,

w j (x − d) + (t − d)

w j h
= u.
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The mean value becomes

E f̂ (m)
s (x) = 1

hm

{

−
∫ (x−d)/h

(x−c)/h
K (m) (u) fr (x − hu)du

+
s+1∑

j=1

k j

[∫ (x−c+a1)/h

(x−c)/h
K (m) (u) fr (c − w j (x − c) + w j hu)du

+
∫ (x−d)/h

(x−d−a1)/h
K (m) (u) fr (d − w j (x − d) + w j hu)du

]}

.

Applying (19) we see that this is the same as

E f̂ (m)
s (x) = 1

hm

⎧
⎨

⎩

∫ (x−c)/h

(x−d)/h
K (m) (u) fr (x − hu)du

+
∫ (x−c+a1)/h

(x−c)/h
K (m) (u)

s+1∑

j=1

k j fr (c − w j (x − hu − c))du

+
∫ (x−d)/h

(x−d−a1)/h
K (m) (u)

s+1∑

j=1

k j fr (d − w j (x − hu − d))du

⎫
⎬

⎭

= 1

hm

∫ (x−c+a1)/h

(x−d−a1)/h
K (m) (u) gr (x − hu)du.

Regardless of x ∈ [c, d], the interval ((x − d − a)/h, (x − c + a)/h) contains
(−a/h, a/h) which contains suppK for all small h. Therefore, also integrating by
parts,

E f̂ (m)
s (x) = 1

hm

∫

R

K (m) (u) gr (x − hu)du =
∫

R

K (u) g(m)
r (x − hu)du.

The derivation of the expression for variance largely repeats that from Theorem 5. ��
Proof of Theorem 8 (21) implies

(
d

dx

) j

f̃ (m)(x) |x=0+ =
j∑

i=0

Ci
j

[(
d

dx

)i
ψ(xh−α)

]

×
[(

d

dx

) j−i

f̂ (m)(x)

]

|x=0+ = 0,

for j = 0, . . . , l − m, so (23) is satisfied.
To prove (24), consider two cases.

Case xh−α ≥ 1. (24) follows trivially from (8) because f̃ (m)(x) = f̂ (m)(x).
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Case xh−α ≤ 1. Obviously, in the equation

E f̃ (m)(x) − f (m)(x) = ψ(xh−α)
[
E f̂ (m)(x) − f (m)(x)

]

+ [ψ(xh−α) − 1
]
f (m)(x)

the first term on the right is O(hs−m), and it remains to prove that
[
ψ(xh−α) − 1

]
f (m)

(x) = O(hs−m). Suppose (22) is true, so that α = 1. Then

f (m)(x) = f (m)(0+) + · · · + f (s)(0+)
xs−m

(s − m)! + o(xs−m)

= o
(
(hα)s−m) = o(hs−m). (55)

Suppose (22) is wrong. Then α = s−m
k−m and

f (m)(x) = f (m)(0+) + · · · + f (k)(0+)
xk−m

(k − m)! + o(xk−m)

= O
(
xk−m

)
= O(hs−m). (56)

(55) and (56) prove what we need.
To prove (25), consider two cases.

Case xh−α ≥ 1. The first part of (25) is obvious because f̃ (m)(x) = f̂ (m)(x).
Case xh−α ≤ 1. From (35) it follows that

ψ(xh−α) = ψ(0+) + · · · + ψ(l−m+1)(0+)

(
xh−α

)(l−m+1)

(l − m + 1)!
= ψ(l−m+1)(0+)

(
xh−α

)(l−m+1)

which proves the second part of (25). ��
Proof of Theorem 9 For almost all samples mini Xi > 0 and for 0 < x ≤ 1

3 mini Xi ,

one has ψ(Xi/x) = 0, i = 1, . . . , n. Hence f̂ (m)(x) vanishes, together with all its
derivatives, in the neighborhood of zero for almost all samples. Following (30), we
see that the mean is

E f̂ (m)(x) = 1

hm+1

∫ ∞

0

⎡

⎣K (m)

(
x − t

h

)

+
s+1∑

j=1

k j
w j

K (m)

(
x + t/w j

h

)
⎤

⎦ψ

(
t

x

)

f (t)dt.

Here the function fx (t) = f (t)ψ (t/x) has support supp fx ⊆ [0, 3x]. Implementing
changes applied after (31), including integration by parts, we obtain an analog of (32)
with gx instead of g. gx is obtained by replacing f in (2)–(3) by fx .The rest is familiar.
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The statement about variance is obtained by repeating the corresponding part of the
proof of Theorem 5. ��
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