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Abstract

White’s (1984, Asymptotic Theory for Econometricians. Academic Press (Harcourt
Brace Jovanovich), Orlando.) concept of asymptotic variance is shown to allow some
ambiguities when used to study asymptotic efficiency. These ambiguities are resolved
with some mild conditions on the estimators being studied, because then White’s
asymptotic variance is an equivalence class in which efficiency conclusions are invariant
across members of the class. Among the extant efficiency definitions, the lim inf-based
definition (White, 1994. Estimation, Inference and Specification Analysis. Econometric
Society Monograph, vol. 22, Cambridge University Press, Cambridge. p. 136) is most
informative even though identical conclusions can be obtained under our conditions with
earlier definitions, but there are still some notions of efficiency allowed by White’s
asymptotic variance that can only be detected by weaker efficiency definitions. ! 1999
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1. Introduction

Suppose !*
!

and !I
!
are estimators for some parameter vector ! and we want to

determine their relative asymptotic efficiency. A procedure discussed by White
(1994), p. 136) is to first find two sequences of matrices, »*

!
and »I

!
, such that

both »*#!$%
!

!n(!*
!
!!) and »I #!$%

!
!n(!I

!
!!) converge in distribution to stan-

dard normals. White (1984, p. 66; 1994, p. 91) calls such sequences asymptotic
variances, or avars. Next, these sequences are used to show
lim inf

!"&
"#(»I

!
!»*

!
)"*0 ∀", whence we conclude, for example, that !*

!
is

asymptotically efficient relative to !I
!
. This procedure has an advantage over the

traditional ( Fisher, 1925) approach of comparing the covariances of the asymp-
totic distributions, in that »*

!
and »I

!
need not have limits (White, 1982). But

there is a potential disadvantage as well because in all interesting cases there will
be other avar sequences, say »

!
, such that »#!$%

!
!n(!*

!
!!) converges in

distribution to a standard normal. Thus, one must inquire whether
lim inf

!"&
"#(»I

!
!»*

!
)"*0 ∀" implies lim inf

!"&
"#(»I

!
!»

!
)"*0 ∀" for any

such »
!
, that is, whether statements about asymptotic efficiency are invariant to

the avar sequences examined. By Fatou’s lemma, this implication holds if
lim

!"&
(»

!
!»*

!
)"0, and the converse holds as well provided the two lim infs

are both nonnegative for the same set of »I
!
sequences (that is, for the same rival

estimators !I
!
). But without lim

!"&
(»

!
!»*

!
)"0 anything is possible, including

a reversal of the original conclusion, in which case the relative efficiency
comparison based on »*

!
would appear definitive when it is in fact ambiguous.

Alternatively, »*
!
may yield no conclusion when a conclusion is obtainable using

»
!
, and the same comments apply to all possible substitutes for »*

!
and »I

!
.

Thus, at this level of generality, lim
!"&

(»
!
!»*

!
)"0 for all relevant sequences

»*
!
and »

!
is sufficient for meaningful efficiency conclusions. The converse is also

of interest, namely, whether two sequences that satisfy this condition are both
avars given that one of them is.

More formally, we must investigate whether the relation R defined by

$»*
!
%&
!'!

R$»
!
%&
!'!

! lim
!"&

(»
!
!»*

!
)"0 (1)

has an equivalence class consisting of all sequences that produce the desired
asymptotic normal distribution. In this paper we first show this is the appropri-
ate relation for studying relative asymptotic efficiency, in that efficiency con-
clusions are unambiguous if and only if all pairs of candidate sequences have the
relation R. We then show that an avar collection is not always an equivalence
class with respect to R, but some mild conditions on the underlying random
vector are sufficient to ensure that an avar collection is indeed an equivalence
class with respect to R. Hence, when these conditions hold asymptotic efficiency
can be studied without ambiguity using the full generality of the avar concept.
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We demonstrate that the sufficient conditions are equivalent to boundedness
of all avar sequences and the corresponding sequences of inverses. When avar
sequences, but not their inverses, are bounded the avar collection is a (perhaps
proper) subset of an equivalence class with respect to R. This is sufficient for the
sign of lim inf

!"&
"#(»I

!
!»*

!
)" to be invariant across all »*

!
sequences that are

avars of !n(!*
!
!!), and hence for unambiguous efficiency conclusions by this

criterion. However, (White (1984), pp. 78—79) provides another definition of
efficiency based on the avar concept that does not always yield the same
efficiency conclusions as this lim inf criterion. We show the two definitions are
equivalent if avar sequences and their corresponding sequences of inverses are
bounded. Hence, for consistency across definitions avar must be an equivalence
class with respect to R. This rules out both divergences to infinity and ap-
proaches to singularity in the collection.

Under these conditions the generalization accomplished by the avar concept
over the traditional approach is that avar accommodates nonconvergent but
bounded oscillations in the sequences forming the avar class, and their corre-
sponding sequences of inverses. The avar concept does not directly deliver
assuredly unambiguous efficiency comparisons when there are divergences to
infinity or approaches to singularity in the collection. Bounding these sequences is
a mild restriction, however, because the random vector can usually be normalized
to eliminate such problems before forming the avar class, as is customary through
multiplication by !n. In general, an element of !*

!
can be normalized by any

nonstochastic sequence in order to obtain bounded avars and inverse avars, and
the normalizing sequence can differ across elements of !*

!
. Once all estimators

under consideration are so normalized, our results show that their relative asymp-
totic efficiencies can be unambiguously compared irrespective of convergence of
the avar sequences, the particular sequences examined, or the efficiency definition
used. There are two caveats here. First, a multiple correlation between normalized
elements of !*

!
might tend to one, in which case some asymptotically redundant

element(s) should be dropped before asymptotic efficiency is studied, since this
situation would lead to avar sequences that approach singularity. Second, because
relative efficiency conclusions can be affected if different normalizations are used
for !*

!
and !I

!
, one should only compare estimators via avars of normalized

deviations when corresponding elements are normalized with the same sequence.
Bounds on avar sequences and their sequences of inverses are usually (White,

1982; 1984, p. 66; 1994, pp. 130—136) although not always (Bates and White,
1993) imposed, but even when they are imposed they are somewhat unsatisfac-
tory as primitive assumptions because they utilize the avar class to restrict itself
rather than placing restrictions on the underlying random vector. In contrast,
our conditions are imposed directly on the random vector and thus illuminate
exactly what is being assumed when bounds are placed on avar sequences. To
accomplish this we introduce a new order in probability concept, which we call
asymptotic linear independence in probability, or alip.
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%White (1984) actually only requires positive definiteness of »
!
for large n. Since only the tail of

the sequence is important in the definition, there is no consequential loss of generality from assuming
the entire sequence is positive definite.

Finally, since nonconvergent oscillations are permitted in an avar class it is
possible to have ‘one-sided’ relative efficiency that is not addressed by either of
White’s definitions, in the form of either a smaller minimal limiting variance
(minimin efficiency) or a smaller maximal limiting variance (minimax efficiency).
We introduce new definitions to address these possibilities. Naturally, the new
definitions are weaker than White’s definitions, so all known avar efficiency
conclusions automatically hold for minimin and minimax efficiency.

2. The equivalence relation R for studying relative asymptotic efficiency

Let Q# denote the set of all sequences $»
!
%&
!'!

of real symmetric positive-
definite nonstochastic (q"q) matrices »

!
. For such »

!
, denote by »!$%

!
the

unique real-symmetric positive-definite matrix satisfying »!$%
!

»!$%
!

"»
!
. In es-

sence, White’s definition of asymptotic covariance is the following.

Definition 1 ( ¼hite, 1984, p. 66; 1994, p. 91).% Let $x
!
%&
!'!

be a sequence of
q-dimensional random vectors (q(R). The asymptotic covariance of $x

!
%&
!'!

,
denoted avar($x

!
%&
!'!

), is

avar($x
!
%&
!'!

),$$»
!
%&
!'!

3Q#: »#!$%
!

x
!

#Pz&N (0, I
#
)%.

For brevity, we drop the indexes and write »
!
3avar(x

!
) to denote that the

sequence $»
!
%&
!'!

is an element of avar($x
!
%&
!'!

).
We say Definition 1 is White’s definition ‘in essence’ because neither White

(1984) nor White (1994) acknowledge that avar is a class. Bates and White (1993)
explicitly discuss that the avar of their RCASOI class of estimators is a class, but
attribute this to the flexibility of RCASOI classes. In fact, in all interesting cases
the avar of any single random vector is a class because, if there exists one
sequence »

!
satisfying Definition 1, then A

!
»#!$%

!
x
!

#P z for any $A
!
%&
!'!

satisfy-
ing lim

!"&
A

!
"I

#
. Hence, if »

!
3avar (x

!
) then A(#!

!
»

!
A#!

!
3avar(x

!
)

∀$A
!
%&
!'!

satisfying A
!
»#!$%

!
3Q# and lim

!"&
A

!
"I

#
. In other words, a great

profusion of avar sequences exists whenever a single avar sequence exists.
This observation brings to the forefront the issue of whether conclusions

about relative asymptotic efficiency are invariant to which element of an avar
class is examined. What is needed is an equivalence relation in Q# whose
equivalence classes are precisely those collections of sequences for which con-
clusions about relative asymptotic efficiency are identical. Given this, if avar(x

!
)

is an equivalence class of the relation, or even a subset of an equivalence class,
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)Definitions 2 and 6 (below) are rephrased from White’s original statements to reflect the fact that
avar(x

!
) is a class. We use the same terminology to accomplish this that (Bates and White (1993),

Definition 2.5) use for a RCASOI class.

then efficiency conclusions are unambiguous. To construct the equivalence
relation we first need a formal definition of efficiency. We start with:

Definition 2 ( ¼hite, 1994, p. 136).) Let !*
!

and !I
!

be consistent estimators of
a nonstochastic q-dimensional vector !. Then !*

!
is asymptotically efficient relative

to !I
!
if there exists »*

!
3avar(!n(!*

!
!!)) and »I

!
3avar(!n(!I

!
!!)) such that

lim inf
!"&

"#(»I
!
!»*

!
)"*0

for all "3R# ("O0). An estimator is asymptotically efficient within a class if it is
asymptotically efficient relative to every other estimator in the class.

Note that one consistent estimator can be asymptotically efficient relative to
another only if the avar’s of both normalized estimators are nonempty.

According to this definition the relation R in Q# that yields unambiguous
efficiency conclusions within an equivalence class is $»*

!
%&
!'!

R$»
!
%&
!'!

if and
only if

(∀»I
!
): lim inf

!"&
"#(»I

!
!»*

!
)"*0 ∀" ! lim inf

!"&
"#(»I

!
!»

!
)"*0 ∀". (2)

It is trivial to verify that R is an equivalence relation (satisfying reflexivity,
symmetry, and transitivity). More interesting is the fact that this relation
is identical to the relation defined in (Eq. (1)). That (Eq. (1)) implies (Eq. (2)) is
an application of Fatou’s lemma. For the converse, »I

!
"»*

!
in (Eq. (2))

implies lim inf
!"&

"#(»*
!
!»

!
)"*0 ∀", while »I

!
"»

!
in (Eq. (2)) implies

lim sup
!"&

"#(»*
!
!»

!
)")0 ∀". We utilize (Eq. (1)) henceforth since it is more

convenient, and henceforth denote the equivalence class of »*
!

with respect to
R by ER(»*

!
),$»

!
3Q#: lim

!"&
(»*

!
!»

!
)"0%.

3. Sufficient conditions for a"ar(xn) to be an equivalence class with respect to R

In general, avar(x
!
) is not an equivalence class with respect to R, so some

restrictions are needed in the form of regularity conditions on the underlying
random vector x

!
. These restrictions include the following notion of asymptotic

linear independence in probability.

Definition 3. Let $x
!
%&
!'!

be a sequence of q-dimensional random vectors
(q(R) and $y

!
%&
!'!

be a sequence of strictly positive nonstochastic real

D.M. Mandy, C. Martins-Filho / Journal of Econometrics 88 (1999) 79–98 83



*The alip concept is similar to Mann and Wald’s (1943) notion of &
$
, but these concepts differ in

two ways that are important in the present context. First, alip(y
!
) is weaker than &

$
(y

!
) in that &

$
(y

!
)

requires the probability that a normalized random variable is nonzero approach one, while alip(y
!
)

merely requires that this probability not approach zero. Second, alip(y
!
) is stronger than &

$
(y

!
) in

that alip(y
!
) places its condition on all bounded nondegenerate linear combinations of a random

vector, while &
$
(y

!
) merely places its condition on the individual components of a random vector. In

general, &
$
(1) cannot replace alip(1) in the results below.

numbers. $x
!
%&
!'!

is asymptotically linearly independent in probability of order
$y

!
%&
!'!

if for every sequence $c
!
%&
!'!

of real nonstochastic q-dimensional vectors
satisfying ''c

!
''"1 ∀n; there exists a triple (N, (, )), where N is a natural

number, ('0, and )'0; such that

n*N N P !(("c
#
!
x
!

y
!
"#').

For brevity, this is denoted x
!
"alip(y

!
).*

It is clear that x
!
"alip(y

!
)Nx

!
Oo

$
(y

!
). The converse fails because

x
!
Oo

$
(y

!
) still permits subsequences of c#

!
x
!
/y

!
that converge in probability to

zero, and also linear combinations of x
!
/y

!
that converge in probability to zero

as long as individual components do not.

Definition 4. A sequence $x
!
%&
!'!

of q-dimensional random vectors (q(R) is
avar-regular if x

!
"O

$
(1) and x

!
"alip(1).

Avar-regularity places restrictions on the primitive of the problem, the under-
lying random vector x

!
. Theorem 1 shows this is equivalent to White’s (1984, p.

66) approach of bounding the avar sequences and the corresponding sequences
of inverses.

¹heorem 1. ¸et $x
!
%&
!'!

be a sequence of q-dimensional random vectors (q(R)
for which avar(x

!
) is nonempty. ¹hen

1. x
!
"alip(1) if and only if »#!

!
is bounded ∀»

!
3avar(x

!
).

2. x
!
"O

$
(1) if and only if »

!
is bounded ∀»

!
3avar (x

!
).

Hence, x
!
is avar-regular if and only if both »

!
and »#!

!
are bounded for

every »
!
3avar (x

!
).

Proof. All proofs are in the appendix. !

The main result of this section is that avar-regularity is sufficient to ensure
avar (x

!
) is an equivalence class with respect to R. Bates and White ((1993),
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Theorem (2.3)) investigate whether »
!
3avar (x

!
)Navar (x

!
)-ER(»

!
), using the

slightly different relation R in Q# defined by

$»
!
%&
!'!

R$»I
!
%&
!'!

! lim
!"&

»#!$%
!

»I
!

»#!$%
!

"I
#
. (3)

As with R, it is straightforward to verify that R is an equivalence relation.
However, R does not have the same equivalence classes as R unless attention is
restricted to sequences that are bounded and have bounded inverses. Hence,
from (Eq. (2)), R is not always the appropriate relation for studying relative
asymptotic efficiency. But Theorem 2 below shows that avar-regularity, which
by Theorem 1 bounds the candidate sequences and their inverses, implies
avar (x

!
) is an equivalence class with respect to both R and R. The proof of

Theorem 2 relies on the following preliminary results.

¸emma 1. ¸et $x
!
%&
!'!

be a sequence of q-dimensional random vectors (q(R).
If x

!
#P z&(0, !), where ! is positive definite, then x

!
"alip(1).

¸emma 2. ¸et $x
!
%&
!'!

be a sequence of q-dimensional random vectors (q(R).
If »

!
,»I

!
3avar (x

!
) then »I !$%

!
»#!$%

!
is bounded.

¹heorem 2. ¸et $x
!
%&
!'!

be a sequence of q-dimensional random vectors (q(R),
R be defined by Eq. (1), R be defined by Eq. (3), and »

!
3avar(x

!
). ¹hen avar(x

!
)"

ER(»
!
), and

1. x
!
"alip(1)NER(»

!
).ER(»!

).
2. x

!
"O

$
(1)NER(»

!
)-ER(»!

).

Hence, avar-regularity implies that avar (x
!
) is an equivalence class with respect

to both R and R.

Theorem 2 shows that, for an avar-regular random vector x
!

and an avar
sequence »

!
3avar (x

!
), avar (x

!
) is precisely the set of sequences $»I

!
%&
!'!

of real
symmetric positive-definite matrices such that lim

!"&
(»

!
!»I

!
)"0

#
. And from

(Eq. (2)), this is precisely the set of sequences that yield unambiguous efficiency
conclusions when Definition 2 is used to define relative efficiency.

It is worth remarking on the role of normality in obtaining this conclusion.
None of the proofs given in the appendix rely on normality of the limiting
random vector z, except for the use of the normal characteristic function in
establishing avar (x

!
)"ER(»

!
) in Theorem 2. Moreover, a proof of

x
!
"alip(1)Navar (x

!
).ER(»!

) that does not rely on normality is available
from the authors on request. Hence, most results given here hold even if
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Definition 1 is relaxed to permit convergence to any common random vector
z that has zero mean and identity covariance, as in the RCASOI class of
estimators discussed by Bates and White (1993). However, for the purpose of
obtaining definitive efficiency comparisons within the avar class,
avar(x

!
)-ER(»!

) is the crucial property. This relies on both normality
and x

!
"O

$
(1) in our proof, and Example 2 below shows that x

!
"

O
$
(1) cannot be discarded. Whether normality is necessary for avar(x

!
)-

ER(»!
) or avar(x

!
)-ER(»

!
) is an open question, as we have no counter-

examples to these when the limit distribution is nonnormal. Bates and White
(1993), p. 648) propose a proof of avar(x

!
)-ER(»

!
) that does not rely on

normality, but an important and questionable step therein is that
lim

!"&
»#!$%

!
»I !$%

!
"I

#
is implied by both y

!
and (»#!$%

!
»I !$%

!
)y

!
converging

in distribution to the same (potentially nonnormal) (0, I
#
) random vector,

for some sequence of (0, I
#
) random vectors y

!
. This is not obvious. Indeed,

our proof resorts to an application of the Mean Value Theorem on the
normal characteristic function to make the transformation from convergence
in distribution to convergence of sequences of matrix products, and it is not
clear how this step might be accomplished for an arbitrary characteristic
function.

The following example shows that x
!
"alip(1) is needed in Theorems 1 and

2 and cannot be replaced by x
!
Oo

$
(1) (or by x

!
"&

$
(1)).

Example 1. The role of x
!
"alip (1) in making avar (x

!
) an equivalence class

with respect to R . Let

z"$
z
!

z
%
%&N!$

0

0%, $
2 !

%
!
%

!
*
%#,

x
!
"$

z
!
!z

%
n

z
!
#z

%
n % , »*#!$%

!
"$

n#1 !n

!n n %,

and

»#!$%
!

"$
n%#1 !n%

!n% n% %.
Then

»*#!$%
!

x
!
"$

z
!
!2z

%
!z

%
n

2z
%

% $P $
z
!
!2z

%
2z

%
%&N(0, I

%
),
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so »*
!
3avar(x

!
), while

»#!$%
!

x
!
"$

!2nz
%
#z

!
!z

%
n

2nz
%

%

&N!$00% , $
n%!2n#3# 1

4n%
!1

n
n!n%!1

4
n!n%!!

*
n% %# ,

so »
!
# avar(x

!
). But

»*
!
"$

2 2#1
n

2#1
n

1#!n#1
n #

%%P$
2 2

2 2%

and »
!
"$

2 2# 1
n%

2# 1
n%

1#!n
%#1
n% #

%%P$
2 2

2 2%,

so lim
!"&

(»
!
!»*

!
)"0

%
, while

»#!$%
!

»*
!
»#!$%

!
"$

n%!2n#2 n(1!n)

n(1!n) n% %P$
R !R

!R R%.
Note that x

!
Oo

$
(1) here, but x

!
Oalip(1) since c#

!
"[!2#!$% 2#!$%] ∀n

in Definition 3 yields c#
!
x
!
"z

%
!2/n $P 0. Hence, when x

!
Oalip(1) elements

of avar(x
!
) can have unbounded inverses, and ER(»*

!
) and avar(x

!
) can both

be smaller than ER(»*
!
), even when x

!
Oo

$
(1). Thus alip is strictly stronger

than o
$
.

The next example shows that x
!
"O

$
(1) is needed in Theorems 1 and 2 as

well.

Example 2. The role of x
!
"O

$
(1) in making avar(x

!
) an equivalence

class with respect to R. Let z&N(0,1), x
!
"nz, »*

!
"n%, and »

!
"(n#1)%.

Clearly, »*
!
,»

!
3avar(x

!
) and »*

!
R»

!
. But »

!
!»*

!
"(n#1)%!n%"2n

#1PR, so »*
!

and »
!

are not in the same equivalence class with respect
to R. The problem is x

!
OO

$
(1), in which case elements of avar(x

!
)

can be unbounded, and ER(»
!
) and avar(x

!
) can both be larger than

ER (»
!
).
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4. Other definitions of asymptotic efficiency for a"ar equivalence classes

White offers another definition of relative asymptotic efficiency based on the
avar concept. This is the definition used by Bates and White as well.

Definition 6 ( ¼hite, 1984, pp. 78—79). Let !*
!

and !I
!
be consistent estimators of

a nonstochastic vector !. Then !*
!

is asymptotically efficient relative to !I
!
if there

exists »*
!
3avar(!n(!*

!
!!)) and »I

!
3avar(!n(!I

!
!!)), and an integer N, such

that »I
!
!»*

!
is positive semidefinite for all n*N. An estimator is asymp-

totically efficient within a class if it is asymptotically efficient relative to every
other estimator in the class.

It is clear that if !*
!

is asymptotically efficient relative to !I
!

according to
Definition 6 then !*

!
is asymptotically efficient relative to !I

!
according

to Definition 2 as well. So, those estimators identified as efficient using Defini-
tion 6 (for example, those studied by White, 1984, 1994) are unambiguously
efficient by Definition 2, provided we impose avar-regularity (or at least O

$
(1)) to

resolve ambiguity when using Definition 2. More interesting is that the converse
holds as well, as shown by Theorem 3, if the normalized deviation of !I

!
is

avar-regular, but not without avar-regularity, as shown by Examples 3 and
4 below.

¹heorem 3. ¸et !*
!

and !I
!
be consistent estimators of a nonstochastic q-dimen-

sional vector ! and assume !n(!I
!
!!) is avar-regular. If !*

!
is asymptotically

efficient relative to !I
!

according to Definition 2 then !*
!

is asymptotically efficient
relative to !I

!
according to Definition 6.

Example 3. The role of x
!
"alip(1) in Theorem 3. Let z&N(0,1),

!n(!*
!
!!)"2z/n, and !n(!I

!
!!)"z/n. Since 4/n%3avar(!n(!*

!
!!)),

1/n%3avar(!n(!I
!
!!)), and lim inf

!"&
(1/n%!4/n%)"0; !*

!
is efficient relative

to !I
!

according to Definition 2. For arbitrary »*
!
3avar(!n(!*

!
!!)) we have

»*#!$%
!

2z
n

&N!0,»*#!
!

4
n%# #P N(0,1),

so »*
!
(n%/4)P1. Similarly, for arbitrary »I

!
3avar(!n(!I

!
!!)) we have »I

!
n%P1.

So, there exists N such that

n*NN&
»*

!
' 2

n%
,

»I
!
( 3

2n%
,
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implying »I
!
!»*

!
(!1/2n% for n*N. Hence, !*

!
is not efficient relative to

!I
!
according to Definition 6, due to the fact that !n(!I

!
!!)Oalip(1).

Example 4. The role of x
!
"O

$
(1) in Theorem 3. The condition

!n(!I
!
!!)"O

$
(1) is only used in the proof of Theorem 3 to establish equicon-

tinuity of the sequence of quadratic forms f
!
(")""#(»I

!
!»*

!
)" on the unit

sphere. Hence, we construct an example in which a sequence of quadratic forms
is not equicontinuous on the unit sphere. Let z&N(0, I

%
), !n(!*

!
!!)"

»*!$%
!

z, and !n(!I
!
!!)"»I !$%

!
z; where

»*
!
"$

csc% "
!

0

0 1%, »I
!
"#

!
#»*

!
;

and "
!

and #
!

are chosen to produce the desired quadratic form. Choosing
"
!
3(0, */4) such that "

!
P0 and

#
!
" 1

cos*"
!
!sin* "

!

$
(cos% "

!
!sin%"

!
)(cot%"

!
!sin%"

!
) sin"

!
cos "

!
(cot%"

!
!2 sin%"

!
)

sin "
!
cos"

!
(cot%"

!
!2 sin%"

!
) (cos%"

!
!sin%"

!
) sin%"

!
%

makes f
!
(")""##

!
" a saddle (indefinite) rotated "

!
from standard position that

collapses around the rotated "
%

axis as nPR but satisfies f
!
("

!
)"!1 ∀n,

where "#
!
"(!sin"

!
cos"

!
). Note that

#
!
P$

R R
R 0 % and »*

!
P$

R 0

0 1%,
so by Theorem 1(2) we have !n(!I

!
!!)OO

$
(1). It can be shown, however,

that !n(!I
!
!!)"alip(1) and that »I

!
is positive definite for n large. Because

the (1,1) element of #
!
is O(csc% "

!
) while the off-diagonal elements are O(csc"

!
),

we have

lim inf
!"&

f
!
(")"&

R if "
!
O0,

0 if "
!
"0,

so !*
!

is efficient relative to !I
!
according to Definition 2. To show that !*

!
is not

efficient relative to !I
!

according to Definition 6, let ¼*
!

and ¼I
!

be arbitrary
elements of avar(!n(!*

!
!!)) and avar(!n(!I

!
!!)), respectively. Then, by the
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same arguments used in Example 3 we have »*#!$%
!

¼*
!
»*#!$%

!
and

»I #!$%
!

¼I
!
»I #!$%

!
both converging to I

%
. Now, write

"#
!
(¼I

!
!¼*

!
)"

!
""#

!
»I !$%

!
[»I #!$%

!
¼I

!
»I #!$%

!
!I

%
]»I !$%

!
"
!
#f

!
("

!
)

#"#
!
»*!$%

!
[I

%
!»*#!$%

!
¼*

!
»*#!$%

!
]»*!$%

!
"
!
. (4)

Since "#
!
»*

!
"
!
"1#cos%"

!
and "#

!
»I

!
"
!
"f

!
("

!
)#"#

!
»*

!
"
!
"cos%"

!
, both

"#
!
»*!$%

!
and "#

!
»I !$%

!
are bounded. Hence, the first and last terms of (Eq. (4))

approach zero, leaving only f
!
("

!
)"!1 for n large, so !*

!
is not efficient relative

to !I
!

according to Definition 6.
We have seen that if two estimators are avar-regular then Definition 2 can be

used to make an unambiguous efficiency comparison despite the fact that their
avar’s are classes. In this case, any elements of the classes are representative and
so the researcher can just select a convenient element for each estimator to make
the efficiency comparison. This is not true of Definition 6, even though efficiency
conclusions by the two definitions are equivalent under avar-regularity. Defini-
tion 2, being a limit-based definition, has the advantage that the avar compari-
sons it calls for always yield the same answer within an equivalence class with
respect to R, as noted in (Eq. (2)) above, and Theorem 2 shows that such an
equivalence class is exactly the set of sequences under consideration.

In contrast, the avar comparisons called for by Definition 6 are not limit-
based and therefore do not always yield the same answer within an equivalence
class with respect to R. This can happen even when avar sequences have
traditional Fisherian limits if the estimators are equally efficient, and does not
violate Theorem 3 because Theorem 3 only promises one pair of avar sequences
demonstrating the efficiency conclusion that prevails in the limit (i.e., in Defini-
tion 2). This ambiguity is noted by Bates and White (1993), p. 639), who define
the concept of a canonical avar sequence as a solution. No matter how it is
solved, the problem arises only because Definition 6 is not limit-based. Hence,
Theorem 3 shows that the problem can also be solved with no change in our
concept of asymptotic efficiency by relying on Definition 2 rather than Defini-
tion 6, provided we impose avar-regularity. Even though only x

!
"O

$
(1) is

really needed to get unambiguous efficiency conclusions from Definition 2, if we
do not impose x

!
"alip(1) as well then the use of Definition 2 in lieu of

Definition 6 comes at the price of a slightly weaker efficiency concept, in that one
might conclude an estimator is efficient that would not be found efficient by
Definition 6. Put another way, although the two definitions may differ when
x
!
Oalip(1), either definition can be used to unambiguously study efficiency

when x
!
Oalip(1), as in the RCANI class of Bates and White, but alip(1) is

relaxed at the expense of either a slightly weaker efficiency concept (if Definition
2 is used) or of having to find canonical avar sequences to resolve ambiguity (if
Definition 6 is used). With alip(1) in place these problems do not arise, since use
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of Definition 2 is then unambiguous and equivalent to Definition 6, but of
course alip(1) is itself restrictive. Although the fact that avar is a class is not
acknowledged in [White (1984, 1994)], and hence the potential ambiguity of the
efficiency definition used (Definition 6) is also not mentioned, the efficiency
proofs there rely on the use of canonical avar sequences.

In some situations Definitions 2 and 6 are both too strong to detect some
potentially informative relative efficiencies, because they rely on liminf’s of
differences, which are not the same as differences of liminf’s. In these situations
the following may prove useful.

Definition 7. Let !*
!

and !I
!

be consistent estimators of a nonstochastic q-
dimensional vector ! and suppose !n(!*

!
!!) and !n(!I !!) are both avar-

regular. Further, assume avar (!n(!*
!
!!)) and avar (!n(!I

!
!!)) are both

nonempty. We say !*
!

possesses minimin asymptotic efficiency relative to !I
!
if

lim inf
!"&

"#»I
!
"*lim inf

!"&
"#»*

!
" for all »I

!
3avar (!n(!I

!
!!)),

»*
!
3avar (!n(!*

!
!!)), and "3R# ("O0).

We say !*
!

possesses minimax asymptotic efficiency relative to !I
!
if

lim sup
!"&

"#»I
!
"*lim sup

!"&
"#»*

!
" for all »I

!
3avar (!n(!I

!
!!)),

»*
!
3avar (!n(!*

!
!!)), and "3R# ("O0).

Minimin efficiency focuses on best asymptotic performance, by which is
meant smallest limiting avar’s, while minimax focuses on worst asymptotic
performance, by which is meant largest limiting avar’s. Under avar-regularity,
efficiency by either Definition 2 or 6 implies both minimin and minimax
efficiency. Examples can be constructed using oscillations in which minimin and
minimax efficiency of avar-regular sequences hold but Definitions 2 and 6 do
not, even though the estimators being compared are conceptually no different
from estimators that can be compared with Definitions 2 and 6. Because of
Theorem 2, it is equivalent to only require the defining minimin and minimax
inequalities to hold for one pair of avars.

Note finally that if one avar sequence for each of two avar-regular estimators
has a positive-definite limit then the Fisher definition of asymptotic efficiency is
applicable to these limiting covariance matrices. In this case all efficiency
definitions involve these same limits and are therefore equivalent. That is, if
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there exist positive-definite matrices »* and »I such that !n(!*
!
!!) #P N(0,»*)

and !n(!I
!
!!) #P N(0,»I ) then !*

!
is asymptotically efficient relative to !I

!
according to any of the definitions discussed herein if and only if »I !»* is
positive semidefinite.

Appendix A.

The proof of Theorem 1 uses the following fact.

Fact. ¸et x be a random variable with E(x)"+ and »(x)",%(R. ¹hen
P(,)'x!+')'0.

Proof. If P(,''x!+')"1 then ,'0, in which case ,%"-
%%#$%&%(x!+)%

dF(x)(-
%%#$%&%,%dF(x)",%, a contradiction. !

Proof of ¹heorem 1. Fix »
!
3avar (x

!
), let (e

!!
2 e

!#
) be an orthonormal linearly

independent set of eigenvectors for »
!
, and (.

!!
2 .

!#
) be the corresponding

real strictly positive eigenvalues (a full set of real strictly positive eigenvalues and
orthonormal linearly independent eigenvectors exists since »

!
is symmetric and

positive definite).
(1) First, assume x

!
"alip(1) and suppose the elements of »#!

!
are not

bounded. Then there is an unbounded inverse eigenvalue sequence .#!
!'

, in which
case there is a subsequence $.

(!'
%&
!'!

such that lim
!"&

.
(!'

"0. Since (.!$%
!'

, e
!'
) is

an (eigenvalue, eigenvector) pair for »!$%
!

, this implies lim
!"&

»!$%
(!

e
(!'

"
lim

!"&
.!$%
(!'

e
(!'

"0 (using orthonormality of the eigenvectors to bound e
(!'

). That
is, e#

(!'
»!$%

(!
"o(1). But then e#

(!'
x
(!
"e#

(!'
»!$%

(!
»#!$%

(!
x
(!
"o(1)O

$
(1)"o

$
(1), which

contradicts x
(!
"alip(1). For the converse, assume »#!

!
is bounded and suppose

x
!
Oalip(1). Since (.#!

!!
2 .#!

!#
) are the eigenvalues for »#!

!
, .#!

!'
is bounded for

i"1,2,q. That is, there exists M3(0,R) such that .#!
!'

(M, implying

.
!'
'M#! for i"1,2, q; ∀n.

Also, since x
!
Oalip(1) there exists a sequence $c

!
%&
!'!

on the unit ball in R# with
the following property:

To each n there corresponds k
!
*n such that P(M#!$%/2)'c#

(!
x
(!
'))1/n.

That is,

lim
!"&

P!M
#!$%

2
)'c#

(!
x
(!
'#"0.
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+ In Definition 1, z is a standard normal random variable. Theorem 1 actually holds for any
limiting random vector z with 0 mean and identity covariance, irrespective of normality. To
demonstrate this, we avoid use of normality in the present proof.

Since (e
!!

2 e
!#
) is an orthonormal basis for R# we may write c

!
as

c
!
" #

!
''!

(c#
!
e
!'
)e

!'
,

so !#
''!

(c#
!
e
!'
)%"c#

!
c
!
"1 ∀n, since c

!
is on the unit ball. Thus, by definition of

e
!'

and .
!'
, and orthonormality of (e

!! 2 e
!#

),

''c#
!
»!$%

!
''"(c#

!
»

!
c
!
)!$%"! #

!
''!

(c#
!
e
!'
)%.

!'#
!$%

'!M#!
#
!
''!

(c#
!
e
!'
)%#

!$%"M#!$% ∀n.

Now, write

c#
(!
x
(!
"''c#

(!
»!$%

(!
''a#

(!
»#!$%

(!
x
(!
, where a#

(!
, c#

(!
»!$%

(!
''c#

(!
»!$%

(!
''
,

so that ''a
(!
''"1 ∀n. Then a

(!
has a convergent subsequence al

(!
Pa

,
, where

''a
,
''"1, so a#l

(!
»#!$%l

(!
xl

(!

#P a#
,
z&(0, a#

,
a
,
)"(0, 1).+ By the Fact, P(1)'

a#
,
z')'0. Moreover, since all distribution functions are continuous off a count-

able set, there exists (3[!
%
, 1] at which the distribution function of 'a#

,
z' is

continuous. Then, by convergence in distribution there exists N such that

n*NNP!M
#!$%

2
)'c#l

(!
xl

(!
'#"P!M

#!$%

2
)''c#l

(!
»!$%l

(!
'''a#l

(!
»#!$%l

(!
xl

(!
'#

*P(!
%
)'a#l

(!
»#!$%l

(!
xl

(!
')

*P(()'a#l
(!
»#!$%l

(!
xl

(!
')

'P(()'a#
,
z')

2

*P(1)'a#
,
z')

2
'0,

a contradiction.
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(2) First, assume x
!
"O

$
(1) and suppose the elements of »

!
are not bounded.

Then, as in (1), there is an eigenvalue subsequence $.
(!'

%&
!'!

such that
lim

!"&
»#!$%

(!
e
(!'

"lim
!"&

.#!$%
(!'

e
(!'

"0. That is, e#
(!'

»#!$%
(!

"o(1). Since e
(!'

is on
the unit ball in R# there is a convergent subsequence el

(!'
Pe

,
, where ''e

,
''"1, so

e#l
(!'

»#!$%l
(!

xl
(!

#P e#
,
z&(0, e#

,
e
,
)"(0, 1), implying e#l

(!'
»#!$%l

(!
xl

(!
Oo

$
(1) by the

Fact. But since x
!
"O

$
(1) we have e#l

(!'
»#!$%l

(!
xl

(!
"o(1)O

$
(1)"o

$
(1), a contra-

diction. For the converse, just note that »!$%
!

is bounded whenever »
!

is
bounded, so x

!
"»!$%

!
»#!$%

!
x
!
"O(1)O

$
(1)"O

$
(1). !

Proof of ¸emma 1. Since c#!c is a continuous function of c, there exists cN 3!B
!
(0)

(the boundary of the unit ball in R#) such that

0(cN #!cN )c#!c ∀c3!B
!
(0).

Now, suppose x
!
Oalip(1). Then as in Theorem 1(1) there exists a sequence

$c
!
%&
!'!

on the unit ball with the following property:

To each n there corresponds k
!
*n such that P(cN #!cN /2)'c#

(!
x
(!
'))1/n.

That is, lim
!"&

P(cN #!cN /2)'c#
(!
x
(!
')"0. Since c

(!
is on the unit ball there exists

a convergent subsequence cl
(!
Pc

,
3!B

!
(0). Hence, c#l

(!
xl

(!

#P c#
,
z&(0, c#

,
!c

,
).

By the Fact, P(c#
,
!c

,
)'c#

,
z')'0. Moreover, since cN #!cN /2(cN #!cN )c#

,
!c

,
, and

since all distribution functions are continuous off a countable set, there exists
(3[cN #!cN /2, c#

,
!c

,
] at which the distribution function of 'c#

,
z' is continuous. Thus,

by convergence in distribution there exists N such that

n*NNP!cN #!cN
2

)'c#l
(!
xl

(!
'#*P(()'c#l

(!
xl

(!
')'P(()'c#

,
z')

2

*P(c#
,
!c

,
)'c#

,
z')

2
'0,

a contradiction. !

Proof of ¸emma 2. Suppose not. Then (»I !$%
!

»#!$%
!

)#(»I !$%
!

»#!$%
!

) is an un-
bounded, symmetric, positive-definite matrix. Hence, it can be represented as
E
!
$

!
E#
!
, where E

!
is orthogonal. As in Theorem 1, by unboundedness there exists

an eigenvalue subsequence .#!
(!'

P0. Denote by f
'
the unit vector in direction i,

and let

c#
!
, f#

'
E#
!
»!$%

!
»I #!$%

!
'' f#

'
E#
!
»!$%

!
»I #!$%

!
''
,
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-As in Theorem 1, normality of z is not needed here.

so that ''c
!
''"1 ∀n. Note that

'' f #
'
E#

!
»!$%

!
»I #!$%

!
''" ( f (

'
E#

!
(»!$%

!
»I #!

!
»!$%

!
)E

!
f
'
)!$%

" ( f (
'
E#

!
E

!
$#!

!
E#

!
E

!
f
'
)!$%

" ( f (
'
$#!

!
f
'
)!$%".#!$%

!'
.

Hence,

c#
!
»I #!$%

!
x
!
"c#

!
»I #!$%

!
»!$%

!
»#!$%

!
x
!

".!$%
!'

[ f (
'
E#
!
»!$%

!
»I #!$%

!
»I #!$%

!
»!$%

!
]»#!$%

!
x
!

".!$%
!'

[ f (
'
E#
!
E
!
$#!

!
E#
!
]»#!$%

!
x
!

".!$%
!'

[ f (
'
$#!

!
E#
!
]»#!$%

!
x
!

".#!$%
!'

e#
!'
»#!$%

!
x
!
,

where e
!'

is column i of E
!
. Since e

(!'
is on the unit ball in R#, there is

a convergent subsequence el
(!'

Pe
,
3/B

!
(0), so e#l

(!'
»#!$%l

(!
xl

(!

#P e#
,
z

&(0, e#
,
e
,
)"(0, 1).- Hence, .#!$%l

(!'
e#l

(!'
»#!$%l

(!
xl

(!

$P 0. But, by Lemma 1,
»I #!$%l

(!
xl

(!
"alip(1), a contradiction. !

Proof of ¹heorem 2. Suppose first that »I
!
3ER(»

!
). Then

lim
!"&

»!$%
!

»I #!
!

»!$%
!

"I
#
, so »!$%

!
»I #!$%

!
"O(1). Denote the characteristic func-

tion of a random vector y by f
)
. By the continuity theorem ( Lukacs, 1970, p. 48),

f
*#!$%

! %!
(")Pf

+
(") pointwise. Hence, by (White (1984), p. 66) Lemma 4.23,

f
*I #!$%

! %!
(")!f

+
(»!$%

!
»I #!$%

!
")"f

.*I #!$%
! *!$%

! /*#!$%
! %!

(")

!f
+
(»!$%

!
»I #!$%

!
")P0 pointwise in ".

Recalling that f
+
(")"exp(!"#"/2),

f
+
(»!$%

!
»I #!$%

!
")"exp!!"#»I #!$%

!
»

!
»I #!$%

!
"

2 #Pexp!!"#"
2 #,

so f
*I #!$%

! %!
(")Pf

+
("). Applying the continuity theorem again shows that

»I
!
3avar (x

!
).
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Now, consider the converse by supposing »I
!
3avar (x

!
). By Lemma 2, M*1

can denote a common bound for all elements of »I !$%
!

»#!$%
!

. Fix ('0 and set
r"q%M. Recalling that f

*#!$%
! %!

(")"f
%!
(»#!$%

!
"), by the second continuity the-

orem (Lukacs, 1970, p. 53) there exists N& such that

n*N&N& "
f
%!
(»#!$%

!
")!exp!!"#"

2 # "((
4
exp!!r%

2# ∀"3B
,
(0),

" f%!
(»I #!$%

!
t)!exp!!t#t

2 #"((
4
exp!!r%

2# ∀t3B
,
(0),

where B
,
(0) is the closed ball of radius r about 0 in R#. Since »I !$%

!
»#!$%

!
"3B

,
(0)

for every n and "3/B
!
(0), setting t"»I !$%

!
»#!$%

!
" yields

n*N&N& "
f
%!
(»#!$%

!
")!exp!!"#"

2 #" ((
4
exp!!r%

2#,

" f%!
(»#!$%

!
")!exp!!"#»#!$%

!
»I

!
»#!$%

!
"

2 #" ((
4
exp!!r%

2# ,

for every "3/B
!
(0). Hence,

n*N&N"exp!!"#»#!$%
!

»I
!
»#!$%

!
"

2 #!exp!!"#"
2 #"

((
2
exp!!r%

2# ∀"3/B
!
(0).

By the Mean Value theorem,

"exp!!"#»#!$%
!

»I
!
»#!$%

!
"

2 #!exp!!"#"
2 #"

""!1
2
exp!!c

2#"'"#»#!$%
!

»I
!
»#!$%

!
"!"#"'

for some c between "#»#!$%
!

»I
!
»#!$%

!
" and "#". Thus

n*N&N'"#»#!$%
!

»I
!
»#!$%

!
"!"#"'(( exp!c!r%

2 #
for every "3/B

!
(0) and the corresponding c (which also depends on n). Since

"#»#!$%
!

»I
!
»#!$%

!
")r% for every n and "3/B

!
(0), and "#""1)r% for such ", we

have c)r%. Thus, exp((c!r%)/2))1 for every n and "3/B
!
(0). That is,

n*N&N'"#»#!$%
!

»I
!
»#!$%

!
"!"#"'(( ∀"3/B

!
(0).
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Since " can be any vector on the unit ball, this implies lim
!"&

»#!$%
!»I

!
»#!$%

!
"I

#
, or »I

!
3ER(»

!
).

Next, consider (1). Since »#!
!

is bounded by Theorem 1(1) and »#!$%
!

»I
!»#!$%

!
!I

#
"»#!$%

!
[»I

!
!»

!
]»#!$%

!
, lim

!"&
[»#!$%

!
»I

!
»#!$%

!
!I

#
]"0 when

lim
!"&

(»I
!
!»

!
)"0.

Finally, consider (2). Since »
!

is bounded by Theorem 1(2) and »I
!
!»

!
"

»!$%
!

[»#!$%
!

»I
!
»#!$%

!
!I

#
]»!$%

!
, lim

!"&
(»I

!
!»

!
)"0 when lim

!"&
[»#!$%

!
»I

!
»#!$%

!
!I

#
]"0. !

Proof of ¹heorem 3. Select »*
!
3avar (!n(!*

!
!!)) and »I

!
3avar (!n(!I

!
!!))

such that f ("),lim inf
!"&

f
!
(")"lim

!"&
g
!
(")*0 ∀"3R# ("O0), where

f
!
("),"#(»I

!
!»*

!
)" and g

!
("),inf$ f

-
("): m*n%. We first establish uni-

form equicontinuity of the sequence f
!
(") on the boundary of the unit ball

in R#. By Theorem 1(2), »I
!

is bounded. It is straightforward to use this
along with f (")*0 ∀" to conclude that »*

!
is bounded as well, so denote

by M a common bound for all elements of »I
!

and »*
!
. For any ", "

,
3!B

!
(0)

we have

' f
!
(")!f

!
("

,
)')''"!"

,
''[''(»I

!
!»*

!
)"''#''"#

,
(»I

!
!»*

!
)'']

)''"!"
,
''4Mq.

Hence, for every ('0 there exists )"(/4Mq such that
''"!"

,
''()N' f

!
(")!f

!
("

,
)'(( ∀n, or f

!
(") is uniformly equicontinuous on

/B
!
(0). Now, by definition of g

!
(") there exists a subsequence f

'!
(") such that

g
!
(")#1/n'f

'!
(")*g

!
("). Thus f

'!
(") converges pointwise to f ("), so by equicon-

tinuity this convergence is actually uniform on /B
!
(0). This implies

lim
!"&

f
'!
(")!1/n"f (") uniformly on /B

!
(0). Hence, since f

!
(")*g

!
(") by def-

inition of g
!
("), for every natural number k there exists a natural number N

(
such

that

n*N
(
Nf

!
(")*g

!
(")'f

'!
(")!1

n
'f (")!1

k
∀"3/B

!
(0).

We may summarize this by saying that the convergence to the limit inferior
is uniform on /B

!
(0) in the sense that for every k there exists N

(
such

that n*N
(
Nf

!
(")#1/k'0 ∀"3/B

!
(0), and without loss of generality

we may assume 1(N
!
(N

%
(2. Let k

!
be the largest natural number

k satisfying N
(
)n for n*N

!
and note that n*N

(!
∀n*N

!
and

lim
!"&

1/k
!
"0. Thus »I

!
#1/k

!
I
#
3avar (!n(!I

!
!!)) by Theorem 2(1), so that

!*
!

is asymptotically efficient relative to !I
!

according to Definition 6 if
(»I

!
#(1/k

!
)I

#
)!»*

!
is positive semidefinite for n large. For any n*N

!
and
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"O0 we have

! "#
''"''#$!»I

!
# 1

k
!

I
##!»*

!%! "
''"''#"! "#

''"''#[»I
!
!»*

!
]! "

''"''## "#"
k
!
''"''%

" f
!! "

''"''## 1
k
!

'0,

so "#[(»I
!
#!

(!
I
#
)!»*

!
]"'0 ∀n*N

!
and ∀"O0. That is, (»I

!
#(1/k

!
)I

#
)!»*

!
is positive-definite for n*N

!
. !
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