Lecanora markjohnstonii (Lecanoraceae, lichenized Ascomycetes), a new sorediate crustose lichen from the southeastern United States

Carly R. Anderson Stewart1,5, James C. Lendemer2, Kyle G. Keepers1, Cloe S. Pogoda3, Nolan C. Kane1, Christy M. McCain1 and Erin A. Tripp1,4

ABSTRACT. Lecanora markjohnstonii is described as new to science from the southeastern United States, with a primary center of distribution in the southern Appalachian Mountain region. This sterile, sorediate crust is saxicolous on both sandstone and granite and occurs commonly in mixed hardwood-conifer forests with rock outcrops. It is characterized by a gray-green, rimose-areolate thallus, erumpent, raised soralia, and the production of atranorin together with 2-0-methylperlatolic acid. Molecular phylogenetic analyses of newly generated rDNA assemblies from a broad sampling of lineages within the Lecanoromycetes and Arthoniomycetes inferred placement of the unknown crust in the Lecanoraceae, specifically within Lecanora. Analysis of the mtSSU gene region then inferred placement in the Lecanora subfusca group. Finally, a fully assembled and annotated mitochondrial genome was compared to other lichenized fungal mitogenomes, including the publicly available Lecanora strobilina mitogenome, and showed that the gene region atp9 was missing as in other members of the Lecanorales.

KEYWORDS. Asexual reproduction, biodiversity hotspot, endemism, genomics, Mark Johnston, natural history collections, new species, phylogenetics, phylogenomics, mitochondrial genome, taxonomic discovery.

The southern Appalachian Mountains of eastern North America are a hotspot of diversity for many organisms (ATBI 2016), including lichens (Allen & Lendemer 2016; Lendemer & Tripp 2016; Tripp & Lendemer 2019 [in press]). Great Smoky Mountains National Park alone—spanning a mere ca. 830 square miles (ca. 2201 km²)—hosts nearly 1,000 species of lichens, representing perhaps half of all lichens that occur in the eastern United States (Lendemer et al. 2013; Tripp & Lendemer 2019 [in press]). In recent years, large-scale lichen biodiversity inventories spearheaded by two of the authors (JL & ET) have resulted in the discovery and formal description of many species new to science from this biodiversity hotspot (e.g., Lendemer et al. 2013; Lendemer et al. 2014; Harris et al. 2014; Lendemer et al. 2017; Tripp & Lendemer, in press). Several of the new species uncovered as a result of this work appear to be narrow, range-restricted endemics to the iconic, globally unique, and threatened high-elevation ecosystems of the region (Allen & Lendemer 2015; Lendemer et al. 2017; Tripp & Lendemer 2019 [in press]; Tripp & Lendemer [in press]). These newly discovered species can be considered evidence for reinforcing the ecological importance and biodiversity value of high elevation habitats in the southern Appalachians (Dey 1978; Evans 1947; Lendemer & Allen 2015; Wei & Ahti 2002).

Lichenological study in the southern Appalachians has generally emphasized these charismatic and ecologically relatively intact high elevation ecosystems compared to middle and lower elevations (Degelius 1941; Lendemer & Tripp 2008). Middle and low elevations of the southern Appalachians are

5 Corresponding author’s e-mail: carly.anderson@colorado.edu
DOI: 10.1639/0007-2745-121.4.498
typically characterized by natural landscapes that are comparatively much more fragmented and disturbed (McConnel 2013; White 1984; Wiser et al. 1996). Nonetheless, endemic, rare, or geographically disjunct species are not restricted to the highest elevations of the region: a remarkable diversity of lichens has been documented to occur at low and middle elevations (Lendemer & Tripp 2008, Tripp & Lendemer [in press]; Tripp & Lendemer unpublished data), and these records include a plethora of endemic, rare, and/or disjunct lichen elements (Lendemer et al. Sheard 2014; Muscavitch & Lendemer 2016; Tripp & Lendemer [in press]).

In 2015, authors ET and JT initiated a large-scale, multi-year project aimed at understanding correlates of lichen biodiversity gradients in the southern Appalachian Mountains. This project has involved the establishment of numerous study plots throughout the region, and it was during this work and on numerous occasions that we encountered a chemically and morphologically distinctive sorediate and apparently sterile crustose lichen occurring on sandstone and granite outcrops. A search of the relevant literature on sorediate crustose lichens failed to reveal an existing name for the material (Hodkinson & Lendemer 2012; Lendemer 2010). Although it was readily recognizable even in the field, sexual reproductive structures were unknown in the species, and neither morphology nor chemistry alone or in combination were distinctive enough to assign this unknown entity to a genus or family. Therefore, we used genomic data and associated bioinformatic techniques that we generated and developed for the southern Appalachian lichen project to infer phylogenetic relatedness of the new species to its closest relatives.

First, we generated and assembled rDNA contigs representing diverse lineages of lichen-forming fungi to infer the placement of the focal species within the Lecanoromycetes. Second, building on an inferred placement in the Lecanoraceae, specifically within the genus Lecanora, we conducted a finer scale phylogenetic analysis using mtSSU data retrieved from a newly generated, assembled, and annotated mitochondrial genome of the focal species, together with mtSSU data from other species of Lecanora retrieved from previously published matrices, to infer placement within Lecanora. Finally, we compared mitogenome characteristics of the new species with other lichenized fungal genomes to assess whether the full complement of coding regions was present in the new species. Our results support the hypothesis that this species is new to science and endemic to southeastern United States where it is distributed primarily at low and middle elevations of the southern Appalachian Mountains and foothills. We present the results of these analyses below and formally describe the species as Lecanora markjohnstonii.

Materials and Methods

Morphology and chemistry. This study is based on material collected as part of our southern Appalachian lichen project, together with specimens already deposited in herbaria at the University of Colorado (COLO) and New York Botanical Garden (NY). Georeferenced voucher metadata for all collections examined are available online via the C.V. Starr Virtual Herbarium (http://sweetgum.nybg.org/science/vh/), at the COLO internal database (https://botanydb.colorado.edu/index.php), and also on SEINet (http://swbiodiversity.org/seinet/) and iDigBio (https://www.idigbio.org/).

Morphology was investigated using an Olympus SZX10 stereomicroscope as well as an Olympus BX51 compound epifluorescent microscope. Micro-morphology and anatomy were studied using hand sections of the thallus and squash mounts of the propagules in water. All microscopic measurements were obtained using a Retiga 2000R optical imaging system. Chemistry was studied using standard spot test protocols and reagents following Brodo et al. (2001). Thin Layer Chromatography was conducted using Solvents A and C, following Culberson & Kristinsson (1970). The presence of 2-0-methylperlatolic acid in the specimens examined was confirmed by comparison to known standards for secondary compounds with similar profiles in T.L.C. Specifically, reference standards for 2-0-methylperlatolic acid (Loxospora confusa and Lecanora pseudistera), barbatic acid (Cladonia didyma var. didyma), confluent acid (Lecidea tessellata), divaricatic acid (Lepraria hokinsoniana), perlaltolic acid (Ropalospora viridis), and sphaerophorin (Cladonia petrophila) were used.

Molecular data generation and analyses. Molecular data newly generated for this study were derived entirely from vouchers collected during our southern Appalachian lichen project. We analyzed two sources of molecular data: rDNA contigs from the nuclear genome, and sequence data from the
mtSSU region. A two-step procedure was used to infer phylogenetic placement. First, we examined higher-level phylogenetic relationships of the taxon to other lichens by analyzing newly generated rDNA contigs from a phylogenetically broad set of southern Appalachian taxa (n=74) spanning numerous major lineages within the Lecanoromycetes (n=26 families) in addition to several Arthoniomycetes (Table 1). Second, based on results of this analysis that inferred placement in the Lecanoraceae, we examined relationship of the new taxon to other members of Lecanoraceae specifically through analyses of mtSSU sequence data that we retrieved from a newly assembled mitochondrial genome of the new species together with the six-locus dataset published by Zhao et al. (2015).

Laboratory and bioinformatics protocols. Subsamples for DNA extraction were removed from voucher specimens in the field within ~10 hours of initial collection, and subsequently stored at −20°C until return to COLO where they were transferred to a −80°C freezer until extraction. Lichen tissue was pulverized using sterile tungsten carbide beads, and DNA was extracted using Qiagen DNEasy plant kits (Qiagen 2006). To improve lichen DNA concentration, the tissue was subjected to an additional 10 min 65°C incubation step in lysis buffer and washed with pure ethanol prior to elution (Pogoda et al., unpublished data). Whole genome shotgun sequencing libraries were prepared using Nextera XT DNA library kits from Illumina optimized for 1ng of input DNA (Nextera 2017). Sample DNA was quantified using a Qubit 3.0 fluorometer (ThermoFisher Scientific) and then diluted or concentrated to obtain optimal concentration. Nextera adapters i5 and i7 were used as dual-index barcodes to uniquely identify this sample. After quality control assays, libraries were sequenced on the Illumina NextSeq platform for paired-end 150 bp reads. Sequencing was conducted at the COLO BioFrontiers Institute Next-Generation Sequencing Facility in Boulder, Colorado.

Using raw, whole-genome shotgun data, reads were trimmed using Trimmomatic-0.36 (Bolger et al. 2014) with the following parameters: “ILLUMI-NACLIP:NexteraPE PE.fa:2:20:10MINLEN:140 LEADING:20 TRAILING:20” (Bankevich et al. 2012). The resulting assemblies are composed not only of the primary mycobiont, but also the photobiont and other organisms present at the time of sampling. The primary mycobiont rDNA contig was identified via a command-line BLAST search using *Lecanora cinereofusca* rDNA [NCBI accession KY406736] as a query. The rDNA contig was then web BLASTed against the NCBI non-redundant database to confirm primary mycobiont DNA. The resulting assembly was used for subsequent phylogenetic analyses. All rDNA contigs used in this study have been deposited at NCBI and accession numbers can be found in Table 1.

rDNA dataset taxon sampling and assembly. To assess the family-level position of the unknown species, a total of 71 newly-assembled rDNA contigs (in addition to the species in question) were chosen to represent a breadth of species within class Lecanoromycetes. These species included individuals within the Caliciaceae (n=3), Cladoniaceae (n=2), Collemataceae (n=3), Gomphillaceae (n=2), Graphidiaceae (n=2), Icmadophilaceae (n=1), Lecanoraceae (n=5). Lecidaceae (n=1), Lobariaceae (n=4), Megalosporaceae (n=1), Nephromataceae (n=2), Ochrolechiaceae (n=1), Parmeliaceae (n=3), Physciaceae (n=2), Physciaceae (n=3), Pilocarpaceae (n=1), Ramalinaceae (n=2), Rhizocarpaceae (n=1), Ropalosporaceae (n=1), Sarrameanaceae (n=2), Stereocaulaceae (n=3), Teloschistaceae (n=1), Trapeliaceae (n=2), and Umbilicariaceae (n=1). Species of Arthoniaceae (n=2; class Arthoniomycetes) were included as outgroups with which to root the tree.

mtSSU dataset taxon sampling and assembly. In order to place the new species in the context of a recent and well-supported multi-gene tree, the mtSSU region was retrieved from our assembled mitogenome and manually added to a six-locus (mtSSU, nucITS, nucLSU, nucSSU, RPB1, RPB2) alignment used by Zhao et al. (2015) to infer the phylogeny of Lecanoraceae. The tree was downloaded from TreeBASE(http://purl.org/phylo/treebase/phylows/study/TB2:S15652). Additionally, a BLAST search of the mtSSU region of the new crust revealed high similarity (97%) to *Lecanora orientoafircana* (Kirika & Lumbsch 2012); therefore, this species was also included in the alignment.

Phylogenetic analyses. The rDNA dataset was aligned using MUSCLE-3.7 with default parameters (Edgar 2004) via the CIPRES Science Gateway (Miller et al. 2010). This alignment was then manually curated using Mesquite-3.04 (Maddison & Maddison 2015), with ambiguously
regions excluded from the alignment. The six-locus dataset from Zhao et al. (2015) was manually split into its constituent loci in Mesquite. For each locus, terminal gaps and missing sequences were transformed to missing data, while gaps within the locus were left as true gaps. The six datasets were then reassembled in Mesquite and a partition file was created.

For both datasets, we used maximum likelihood (ML) methods implemented in RAxML-8.0 (Stamatakis 2014) to infer phylogenetic relationships among taxa. Default parameters were used and 1000 bootstrap iterations were conducted to assess branch support. Following Zhao et al. (2015), GTRGAMMA was chosen to model rate substitution (gamma rate parameters, GTR rates, and base
frequencies optimized individually for each partition. Resulting trees were visualized in FigTree-1.4.2 (Rambaut 2009) and figures were prepared in Adobe Illustrator CS6-16.0.0 (2012).

Mitochondrial genome assembly. To compare mitogenomic characteristics of the new species with other available lichen mitogenomes, and specifically to assess whether the core energy producing pathway gene atp9 was present or lacking (see Pogoda et al. 2018), we assembled and annotated a complete mitochondrial genome of the new species. The mitochondrial genome of the primary mycobiont was parsed via a command-line BLAST to the *Lecanora strobilina* mitochondrial reference genome [NCBI accession NC_030051]. It was then circularized from raw reads, oriented to *cox1*, and error-corrected using SAMtools tview. Features were annotated using DOGMA (Wyman et al. 2004) and NCBI’s Sequin. All alignments and tree datasets used for phylogenetic analysis have been deposited to Zenodo (mtSSU alignment DOI 10.5281/zenodo.1308261 and tree DOI 10.5281/zenodo.1308256; rDNA alignment DOI 10.5281/zenodo.1308259 and tree DOI 10.5281/zenodo.1308252).

Results

We examined a total of 14 specimens collected throughout the southeastern United States that were accessioned as unknown species, other species, or were tentatively assigned to a potentially undescribed lichen in the field. All of the collections were made from exposed sandstone or granite outcrops in relatively shaded forested habitats at low and middle elevations (Fig. 1). The specimens were characterized morphologically by having gray-green, rimose-areolate thalli and abundant, erumpent soralia containing fine soredia that were lighter in color than the thallus (Fig. 2). All of the specimens examined were also chemically uniform in the production of atranorin together with 2-0-methylperlatic acid.

Our phylogenetic analyses recovered the new species within the Lecanoraceae, embedded in a strongly supported clade (ML bootstrap support BS=87%) of selected species of *Lecanora* belonging to the *L. subfusca* group (*sensu* Brodo 1984) with exception of *L. alabella* (Pers.) Ach. that is related to *L. caesiorubella* Ach. (Imshaug & Brodo 1966). Results of phylogenetic analyses of rDNA assemblies compiled from newly generated sequences from diverse lineages within the Lecanoromycetes (Fig. 3) were topologically congruent with previously published phylogenies inferred from multi-locus datasets aimed at resolving evolutionary relationships within the Lecanoromycetes (Miadlikowska et al. 2014). Relationships within the clade of *Lecanora* species were not strongly supported; the species in question was recovered in a non-supported (BS=68%) sister relationship with *L. masana* Lendemer & R.C.Harris.

Our analyses of the mtSSU/six-locus dataset recovered the new species in a strongly supported (BS=100%) sister relationship to *Lecanora orientoaficana* (Kirika & Lumbsch, 2012) and embedded within a well-supported clade (BS=82%) comprising members of the *L. subfusca* group, *L. subcarnea* (Sw.) Ach. group, and *L. formosa* (Bagl. & Carestia) Knoph & Leuckert (Knoph & Leuckert 2000; Fig. 4).

Based on the results outlined above, the focal species for this study is supported as belonging to the

Figure 1. Ecology and habit of *Lecanora markjohnstonii*. A. The new species growing on exposed vertical rock face of small boulder, shown with arrow (Little River National Preserve, DeKalb Co., Alabama). B & C. A typical rock outcrop habitat in mixed hardwood forest (James D. Martin-Skyline Wildlife Management Area, Jackson Co., Alabama; Rebecca Mountain, Talladega National Forest, Clay Co., Alabama.)
Lecanoraceae, and specifically a member of the genus *Lecanora* as presently delimited (e.g., Zhao et al. 2015).

The fully assembled mitochondrial genome (Fig. 5) was 62,854 base pairs in length, in contrast to *Lecanora strobilina*, which is 39,842 base pairs in length. The 14 conserved lichen genes found in the mitogenomes of other lichenized fungi (*cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4L, nad5, nad6, atp6, atp8*, and *rps3*; Pogoda et al. 2018), including *L. strobilina*, were all found to be present in this new crustose lichen. Additionally, the new species was found to lack the protein-coding gene *atp9*, which is similar to other members of the Lecanorales (Pogoda et al. 2018).

After comparing the species to morphologically and chemically similar taxa that have already been described, we concluded that it represents a species new to science and formally describe it below.

Taxonomy

Lecanora markjohnstonii And. Stewart, E.Tripp & Lendemer, *sp. nov.*

Mycobank MB 826867

Figure 2. Morphology of *Lecanora markjohnstonii*. A. Thallus edge viewed from above showing cracked appearance. B. Detail of irregularly shaped soralia. C. Detail of erumpent soralium bursting to produce individual granular soredia (arrow shows opening in the soralium). D. Detail of thallus surface in early stages of development. E & F. Sections through large soralia showing visible white medulla and pigmented hyphae. (A, D and E from Lendemer 49284; B, C, and F from Tripp 8033) Scales= 2.0 mm in A, 1.0 mm in B, and 0.5 mm in C–F.

Similar to *Lecanora orientoaficana* but differing in the production of 2-0-methylperlatolic acid (vs. gangaleoidin) as an accessory to atranorin, saxicolous (vs. corticolous), habitat, and geographical distribution (southeastern United States vs. eastern Africa).

Type: U.S.A. ALABAMA: DeKalb Co., Little River Canyon National Park, E facing slopes above W shore of Little River, Eberhart Trail 0.2 mi S of AL176/Little River Canyon Parkway, 0.2 mi N of jct w/ DeKalb CR148, elev 1123 ft., steep slope with sparse talus, abundant rock outcrops, and mixed hardwood and conifer forest (*Acer saccharum*, *Carya spp.*, *Liriodendron tulipifera*, *Nyssa sylvatica*, *Pinus taeda*, *P. virginiana*, *Prunus serotina*), on sandstone, 19 Dec. 2016, E.A. Tripp 6296 & J.C. Lendemer (holotype: COLO!; isotype: NY!)

Description. Thallus crustose, sorediate, light green to grayish green when fresh, fading to dusty rose with age in the herbarium, thin, poorly-developed and areolate to thick, with the areoles becoming confluent and then forming a thick, continuous rimose, fissured crust, often forming

Downloaded From: https://bioone.org/journals/The-Bryologist on 24 Jul 2019
Terms of Use: https://bioone.org/terms-of-use
Access provided by University of Colorado System
individual colonies, ± circular and varying from ca. 0.5–10 cm in diameter; prothallus typically not evident, rarely visible as a poorly developed, white, fibrous carpet between the areoles and extending outward from the edge of the thallus; upper surface light green to grayish green, epruinose, dull, uneven to strongly verruculose and then becoming fissured; upper cortex indistinct and poorly developed, medulla creamy white throughout and becoming orangish brown pigmented in core of soralia (the pigment K–); soralia raised, erumpent, plane, up to 1.2 mm in height, circular, laminal, 0.5–1.3 mm in diameter; soredia globose, fine, ca. 23–28 μm in diameter, light yellowish green and strikingly lighter than the surrounding thallus, often dispersed across the surface of the thallus and adjacent areas of uncolonized substrate. Apothecia not seen. Pycnidia not seen. Photobiont coccoid (Trebouxioid), with visible pyrenoids, cells globose, ca. 5.4–11.4 μm in diameter.
Chemistry. Atranorin and 2-0-methylperlatolic acid. Spot tests: K+ yellow, C–, KC–, P–, I–, UV+ weak dull orange (cortex) and UV+ faint blue-white (medulla).

Etymology. The epithet “markjohnstonii” honors Mark Johnston. As a priest in the Episcopal Church, he was the Executive Director of Camp McDowell for over 27 years. While there, McDowell became the largest camp in the Episcopal Church, and he started the McDowell Environmental Center, which is the largest environmental center in the southeastern United States. During fieldwork in 2017, Johnston was instrumental in facilitating a canoe trip down remote sections of the Sipsey River, located in Bankhead National Forest in northern-central Alabama, in search of lichens in remnant old-growth forests as part of our southern Appalachian lichen biodiversity investigation. Johnston’s lifelong contributions have helped to improve the lives of Alabamians through environmental education and outreach at Camp McDowell. In addition to educating tens of thousands of students over the decades, Mark is a champion of Alabama’s wildlands, working to preserve the state’s natural heritage and natural resources. Most of his life has been spent actively in the pursuit of social and environmental justice. Mark lives with his wife Maggie, five rescue dogs, chickens, and gardens in a house in the forest that he built himself. He and Maggie have four children and three grandchildren. Besides being passionate about changing the world, Mark is passionate about Alabama’s incredible biodiversity and enjoys carpentry, gardening, running, paddling, fishing, and hunting.

Ecology and distribution. *Lecanora markjohnstonii* is known from low and middle elevations (mean elevation 356.55 m) scattered throughout the southern terminus of the Appalachian Mountains and extending into the Piedmont of the eastern United States (Fig. 6). This new species can be locally abundant on inclined, exposed, but shaded sandstone and granite rock outcrops located in
intact, forested habitats characterized by mixed native deciduous and conifer trees. Some localities in which the species was collected included both calcareous (e.g., limestone) and non-calcareous rocks (Fig. 1), but the new species was found exclusively on the latter at such sites. Mean annual precipitation within the species range is ca. 1444.60 mm, mean temperature is 18.5°C, and net primary productivity (NPP) is 8285 g C m⁻² yr⁻¹.

Conservation. In the southern Appalachian Mountains, high-elevation lichen communities including the endemics that occur in these ecosystems have been the focus of considerable study from a conservation perspective (Allen & Lendemer 2016;
Lendemer et al. 2013). Our description of a unique, highly distinctive species that appears to be endemic to low- and middle-elevation non-calcareous rock outcrops in the southeastern United States highlights the potential for discovery in these environments. Although the southeastern United States is known to host numerous rare and endemic vascular plant species (Baskin & Baskin 1988; Murdock 1994; Noss et al. 2014), such habitats are comparably much less studied from a lichenological standpoint (but see Allen & Lendemer 2016). Further study of rock outcrop lichen communities in the southeastern United States is urgently needed to understand more fully the distributions of endemic lichens and other unusual elements that likely occur there, as well as to document their population sizes and assess potential conservation needs.

Notes. Lecanora is the most diverse genus of lichens in North America, containing >235 species (Esslinger 2018). It is also the most diverse genus in the southern Appalachians, where ca. 40 species are known from Great Smoky Mountains National Park alone (Lendemer et al. 2013; Tripp & Lendemer, 2019 [in press], Tripp & Lendemer [in press]) and at least nine are known from the small confines of Mount Mitchell State Park (Lendemer et al. 2017). Although phylogenetic relationships within Lecanoraceae are not fully resolved and Lecanora itself is polyphyletic (Miadlikowska et al. 2014; Zhao et al. 2015), our analyses suggest strongly that L. markjohnstonii should be assigned to this genus as presently delimited. However, owing to incomplete taxon sampling across highly species-rich groups within Lecanora including the L. subfusca group, it is not possible to infer with confidence the relationship of this species to its closest sister species.

Based on our molecular phylogenetic analyses, Lecanora markjohnstonii is likely closely related to L. masana and L. orientoaficana. However, it differs from both of those species in multiple characters.

Figure 6. Geographical distribution of Lecanora markjohnstonii based on specimens examined for this study. Color variances show an additional 100m elevational gain per color change.
Lecanora masana is a corticolous species narrowly endemic to high elevation habitats in the southern Appalachians (Allen & Lendemer 2015) and thus differs from L. markjohnstonii in both substrate and geographic distribution. It also differs morphologically from the new species in being fertile and having an esorediate thallus, and chemically in the production of usnic acid together with arthrothelin as accessories to atranorin and 2-0-methylperlatolic acid (Lendemer et al. 2013). Lecanora orientoaficana is similar to L. markjohnstonii in having a sorediate thallus; however, it differs in occurring on bark rather than rock, the production of gangleoidin rather than 2-0-methylperlatolic acid as an accessory to atranorin, and is known only from eastern Africa (Kirika et al. 2012).

Lecanora masana and L. orientoaficana (the latter only known from Kenya) are not the only members of Lecanora known to produce 2-0-methylperlatolic acid. In fact, a number of such species have been described from temperate and tropical regions worldwide (Brodo 1984; Guderley 1999; Lumbsch 1994). The vast majority of such taxa differ from L. markjohnstonii in being corticolous or liginicolous and in having esorediate thalli. Indeed, this is the case for L. dispersogranulata (Zahlbr.), L. epirhoda Vain., L. helva Stizenb., L. iseana Råsånen, L. labiosa Stizenb., and L. torenysis Zahlbr. (Elix & Lumbsch 1996; Guderley 1999; Lumbsch 1994; Miyawaki 1988; Stizenberger 1890; Zahlbruckner 1933). Several additional corticolous, esorediate species from various geographical regions differ further from L. markjohnstonii in the production of accessory substances such as psoromic acid (L. paramerae I.Martínez, Aragón & Lumbsch), usnic acid (L. achroa Vny.) and xanthones (L. mikuraensis Miyaw., L. pangerangoensis Zahlbr.; Elix & Lumbsch 1996; Guderley 1999; Lumbsch 1994; Miyawaki 1988; Stizenberger 1890; Zahlbruckner 1933). One chemically similar corticolous species, L. novaeguineae Lumbsch, is also sorediate; however, it differs from L. markjohnstonii in the additional production of norstictic acid (Lumbsch 1994). Lecanora appalachensis Lendemer & R.C.Harris, L. nothocaesiella Lendemer & R.C.Harris, L. layana Lendemer and L. thysanophora R.C.Harris are four additional sorediate species that can occur in the southern Appalachians and produce atranorin; however, all are corticolous and produce zeorin or usnic acid as accessories to atranorin (Harris et al. 2000; Lendemer et al. 2013; Lendemer 2015). Additionally, L. thysanophora produces a well-developed white prothallus (Harris et al. 2000).

In contrast to the above, a smaller number of Lecanora species that produce atranorin and 2-0-methylperlatolic acid are saxicolous (e.g., L. censioides Lumbsch, L. gongesiana Miyaw., L. neosonoensis Lumbsch & T.H.Nash, L. plumosa Müll.Arg., L. puniceofusca Bagl. and L. rhodi Szatala). Nonetheless all of those species differ from L. markjohnstonii in having esorediate thalli (Dickhäuser et al. 1995; Elix & Lumbsch 1996; Lumbsch 1994; Lumbsch & Nash 1995; Miyawaki 1988).

As opposed to other members of the genus Lecanora, L. markjohnstonii is perhaps most likely to be confused with sorediate and typically sterile crustose lichens from the southeastern United States, particularly Biatora chrysantha, Herteliana schuyleri-ania Lendemer, Loxospora confusa and Vainionora americana. In particular, Vainionora americana Kalb, Tonsberg & Elix is morphologically similar in thallus morphology and color, and also produces atranorin. While that species is typically corticolous, it occasionally also occurs on non-calcareous rock (Lendemer, unpublished data). Nonetheless, unlike L. markjohnstonii, V. americana produces xanthones as accessories to atranorin, and is sometimes found fertile (Kalb 2004). Herteliana schuyleri-ania is similar to the new species in that it produces atranorin, grows on non-calcareous rocks, and has a greenish-gray thallus. However, the former produces roccellic acid instead of 2-0-methylperlatolic acid, and has a well-developed blastidiate thallus (Lendemer 2016). Biatora chrysantha (Zahlbr.) Printzen is another saxicolous sorediate crustose lichen that occurs in the Appalachian Mountains and is superficially similar to L. markjohnstonii in having yellowish soralia and a poorly developed areolate thallus (Brodo et al. 2013). However, B. chrysantha is easily distinguished by the production of gyrophoric acid rather than atranorin and 2-0-methylperlatolic acid. Like Lecanora markjohnstonii, Loxospora confusa Lendemer produces 2-0-methylperlatolic acid and has a greenish-gray thallus (Lendemer 2013). However, that species does not produce atranorin, is corticolous, and produces fragile isidia rather than soralia.

Caloplaca yuchiorum Lendemer & C.A.Morse is an additional species that produces atranorin, is saxicolous, and is morphologically similar to the new species in having a thin, sorediate thallus (Lendemer & Morse 2010). However, C. yuchiorum does not
produce 2-0-methylperlatolic acid and is known to produce apothecia, unlike the new species. Similarly, *Puscedula recens* (Stirt.) Hertel, V.Wirth & Vězda could be confused with the new species, but it differs in chemistry (divaricatic acid) and the presence of a dark prothallus (Fryday 2008; Oberhollenzer & Wirth 1990).

Conclusions

The southern Appalachian Mountains are a recognized hotspot for lichen biodiversity. The description of the present species adds to an already surprising number of typically sterile, asexually reproducing, crustose lichens that have been described from the region. At the same time, this new report contributes to the growing recognition of a substantial diversity of endemic lichens in the southeastern United States, and highlights the scale and scope of biodiversity that remains to be documented in this region. Despite the presence and frequency of herbarium specimens of *Lecanora markjohnstonii* collected more than two decades ago, its widespread geographical distribution, and its distinctive morphology, this species is only now formally described. This situation is common in lichenology and highlights the need for more taxonomic and biodiversity studies of lichens in southeastern North America.

Acknowledgments

The authors are grateful to Mark Johnston for his numerous contributions to the state of Alabama and betterment of education and quality of life of its citizens, especially his commitment to environmental education and preservation of natural heritage in the state of Alabama; we also thank him for facilitating an important canoe trip down the Sipsey River that enabled our work. We thank the US Forest Service and US National Park Service as well as Alabama State Parks and Alabama Forever Wild for permitting and assisting us with our lichen research, in particular Jo Lewis and Mary Shew. We thank Kevin England for his assistance in finding glade habitats in Alabama. We thank the BioFrontiers Institute Next-Generation Sequencing Facility, which conducted the Illumina sequencing for this project. The authors also thank NSF Dimensions of Biodiversity Award #1542639 (to ET, NK, CM) at the University of Colorado and Award #1432629 (to JL) at the New York Botanical Garden. This work utilized the RMACC Summit supercomputer, which is supported by the National Science Foundation (awards ACI-1532235 and ACI-1532236), the University of Colorado Boulder, and Colorado State University. The Summit supercomputer is a joint effort of the University of Colorado Boulder and Colorado State University.

Literature Cited

McConnel, O. L. 2013. Unicoi Unity: A Natural History of the Unicoi and Snowbird Mountains and Their Plants, Fungi and Animals. AuthorHouse, Bloomington, IN.

Rambaut, A. 2009. FigTree Version 1.4.2 http://tree.bio.ed.ac.uk/software/figtree/

Tehler, A. 1983. The genera *Dirina* and *Roccellina*. Opera Botanica 70: 1–86.

manuscript received April 18, 2018; accepted August 4, 2018.