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Abstract

We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns
of species richness along geographical gradients. While not itself explicitly mechanistic, this
approach offers a path towards understanding mechanisms. In this study, we focused on the
diverse patterns of species richness on mountainsides. We conjectured that elevational range mid-
points of species may be drawn towards a single midpoint attractor – a unimodal gradient of envi-
ronmental favourability. The midpoint attractor interacts with geometric constraints imposed by
sea level and the mountaintop to produce taxon-specific patterns of species richness. We devel-
oped a Bayesian simulation model to estimate the location and strength of the midpoint attractor
from species occurrence data sampled along mountainsides. We also constructed midpoint predic-
tor models to test whether environmental variables could directly account for the observed pat-
terns of species range midpoints. We challenged these models with 16 elevational data sets,
comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models gener-
ally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model
closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients
of environmental favourability, subject to geometric constraints, may parsimoniously account for
elevational and other patterns of species richness.
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INTRODUCTION

The search for a unified mechanistic understanding of
repeated, global and regional patterns of species richness has
long been frustrated by taxonomic and geographical

idiosyncrasies, lack of reliable climatic data on appropriate
spatial scales, and reliance on case studies built from statisti-
cal correlation and post hoc conjecture. We offer no cures for
these many ills, but instead, propose a novel conceptual
approach. While not itself mechanistic, by unifying and
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quantifying discordant patterns of species richness, this frame-
work offers a path towards understanding mechanism. We
develop and illustrate this approach for terrestrial, elevational
gradients. However, the framework and statistical model are
quite general, could easily be applied to other habitats, and
could be extended from one-dimensional to two- or even
three-dimensional spatial domains.
Along any continental latitudinal transect, species richness

for most higher taxa peaks in the tropics, where mean annual
temperature is the highest and annual variability in tempera-
ture is lowest (Wright et al. 2009; Chan et al. 2016). Regard-
less of latitude, temperature on most mountainsides declines
steadily with elevation, driven by adiabatic cooling, so that
the warmest temperatures usually prevail at the bottom of ele-
vational gradients (Ahrens 2013; Fan & van den Dool 2008).
Net primary productivity (NPP), although crucially dependent
on precipitation, is strongly driven by temperature. Thus, if
radiant energy or NPP are fundamentally responsible for the
latitudinal richness pattern, as many ecologists suggest (Currie
et al. 2004; Allen et al. 2007), species richness for higher taxa
along elevational transects in humid climates should be
expected to peak at the lowest elevations.
However, in a review of hundreds of published examples,

Rahbek (1995, 2005) showed that species richness usually does
not peak at the bottom of elevational gradients. For the pre-
ponderance (70%) of studies that encompassed complete ele-
vational gradients and accounted for sampling effects, species
richness peaked, instead, at intermediate elevations. Declining
richness with elevation was the second most-common pattern,
but was found in < 20% of studies (Rahbek 2005). Among
other things, these meta-analyses imply that, for most terres-
trial taxa, local species richness peaks at intermediate tropical
elevations, rather than in the tropical lowlands.
Many explanations have been proposed for mid-elevation

richness peaks, and surely no single factor is responsible. For
some clades, intermediate climatic conditions at these eleva-
tions may be more suitable for survival and reproduction:

lower elevations may be too hot or too dry (McCain 2007)
and higher elevations too cold, too wet or too cloudy (Long-
ino et al. 2014). A history of speciation (or more precisely,
net diversification) within a clade that is constrained by its
heritable environmental tolerances to a specific range of eleva-
tions, can lead to a build-up of species at intermediate eleva-
tions (Graham et al. 2014; Wu et al. 2014). In the tropics, a
history of mountaintop extinctions during glacial minima and
sea level extinctions during glacial maxima could also produce
or enhance mid-elevation richness peaks (Colwell & Rangel
2010). Spatially structured dispersal within an elevational
domain, such as source-sink dynamics (Grytnes 2003; Grytnes
et al. 2008) or ecotonal mixing (Lomolino 2001), could also
lead to peaks of species richness at intermediate elevations.

Geometric constraints

In addition to these ecological and historical explanations,
Colwell & Hurtt (1994) showed, with a simple stochastic
model, that a mid-elevation richness peak might be expected
even in the absence of climatic drivers or historical forces.
In their model, a mid-elevation richness peak arises from the
tendency of larger species ranges to overlap more at mid-ele-
vations than at high or low elevations, when they are geo-
metrically constrained by the hard boundaries (sea level and
the mountaintop) of an elevational domain. Figure 1a offers
a physical analogy (a pencil-box) for this phenomenon,
which later became known as the mid-domain effect (Colwell
& Lees 2000) or MDE, because, in a simple 1-dimensional
domain, the expected distribution of species richness under
this model is exactly symmetrical about the centre of the
domain. Geometric constraints have been generalised to
other bounded spatial (Storch et al. 2006) and non-spatial
(Letten et al. 2013) domains at the assemblage level, as well
as to studies of home ranges (Prevedello et al. 2013) and the
movement of individuals within a population (Tiwari et al.
2005).

E(n)E(n)

(a) (b)

Figure 1 Geometric constraint models. (a) The classic geometric constraint model illustrated by a physical analogy: a set of pencils (species), some shorter

and some longer (narrower and wider elevational ranges), stored in a schoolchild’s old-fashioned pencil-box (the bounded elevational domain) (Colwell

et al. 2004). If the box is shaken end to end, horizontally, so that the position of each pencil is randomised, the expected number E(n) of pencils that

overlap (species richness) near the middle of the box is inevitably greater than the number that overlap nearer the ends of the box, a pattern that is

symmetric around the centre of the box. But the constraint does not act uniformly on the pencils as the box is shaken: the shorter pencil stubs move more

widely and freely than the longer pencils. By analogy, the distribution of small-ranged species is less constrained by geometry than the distribution of large-

ranged species (Colwell & Lees 2000; Dunn et al. 2007). (b) A physical analogy for the midpoint attractor model. Suppose that each pencil has a steel ball

bearing embedded at its midpoint (blue circles). A magnetic field, the attractor, is applied across the pencil box (green). As the box is shaken end to end,

the pencils tend to collect near the attractor, as their midpoint ball bearings are drawn towards the magnet. If the attractor is located near one end of the

box, as illustrated, the expected number of pencils E(n) that stack up at any location along the length of the pencil box is asymmetric. However, because

the midpoints of the longer pencils cannot align with the magnet (since longer pencils abut the end of the box), the peak of E(n) does not coincide with the

centre of the attractor. Thus E(n) is influenced jointly by the attractor (the magnet) and the constraint (the limits of the pencil box). The pattern of E(n) is

narrow when the attractor is strong, broad when the attractor is weak.
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Early studies treated geometric constraints as a stand-alone
hypothesis, subject to falsification if it failed to fully explain
patterns of richness (see Colwell et al. 2004, 2005), or strictly
as an alternative hypothesis to environmental explanations
(Currie & Kerr 2008). But this either/or perspective misses the
point that constraints and drivers do not operate indepen-
dently, but instead interact. It has proven challenging to inte-
grate geometric constraints with environmental and historical
explanations for patterns of species richness. We review the
history of these efforts in Appendix 2, Supplemental Introduc-
tion.

A Bayesian midpoint attractor model

The likelihood that several different mechanisms contribute to
elevational richness peaks calls for a conceptually and
methodologically unifying approach to these patterns at a dif-
ferent level. We introduce the idea that species elevational
ranges, which underlie elevational richness gradients, can be
treated and modelled as if responding, independently, to a sin-
gle environmental attractor that operates within the geometric
constraints of an elevational domain and is specific to a
taxon-based assemblage. We develop this approach as a simu-
lation model, apply it to a diverse group of data sets, and
then discuss it from the broader perspective of biogeographi-
cal gradients.
We take a novel approach to integrating environment with

geometric constraints over elevational gradients. Inspired by
Wang & Fang’s (2012) evidence that large- and small-ranged
species respond similarly to environmental drivers and by
Rangel & Diniz-Filho’s (2005) mechanistic model, we postu-
late the presence of an underlying unimodal ‘favourability’
gradient, specific to each elevational transect and to each
taxon or functional group.
We modelled the simplest possible pattern of environmental

favourability – a unimodal peak – on the simplest possible
domain – the unit line. The model is general, but in this
study, we assume that the one-dimensional unit domain repre-
sents an elevational transect from low elevation (sea level, for
all our data sets) to the highest habitable point on a mountain
massif. Somewhere along this elevational domain lies a uni-
modal midpoint attractor, specific to the locality and taxon,
representing a gradient of ‘attraction’ for species range mid-
points. A continuous function describes the relative strength
of the attractor at every point within the domain (Fig. 2).
We model the midpoint attractor as a normal (Gaussian)

probability density function N(A, B) with two parameters: its
mean location A (0 < A < 1) on the unit-line domain, and its
standard deviation B (0 < B < 1) around the attractor, an
inverse measure of attractor strength (Fig. 2). Because the
unit domain is bounded at 0 and 1, A and B determine not
only the location and shape of the attractor, but also jointly
define the upper and lower bounds of the attractor distribu-
tion, which is truncated at the domain limits (Fig. 2). To sim-
ulate a bounded elevational richness pattern driven by the
midpoint attractor, we place the empirical elevational ranges
(transformed to unit-line equivalents) on the domain stochas-
tically, sampling their midpoints from the modelled attractor
probability density function (which we will henceforth call,

simply, the attractor). Figure 1b updates the pencil-box anal-
ogy for the classic MDE by adding an off-centre attractor for
pencil midpoints.
We developed a Bayesian model to estimate the optimum

shape and position of the midpoint attractor for a particular
taxon on a particular elevational gradient. The model aims to
explain the empirical distribution of species elevational ranges
(as indexed by their elevational midpoints), and thus to
account for empirical patterns of richness on mountainsides,
under geometric constraints. With a centred Gaussian distri-
bution as the starting point, the model employs a simple
Gibbs sampler (Gelman et al. 2013) to find the posterior dis-
tributions of parameter values for the attractor (its location,
A, and strength, B), that are most probable (P(model | data)),
given the observed elevational pattern of species richness and
the empirical range size frequency distribution (RSFD).
The midpoint attractor model does not incorporate any

environmental data into the estimation of these parameters. It
makes no assumptions or a priori hypotheses about which
environmental or biotic factors might be driving the attractor
and the favourability gradient it represents. Instead, once a
well-fitting attractor model has been identified using this
approach, we subsequently attempt to interpret the attractor
statistically in terms of empirically measured environmental
variables.
Although the midpoint attractor model maximises

P(model | data), most previous attempts to interpret richness
patterns have, instead, been conducted in a traditional, fre-
quentist framework, estimating the probability of the data
(observed richness), given a specified multivariate statistical
model (P(data | model)). The statistical model usually takes
the form of a regression of species richness on environmental
variables, with (Longino & Colwell 2011) or without (Haw-
kins et al. 2003) a predictor variable for geometric constraints.
To compare the results from our Bayesian analyses with these
traditional, correlative analyses, we carried out multiple
regressions of species richness over elevational gradients, as a
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direct function of the same environmental variables that we
used to interpret the attractors.

Midpoint predictor models

In addition to the midpoint attractor model, we built two
alternative, stochastic, midpoint predictor models – one with
and one without geometric constraints – that directly assessed
environmental variables as predictors of midpoint density (not
species richness) over the elevational gradient. In these mod-
els, as in the midpoint attractor model, each empirical range
midpoint is placed on the domain stochastically. However,
range placement is not driven by a hypothetical attractor, as
it is in the Bayesian midpoint attractor model. Instead, at
each point in the domain, the probability of midpoint place-
ment is directly and linearly proportional to the value of a
single, measured, environmental variable (e.g. temperature or
precipitation), regardless of the elevational pattern of the vari-
able. Although the midpoint attractor model seeks an optimal
location and optimal strength for a hypothetical attractor, the
midpoint predictor models assess the fit of the empirical mid-
point data to a probability distribution directly defined by a
measured environmental variable. This approach is somewhat
akin to the models of Storch et al. (2006) and Rahbek et al.
(2007), but contrasts with the traditional MDE model, in
which the probability of midpoint occurrence is constant
across the domain.

Application of the models

We applied the midpoint attractor model and the two mid-
point predictor models to 16 high-quality data sets that
recorded the elevational distribution of more than 4500 spe-
cies of ferns, insects, mammals or birds in globally distributed
localities, mostly in the tropics (Table S1, Appendix 1). As we
will demonstrate, with or without geometric constraints, the
midpoint predictor models generally provide a poor fit to the
observed pattern of range midpoints. In contrast, the Bayesian
midpoint attractor model simulations consistently produce a
good fit to both species richness and midpoint distributions of
empirical data sets.

MATERIALS AND METHODS

Empirical data sets and data representation

We applied the midpoint attractor model and the two mid-
point predictor models to the 16 data sets detailed in Table S1
(Appendix 1). Three groups of data sets included multiple taxa
studied on the same gradients: northern Costa Rica, Mt. Wil-
helm in Papua New Guinea and the Border Ranges in Aus-
tralia. To label the individual data sets, we preface the name
of the taxonomic group with the name of the geographical
location of the gradient (e.g. ‘New Guinean ants’, ‘Costa
Rican ferns’, etc.). The biogeographical data from these stud-
ies consist of species occurrences recorded at a variable num-
ber of sampling elevations (5–70 elevations, median = 8)
along each gradient. Each data set also included measure-
ments for two or more environmental factors along the

gradient (Table S1, Appendix 1). We rescaled each elevational
domain to the [0, 1] unit line. Within this domain, we stan-
dardised sampling points and converted species occurrence
records into an estimated elevational range and midpoint for
each species, following data preparation protocols detailed in
Supplemental Materials and Methods (Appendix 2). Each data
set was represented in two ways: A midpoint-range plot (Col-
well & Hurtt 1994), with range size as the ordinate and range
midpoint as the abscissa for each range in a data set (Fig. 3,
right panel, grey-scale dots and horizontal line segments), and
a corresponding species richness plot, showing the number of
overlapping ranges at each of a sequence of sampling loca-
tions (elevations) spanning the domain (Fig. 3, left panel,
black dots).

The Bayesian midpoint attractor model

As outlined in the Introduction, we modelled the midpoint
attractor as a Gaussian probability density function N(A, B)
with two parameters: its mean location A (0 < A < 1) on the
unit-line domain, and its standard deviation B (0 < B < 1)
around the attractor (Fig. 2). Because a Gaussian distribution
extends from negative to positive infinity, the attractor distri-
bution is truncated at the lower (0) and upper (1) bounds of
the domain.
The choice of a unimodal midpoint attractor distribution

was based on the empirical prevalence in the published litera-
ture of unimodal peaks of species richness (Rahbek 2005),
which in turn suggest unimodal midpoint patterns. Our choice
of a doubly truncated Gaussian distribution to represent the
attractor, rather than a probability distribution that declines
to zero at the domain limits (e.g. the beta distribution), was
based on biological grounds: many species are regularly pre-
sent at either sea level or mountaintop, their realised distribu-
tions directly abutting a domain limit. Such geographical
distributions suggest that these species could readily tolerate
more extreme conditions than those at domain limits, on a
particular elevational gradient. For example species living at
sea level on a mid-latitude elevational gradient might well tol-
erate even warmer temperatures at a lower latitude. Funda-
mental niches may fail to be fully expressed for many reasons,
but we suggest that elevational domain limits may often
impose environmental niche truncation (Colwell & Rangel
2009; Feeley & Silman 2010).
To model the expected pattern of species richness under the

influence of the attractor, each of the empirical ranges in a
data set is placed on the domain stochastically, without
replacement, with its midpoint drawn at random from a pro-
posed attractor distribution N(A, B). To enforce the geometric
constraint (Fig. 3, right panel) and maintain the empirical
RSFD, the midpoint is sampled from this distribution only
over the interval of feasible midpoints, given the size of each
range, such that the range does not extend beyond either the
lower or upper domain limit (Colwell & Lees 2000). For a
range of length R, this means that the midpoint must lie in the
interval [R/2, 1 � R/2]. For these stochastic range simulations,
we explored two alternative algorithms for placing ranges
within the domain, within this constraint. The two algorithms
differ only in how the placement constraint is achieved.

© 2016 John Wiley & Sons Ltd/CNRS
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In Algorithm 1, for a species with an empirical range of
length R, a midpoint is simply drawn from N(A, B) on the
interval [R/2, 1 � R/2] and assigned to the species. Biologi-
cally, this algorithm assumes that the elevational distribution
of a typical species reaches the limits of its environmental
niche within the scope of the gradient, because neither its
upper nor its lower range limit is likely to reach a domain
limit. This algorithm is the equivalent, for the midpoint
attractor model, of the classic MDE model of Colwell & Hurtt
(1994, their Model 2).
In Algorithm 2, a candidate midpoint is drawn from N(A,

B) on the full domain interval [0, 1]. If the candidate midpoint
lies within the interval [R/2, 1 � R/2], it is assigned to the spe-
cies and the next species is considered. If it lies to the left of
the interval [R/2, 1 � R/2], then R/2 is assigned as the mid-
point, whereas if the midpoint lies to the right of the interval
[R/2, 1 � R/2], then 1 � R/2 is assigned. The result is that
each such shifted range exactly abuts a domain limit. Because
it preserves the empirical RSFD, while allowing a range to
reach a domain limit (Connolly 2005), this algorithm is the
equivalent, for a one-dimensional domain, of the classic two-
dimensional spreading dye model of Jetz & Rahbek (2001).
Biologically, it captures the idea that the limits of environmen-
tal niches of species on ecological gradients are often not fully
expressed, so that observed distributions are based on trun-
cated niches. Hence, a better fit to Algorithm 2 than to Algo-
rithm 1 would suggest the prevalence of truncated niches.
By design, these stochastic placement algorithms preserve

the empirical RSFD, whereas empirical midpoints are com-
pletely ignored. Thus, given the RSFD, correspondence

between modelled and empirical patterns of richness, and
between empirical and modelled patterns of midpoints, is dri-
ven by the location and strength of the attractor.
Just as for empirical richness patterns, the modelled richness

at sampling points on the domain is simply the number of
stochastically placed ranges that overlap at each sampling
point. Because range midpoints are assigned from a statistical
distribution (the midpoint attractor), however, each run (reali-
sation) of the midpoint attractor simulation yields a somewhat
different pattern of richness over the domain. As illustrated in
Fig. 3 (left panel), over many runs (e.g. 100), a mean result
(dark blue line) and a 95% confidence interval (light blue
band) can be defined and plotted to compare with empirical
richness (black dots).
In an Approximate Bayesian Computational framework

(Marjoram et al. 2003; Hartig et al. 2011), we used a simple,
custom Monte Carlo Markov Chain (MCMC) Gibbs sampler
to seek the posterior distribution of model parameters A and B
(which, together, fully define the location, shape and truncation
points of the Gaussian attractor) that maximised the probability
of the model, given the empirical species richness pattern and
the empirical RSFD for each data set. In other words, this pro-
cedure finds the location and shape of the midpoint attractor
that provides the best fit between modelled richness and empiri-
cal richness. The details of the ABC and MCMC procedures
appear in Supplemental Materials and Methods (Appendix 2).
In summary, the midpoint attractor model simulates the

interaction between a simple, unimodal environmental gradi-
ent (the attractor) and the geometric constraints imposed by
domain limits. As in the pencil-box analogy (Fig. 1b), because
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Figure 3 The Bayesian midpoint attractor model applied to the Costa Rican arctiine moth data set (222 species sampled across a 2906 m elevational

domain, rescaled to a [0,1] unit line, where 0 represents sea level). Left panel: Mean species richness (dark blue line) and 95% confidence interval (light blue

band) for 100 simulations. The simulation is driven by a midpoint attractor (dark green vertical line) at 0.378, with a standard deviation (light green

rectangle) of 0.294. These parameter values were chosen to maximise the fit of modelled species richness (blue line) to empirical species richness pattern

(black dots), using a simple MCMC Gibbs sampler. Empirical range sizes are maintained in the simulation. Right panel: Midpoint-range plot for the same

data. The x-axis is the location of the range midpoint for each species on the elevational domain, and the y-axis plots the elevational span of the range

(range size). The large triangle sets the geometrically feasible midpoint limits for ranges of a given size. Black and grey points and associated horizontal

line segments illustrate the empirical midpoint and range values for the 222 species of moths. Because many species have identical ranges and midpoints in

this data set, the shading of each point is proportional to the number of coincident species midpoints. The white-to-blue colour scale in the 16 small

triangles is proportional to the mean number of modelled points falling in each triangle, averaged over the 100 runs of the simulation. The correspondence

between the number of empirical points (the density of black points and their grey saturation) and the average number of modelled points (blue saturation)

among the 16 small triangles is significant at P < 0.001 for this data set (Table 1). (See Materials and Methods for details of the test.) Note that both

empirical and modelled midpoint density is stronger to the left of the attractor than to its right, reflecting the build-up of ranges near sea level, constrained

by the domain boundary.
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of the constraint, the distribution of predicted midpoints in
the model will not always centre on the attractor. Therefore,
the closer the modelled attractor lies to one of the two
domain limits, the greater the expected discrepancy between
the location of the attractor and the mean location of range
midpoints on the domain. Because of this discordance, if the
model fitting procedure is successful, we expected that empiri-
cal species richness should correlate more strongly with mod-
elled species richness, as simulated by the midpoint attractor
model, than with the attractor itself, for communities with
off-centre attractors.

Statistical comparison between modelled and empirical midpoint

densities

Conceivably, the midpoint attractor model could provide a
good fit to the empirical species richness pattern, but fail to
produce an underlying pattern of range midpoints within the
domain that resembles the corresponding empirical pattern of
midpoints: the right answer for the wrong reasons. As an
additional, more-detailed assessment of fit, we devised a statis-
tical measure of the correspondence between the modelled
and empirical patterns of midpoints and ranges, which we
applied to the results of the Bayesian model.
We divided the constraint triangle of the midpoint-range

plot evenly into 16 smaller triangles (Fig. 3, right panel and
Fig. S3, Appendix 1) (Laurie & Silander 2002). As a statistic
of correspondence between empirical and modelled midpoint
density distributions in the 16 sub-triangles, we used the rank
of the observed OLS R2, computed for the 16 sub-triangles,
among 999 R2 values generated by bootstrap resampling. Raw
R2 is inflated by the fact that the total number of points
within each of the four rows of smaller triangles (triangle 1,
triangles 2–4, 5–9 and 10–16 in Fig. S3) is identical for mod-
elled and empirical distributions. These numbers are identical
because the empirical RSFD is used, for each data set, to con-
struct the modelled distribution.
To establish an unbiased sampling distribution, the mid-

points within each of the lower three rows of triangles were
shuffled at random among the triangles within each row (e.g.
among triangles 5–9) and R2 was computed between the
empirical counts and the shuffled counts for all 16 triangles,
999 times. Triangle 1 is constrained to have exactly the same
number of points for modelled and empirical data, so no shuf-
fling can be done. The ordinal P-value for the modelled vs.
empirical R2 was then based on its rank among the 999 boot-
strapped values of R2.
To assess the prediction (Wang & Fang 2012) that species

with small ranges and species with large ranges respond to the
same attractor (an assessment not possible with the Bayesian
model alone), we repeated the bootstrap procedure separately
for larger ranged species (range size > 0.25 of the domain)
and for smaller ranged species (range size ≤ 0.25 of the
domain).

Mapping midpoint attractors onto environmental variables

The Bayesian model optimises the location and shape of a
simple midpoint attractor, without reference to environmental

variables measured along each of the gradients. In fact, we
know from many sources of evidence that species and species
groups respond in complex and often idiosyncratic ways to
environmental and elevational gradients (Gotelli et al. 2009;
Newbery & Lingenfelder 2009; Albert et al. 2010; McCain &
Grytnes 2010; Presley et al. 2011; Sundqvist et al. 2011). As
typical of most field studies, only limited environmental data
were available for the elevational transects in our data sets,
and data for different sets of environmental variables were
available for different transects.
In an attempt to characterise attractors statistically in

terms of underlying available environmental variables, we
carried out (linear) multiple regressions, with AIC-based
model selection, for each data set on each gradient. At each
of a series of evenly spaced elevations, we treated the magni-
tude of the fitted attractor function as the response variable
and the smoothed, interpolated environmental variables as
candidate predictor variables. The multiple regression models
were fitted using the application Spatial Analysis in Macroe-
cology, version 4.0 (Rangel et al. 2010). The data points (ele-
vations) for regression were the same, evenly spaced points
across the unit-line domain that were used to fit each mid-
point attractor (see Supplemental Materials and Methods in
Appendix 2).
For comparison with traditional correlative approaches

applied to explain species richness patterns, we carried out
additional multiple regressions, in a model selection frame-
work, with empirical richness as the response variable and
environmental variables as candidate predictor variables. We
also carried out simple linear regressions with empirical rich-
ness as the response variable and the magnitude of the fitted
attractor function as the only predictor variable (visualising
the results of the Bayesian fitting procedure).

Midpoint predictor models

The midpoint attractor model is, by design, an indirect
approach to understanding the drivers of species richness
over elevational gradients. As an alternative, direct approach,
we designed two explicit midpoint predictor models, one with
and one without geometric constraints, for the placement of
empirical range midpoints within a domain as a direct func-
tion of measured environmental variables. For each of the
two midpoint predictor models and each of the 16 eleva-
tional data sets, we assessed, statistically, the degree of corre-
spondence between the empirical distribution of range
midpoints within a domain and the midpoint distribution
predicted by a stochastic simulation. In each simulation,
range midpoints were placed stochastically on the domain,
with the probability of placement at each location directly
proportional to the magnitude of a measured environmental
variable. In contrast with most other studies, including our
midpoint attractor model, the midpoint predictor models
consider only the frequency distribution of species midpoints
along the elevational gradient, and not the resulting species
richness arising from the overlap of species ranges. Details of
the two midpoint predictor models and our approach to
model evaluation appear in Supplemental Materials and
Methods (Appendix 2).
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RESULTS

Midpoint attractors and geometric constraints

Figure 3 shows the empirical data and the fitted midpoint
attractor model for the Costa Rican arctiine moth data set.
The corresponding graphical results for the other 15 data sets
appear in Figs 4 and 5, organised by locality and arranged in
the figures to facilitate comparisons among taxonomically and
geographically related data sets. We emphasise that the graphs
for each data set show the results of 100 simulations using a
single pair of values of the midpoint attractor parameters, A
and B. These ‘best’ parameter values were chosen from the
Bayesian posterior distribution for the corresponding data set
(Fig. S2). For each data set, nearby values of these parameters
produce similar graphs. The spreading dye algorithm (Algo-
rithm 2) consistently yielded a fit between modelled and
empirical richness that was at least as good, and often better,
than the classic approach (Algorithm 1). Consequently, we
used the spreading dye algorithm for all data sets in the final
models (Table 1).
Table 1 displays the quantitative results for midpoint attrac-

tor parameters, and for each, the results for the statistical
comparisons between modelled and empirical midpoint den-
sity patterns within the geometric constraint triangle (right
panel for each data set in Figs 3–5). For 14 of the 16 data
sets, the test affirms a highly significant (mean P < 0.002) cor-
respondence between empirical and modelled midpoint density
patterns. The two exceptions (Costa Rican ferns and North
American butterflies), instructive in their own right, are dis-
cussed below (Centred midpoint attractors).
The comparison of modelled and empirical midpoint densi-

ties for large-ranged vs. small-ranged species confirmed the
expectation that both large and small ranges are equally well
fitted by the same midpoint attractor model for most data sets
(11 of 16 data sets; Table 1). For a few data sets, a single
attractor may not be an appropriate model. Bornean geome-
trid moths and perhaps North American mammals (Fig. 5)
show signs of multimodal attractors, although the fit for a
simple, unimodal attractor is nonetheless significant.
The quantitative results in Table 1 demonstrate the key role

of geometric constraints in the modelled patterns of richness.
As expected (Materials and Methods), the closer the modelled
attractor is to a domain limit, the greater the discrepancy
between the location of the attractor and the mean location
of range midpoints on the domain (Fig. 6). In terms of the
pencil-box analogy (Fig. 1b), the closer the magnet is set to
one end of the box, the further the average pencil midpoint is
forced away from the box end.
Moreover, the shift of mean midpoint locations towards

mid-domain for ranges on gradients with off-centre attractors
(Fig. 6) perhaps reconciles our results with the finding of sev-
eral previous studies that species richness for small- and large-
ranged species is correlated with different environmental fac-
tors (e.g. Dunn et al. 2006). Instead, the same environmental
attractors may act differently on small- and large-ranged spe-
cies to generate differing distributions. With off-centre attrac-
tors, the discordance between attractor and range midpoint
increases with range size (e.g. Bornean geometrid moths,
Fig. 5). Thus, for larger ranges, patterns of population density

or other indicators of performance or fitness may be asym-
metrical around the range midpoint, with the performance or
fitness peak lying closer to the attractor than to the range
midpoint.
The fitted standard deviation of the midpoint attractor (pa-

rameter B in the simulations), an inverse measure of the
strength of the attractor, varied from 0.023 (strong attractor)
for Costa Rican ants to 0.476 (weak attractor) for North
American butterflies (Table 1). The location of the midpoint
attractor (parameter A) on the unit-line domain ranged from
0.065 for Costa Rican ants, with nearly monotonically declin-
ing richness with elevation, to several data sets with A near
0.5 (Costa Rican ferns and geometrid moths, North American
butterflies and Australian moths and leaf-miner parasitoids)
to 0.742 (Australian leaf miners, on a short, 1100 m gradient).
When translated to absolute elevation, A and B vary even
more strikingly, because the data sets vary from 1100 m to
4095 m in elevational scope (Table S1, Appendix 1).
How well did the model perform in simulating empirical

richness? The first two graphs for each data set in Fig. S1
(Appendix 1) show: (1) the regression of empirical richness on
the magnitude of the modelled midpoint function, and (2) the
regression of empirical richness on modelled richness.
Table S2 (Appendix 1) provides the corresponding statistical
results. From these results, we can assess the expectation
(Materials and Methods), based on the modelled interaction
between the attractor and geometric constraints and the fitting
method itself, that empirical species richness should correlate
more strongly with modelled species richness than with the
attractor itself. This expectation was borne out in 12 of the 16
data sets. In all but one of the exceptions, the fit of empirical
richness to modelled richness did not differ, by AIC, from the
fit of empirical richness to the attractor. In one data set with
relatively low species richness (Australian leaf-miner para-
sitoids), empirical richness was significantly more strongly cor-
related with the attractor than with modelled richness.

Centred midpoint attractors

When the best-fit attractor lies near the centre of the domain,
as it does for Costa Rican ferns and geometrid moths (Fig. 4),
North American butterflies (Fig. 5) and Australian moths and
leaf-miner parasitoids (Fig. 5) (all with 0.45 < A < 0.55), the
modelled pattern of richness may be quite symmetrical – but
so is the expected pattern from a simpler MDE model of geo-
metric constraints with no environmental drivers. For Costa
Rican ferns, for example the prediction of the MDE model
differs little from the corresponding plot with an optimised
midpoint attractor (Fig. 7). The sub-triangle statistical test for
the Costa Rican ferns and North American butterfly data sets
yields no evidence of an attractor (P > 0.994) (Table 1), nor
do the tests for large and small ranges for these two data sets
(P > 0.983). Although the modelled and empirical midpoint
densities correspond closely in these two data sets, neither dif-
fers from a random distribution of midpoints (given the
empirical RSFD), necessarily the baseline for judging the pres-
ence of an attractor (SI Materials and Methods). Costa Rican
geometrid moths show this same result for small-ranged spe-
cies.
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In such cases, the most conservative conclusion is that we
cannot distinguish between pure geometric constraints and a
broad (but not too broad) environmental attractor with a
peak near the centre of the domain. Although the pure geo-
metric constraints model has two fewer parameters and would

thus be favoured in a strict model selection approach, it seems
more parsimonious, overall, to adopt a single model of inter-
action between attractor and constraints for all data sets.
Other data sets with attractors closely centred on the domain
(e.g. Costa Rican geometrid moths, for large ranges, Fig. 4,

Figure 4 The Bayesian midpoint attractor model applied to four data sets from the same elevational gradient (or, for mammals, a nearby gradient) in Costa

Rica (panel columns 1 and 2) and four data sets from a single elevational gradient in Papua New Guinea (panel columns 3 and 4). The number of empirical

points (the density of black points and their grey saturation) and the average number of modelled points (blue saturation) among the 16 small triangles is

significant at P < 0.001 for seven of the eight data sets (Costa Rican ferns are the exception; see Centred Midpoint Attractors in Results). A fifth data set

from the same Costa Rican gradient appears in Fig. 3, and Fig. 5 shows seven additional data sets. See Fig. 3 for graphical details, Table 1 for statistical

results and Table S1 (Appendix 1), for details of the data sets.
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or Australian moths or leaf-miner parasitoids, Fig. 5) differ
from random midpoint locations enough that the test detects
the close correspondence between model and data (Table 1).

Mapping midpoint attractors onto environmental variables

Using the results from the midpoint attractor model, the third
and fourth graph for each data set in Fig. S1 (Appendix 1)

present the results for all 16 data sets from the AIC-guided
analyses of (1) the regression of the magnitude of the mod-
elled midpoint attractor function on environmental variables,
and (2) the regression of empirical richness on environmental
variables. In all plots, the points represent the magnitude of
the X and Y variables at evenly spaced elevations. Neither
axis represents elevation itself. Table S2 (Appendix 1) provides
the corresponding statistical results and comparisons.

Figure 5 The Bayesian midpoint attractor model applied to seven data sets from Borneo, Australia and North America. See the caption of Fig. 3 for

graphical details, Table 1 for statistical results and Table S1 (Appendix 1) for details of the data sets.
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The environmental variables that best explained the mod-
elled midpoint attractor often differed from the environmental
variables that best predicted observed species richness. Only

three of the 16 data sets yielded an identical statistical model
(or model group, when DAIC was < 3 between alternatives), in
terms of the predictor variables included, for attractor and for
species richness. However, the model with the lowest absolute
AIC matched in 10 of the 16 data sets, if DAIC-grouped mod-
els were ignored (Table S2, illustrated in Fig. S1, Appendix 1).

Midpoint predictor models

For each data set, the same environmental variables assessed in
interpreting midpoint attractors (Table S2 and Fig. S1, Appen-
dix 1) were tested for the two midpoint predictor models, one
with and the other without geometric constraints. In these mod-
els, an environmental variable determined the stochastic place-
ment of range midpoints at locations across the domain. Across
all data sets, 98 of 112 statistical tests (two models, 56 data
set-variable combinations) strongly rejected the null hypothesis
that modelled midpoints resemble the empirical ones, with
P < 0.001 in nearly every case (Table S3, Appendix 1). Only four
of the 16 data sets showed an acceptable fit (P > 0.05) to either
of the midpoint predictor models. But these data sets were, not
coincidentally, the four smallest, in terms of number of species
(Australian leaf miners and their parasitoids, Costa Rican and
North American mammals; Table S1, Appendix 1), and thus
had the weakest statistical power to reject the null hypothesis.

DISCUSSION

By modelling and quantifying repeated underlying structures,
which we call attractors, we offer a fresh approach to

Table 1 Midpoint attractors on a rescaled unit domain (0 = sea level, 1 = mountaintop) for 16 elevational data sets. The fitted attractor mean (A) and

attractor standard deviation (B) define the environmental attractors that drive the modelled species richness patterns in Figs 3–5. Mean midpoint values

were computed from the modelled midpoint distributions. Mean range size was computed from the empirical (= modelled) range sizes (RSFD). The statisti-

cal correspondence (assessed by R2) between the midpoint density arising from the midpoint attractor model and empirical midpoint density was tested for

significance for all ranges, for large ranges (≥ 0.25 of the unit domain) and for small ranges (< 0.25 of the unit domain) by a bootstrap procedure. Insignifi-

cant tests (P > 0.05) are reported in boldfaced italics. See Materials and Methods for details.

Attractor

mean (A)

Attractor

SD (B)

Mean

midpoint

Mean

range

R2 all

ranges

P all

ranges

R2 large

ranges

P large

ranges

R2 small

ranges

P small

ranges

Costa Rica data sets

Ants 0.065 0.023 0.196 0.181 0.949 0.001 0.968 0.001 0.955 0.001

Arctiine moths 0.378 0.294 0.332 0.228 0.770 0.001 0.747 0.001 0.768 0.001

Geometrid moths 0.527 0.327 0.492 0.306 0.650 0.002 0.762 0.001 0.155 0.999

Ferns 0.473 0.331 0.479 0.303 0.466 0.999 0.617 0.997 0.368 0.999

Mammals 0.604 0.401 0.521 0.425 0.675 0.001 0.744 0.001 0.007 0.001

Papua New Guinea data sets

Ants 0.153 0.123 0.199 0.156 0.867 0.001 0.995 0.001 0.832 0.001

Butterflies 0.098 0.239 0.205 0.180 0.954 0.001 0.998 0.001 0.941 0.001

Birds 0.243 0.411 0.330 0.285 0.918 0.001 0.899 0.001 0.968 0.001

Ferns 0.440 0.222 0.447 0.156 0.801 0.001 0.548 0.001 0.246 0.001

Australia border ranges data sets

Moths 0.555 0.291 0.583 0.419 0.912 0.001 0.939 0.001 0.831 0.001

Leaf miners 0.742 0.418 0.630 0.426 0.555 0.015 0.542 0.013 0.569 0.999

Leaf-miner parasitoids 0.492 0.219 0.534 0.493 0.551 0.003 0.553 0.003 0.436 0.758

Borneo data sets

Geometrid moths 0.151 0.181 0.226 0.173 0.840 0.001 0.626 0.001 0.868 0.001

Sphingid moths 0.104 0.120 0.214 0.342 0.993 0.001 1.000 0.001 0.966 0.001

North America data sets

Butterflies 0.532 0.476 0.502 0.486 0.632 0.996 0.635 0.997 0.448 0.983

Mammals 0.435 0.282 0.381 0.353 0.435 0.001 0.371 0.009 0.724 0.001
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Figure 6 The signature of geometric constraints in the modelled patterns

of species richness. The closer the modelled attractor lies to a domain

limit, the greater the discrepancy between the location of the attractor

and the mean location of range midpoints on the domain. The graph

shows the relationship between |(mean midpoint � attractor)| and

|(0.5 � attractor)|. Each point represents a different data set (n = 16,

slope = 0.592, P < 0002). See Table 1 for attractor mean (parameter A)

and mean midpoint values.
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characterising biogeographical patterns of species richness. In
a broader perspective, we view the attractor not as a mecha-
nism in itself, but as a unifying, intermediate link or layer,
between data and mechanism. With two simple parameters,
the Bayesian midpoint attractor model characterised the
shape and location of a broad spectrum of species richness
patterns for a wide variety of taxa along mountain slopes.
Just as in other realms of biology, modelling function
requires modelling constraints. In our model, these con-
straints were imposed by the domain boundaries and the
range size frequency distribution. By characterising an under-
lying gradient of favourability, our midpoint attractor model
offers a unifying approach to elevational richness gradients
that has not been achieved by traditional, ad hoc interpreta-
tions of correlations of species richness with environmental
variables (Gotelli et al. 2009).
The stochastic simulations used in the midpoint attractor

model are simply a means of producing statistical distribu-
tions of richness and range location, under specified condi-
tions, for comparison with corresponding empirical patterns.
The algorithms used in these simulations are not, in them-
selves, intended to represent mechanistic processes in any lit-
eral sense. Even the notion of a midpoint attractor,
representing a gradient of environmental ‘favourability’, is a
conceptual stand-in for the unspecified biological mechanisms
that ultimately lead to concentrations of ranges in certain
regions of the domain: adaptive range shifts, diversification of
lineages, differential extinction and other forces (Colwell &
Rangel 2010). The pencilbox analogy (Fig. 1), likewise, is
intended to demonstrate patterns, not processes.
Although the elevational richness patterns successfully mod-

elled in this study varied widely in shape and location on the
domain, the midpoint attractor model successfully reproduced
not only taxon-specific peaks of species richness but also their
underlying empirical midpoint distributions (Figs 3–5). The
strong signature of geometric constraints in these results
(Fig. 6) shows that the midpoint attractor, alone, is not
responsible for the excellent fit of model to data. Instead, the
seamless integration of attractor and constraints allows the
model to generate patterns ranging from nearly monotonic

declines of species richness to perfectly symmetric mid-eleva-
tion humps.
It might be tempting to dismiss these results as a needlessly

elaborate method of descriptive curve-fitting. A polynomial
regression, for example would do an excellent job (in fact, a
perfect job, with enough parameters) of fitting any of the dis-
tributions of sampling point empirical richness in Figs 3–5. Of
course, the 16 data sets would vary in the number of parame-
ters required (assuming model selection was applied), yielding
a large table of fitted parameters for the data sets, many or
most of them uninterpretable. Instead, the midpoint attractor
efficiently unifies all data sets with the same two parameters
of the attractor for every data set. Moreover, the sub-triangle
statistical analysis of the joint distribution of midpoints and
range sizes provides an additional, more-detailed assessment
of fit, because it relies on the underlying empirical range and
midpoint data. In contrast, using a polynomial regression (or
direct fitting of a statistical distribution, such as the gamma
distribution) to describe observed richness ignores the under-
lying data: the elevational ranges of the individual species.
Furthermore, these methods provide no avenue to explore or
document the role of geometric constraints (Fig. 6).
Constructing the midpoint attractor model in a Bayesian

framework was not a matter of convenience, interpretation or
fashion, but rather a logical necessity. Given the conjecture
that a taxon-specific, location-specific, underlying gradient of
favourability, interacting with geometric constraints, could
explain elevational richness patterns, the appropriate way for-
ward was to maximise the probability of a general, underlying
model, challenged with a plethora of contrasting data sets – a
fundamentally Bayesian approach.
Data sets with many ranges abutting the low-elevation

domain limit (e.g. Costa Rican ants, Fig. 4, and Bornean geo-
metrid and sphingid moths, Fig. 5) or the high-elevation
domain limit (Australian leaf-miner parasitoids and North
American butterflies, Fig. 5) strongly suggest an unexpressed
potential for some species to prosper in environmental condi-
tions more extreme than conditions at the lower or upper
domain limit. In other words, range limits in geographical
space, forced by the domain boundaries (e.g. sea level or

Figure 7 Costa Rican fern data set with no attractor (pure geometric constraints) (left panel) and with the best-fit midpoint attractor (right panel). The

modelled curves differ slightly in shape, but the overall fit is quite similar. Empirical richness values are the black points, identical in the two plots.
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mountaintop), may not coincide with niche limits in niche
space for such species (Colwell & Rangel 2010). The excellent
performance of the doubly truncated Gaussian attractor and
our finding that Algorithm 2 (spreading dye) provided a better
fit than Algorithm 1 (classic), considered together, offer sup-
port for the inference that ranges that abut domain bound-
aries represent niches truncated by the limits of elevational
gradients. In contrast, a species range that reaches neither of
the domain limits on the gradient may – or may not – fully
express the species’ fundamental niche.
Shuffling the observed ranges (the RSFD) within a bounded

domain, with or without a midpoint attractor, assumes that
the RSFD is representative of the size distribution of eleva-
tional ranges for a particular taxon on a particular elevational
gradient at the particular time that the data were taken (Col-
well et al. 2004). Given that ranges are drawn without
replacement from the RSFD and placed randomly on the
domain (within geometric constraints), whereas observed
ranges tend to be truncated at domain boundaries, the ques-
tion then arises: does the midpoint attractor model produce a
deficit of small ranges near the domain boundary and an
excess of small ranges in mid-domain? If there were such an
effect, we would expect it to be stronger for attractors located
nearer a domain limit. We tested for this bias by comparing
empirical to modelled midpoint density in sub-triangles 10
(near sea level), and 7 (mid-domain) (Fig. S3, Appendix 1), as
a function of attractor location (A), for the 16 data sets. We
found no evidence of any pattern of deficiency or excess in
modelled midpoint density. If there is any bias, it is slight
enough to be completely masked by the heterogeneous size
and placement of ranges, both empirical and modelled. These
results are consistent with the models of (Colwell & Hurtt
1994), who simulated range truncation for a classical MDE
model, and found very little decrease in mean range size as
the domain boundary was approached.
With or without geometric constraints, the midpoint predic-

tor models, which assessed empirical environmental factors as
candidate midpoint predictors, fitted observed elevational
midpoint distributions very poorly (Table S3, Appendix 1),
despite incorporating the empirical RSFD (in one variant)
and having two free parameters, just like the midpoint attrac-
tor model. For the data sets in this study, the seemingly intu-
itive hypothesis that environmental conditions should predict
the location of species range midpoints failed to account for
most observed midpoint patterns. In contrast, the midpoint
attractor model, which, by design, ignores environmental vari-
ables, yielded midpoint distributions very close to the empiri-
cal midpoint distributions. How can we reconcile this failure
of the midpoint predictor model with the success of the
midpoint attractor model? At least three, non-exclusive expla-
nations are possible: (1) We may have used the ‘wrong’ envi-
ronmental variables in the midpoint predictor models.
Although the midpoint attractors, together with geometric
constraints, produced a good fit to empirical species richness,
the fit of the attractors themselves to environmental variables
was often rather poor (Table S3; third panel in each graph in
Fig. S1). The original investigators for our data sets measured
important aspects of temperature, precipitation and other
variables (such as plant cover) that are believed to affect

species richness on elevational gradients. Primary productivity
is thought to be a key correlate of species richness for many
groups (Storch et al. 2006). However, primary productivity is
difficult to measure directly, is difficult to estimate accurately
on small spatial scales from remotely sensed data, and is miss-
ing from all our data sets. (2) We might have analysed the
right variables, but we had the wrong functional form. In pre-
liminary analyses, however, alternative functional forms (e.g.
logarithmic, exponential) did not improve the fit. For many of
our data sets, such as Borneo geometrid moths and New Gui-
nea butterflies, the high concentration of species range mid-
points in the lower elevations of the domain cannot be
accounted for by any univariate or multivariate transforma-
tion of the available environmental variables. (3) Lineage
diversification with strong niche conservatism may have pro-
duced spatial concentrations of range midpoints in narrowly
defined environments – a sort of theme-and-variations. Con-
centrations of elevational range midpoints may arise from
‘colonisation’ of new environments (e.g. transitions from low-
land to montane specialists) followed by net diversification,
with little divergence in environmental tolerances (e.g. Gra-
ham et al. 2014; Wu et al. 2014). A search for multimodal
attractors and alignment with phylogenetic structure would be
a fruitful area of future research.
Like niche, or community, or ecosystem, the idea of an envi-

ronmental attractor reifies an abstract construct. Such con-
structs endure only if they prove adaptable and useful. In this
study, we began with the idea of an attractor, treating it in a
Bayesian framework as a model to be challenged by eleva-
tional data. But the idea of a range attractor model need not
be limited to one-dimensional gradients, nor to terrestrial
environments. The location and shape of midpoint attractors
within a particular domain arise from the interactions between
taxon, climate and history. Comparative study of the relative
influence of these factors can be made rigorous and quantita-
tive by fitting attractors to multiple data sets, as we have done
in this study. The environmental and historical factors defin-
ing midpoint attractors in nature are likely to be complex,
presenting a challenge for future research. But our approach,
in which a modelled midpoint attractor drives the location of
species ranges placed stochastically within a bounded domain,
may prove more fruitful than further attempts to correlate
patterns of species richness along bounded gradients with
environmental factors.
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APPENDIX 1: SUPPLEMENTAL TABLES AND FIGURES 

SUPPLEMENTAL TABLES S1–S3 

Table S1. The datasets and their characteristics. Sampling limits represent the lowest and highest occurrence on a unit-line transect, 
after range adjustments described in the Supplemental Materials and Methods (Dataset Selection and Preparation). Sampling scope is 
the difference between the sampling limits. 
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Environmental 
variables and 
their units 

Data 
provider 

C
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ct
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da
te

s 

Published 
references 
to the 
dataset 

Costa Rica Datasets 

Ants Barva 
Transect 
(Prov. 
Heredia) 

10°08'N–
10°26'N, 
84°00'W– 
84°07'W 

7 0.004, 
0.705 

0.701 0, 
2900 

Miniwinkler 
extractors 

332 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

John T. 
Longino 

2001-
2007 

(Longino 
& Colwell 
2011; 
Longino et 
al. 2014)  

Arctiine moths 
Barva 
Transect 
(Prov. 
Heredia) 

10°08'N–
10°26'N, 
84°00'W– 
84°07'W 

12 0.013, 
0.940 

0.927 0, 
2900 

Light traps, 
manual 
collection 

222 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

Gunnar 
Brehm 

2003–
2004 

None 

Geometrid 
moths 

Barva 
Transect 
(Prov. 
Heredia) 

10°08'N–
10°26'N, 
84°00'W– 
84°07'W 

12 0.013, 
0.940 

0.927 0, 
2900 

Light traps, 
manual 
collection 

739 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

Gunnar 
Brehm 

2003–
2004 

(Brehm et 
al. 2007) 
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Environmental 
variables and 
their units 

Data 
provider 

C
ol

le
ct

io
n 

da
te

s 

Published 
references 
to the 
dataset 

Ferns 
Barva 
Transect 
(Prov. 
Heredia) 

10°08'N–
10°26'N, 
84°00'W– 
84°07'W 

29 0.011, 
0.986 

0.975 0, 
2900 

Plot-based 
(20x20m²) 

434 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

Jürgen 
Kluge 

2002-
2003 

(Kluge et 
al. 2006) 

Mammals Tilarán 
Mt. 
Range 

10°23'N–
10°17'N, 
84°47'W–
84°26'W 

18 0.000, 
0.998 

0.989 0, 
1840 

Live traps, 
kill traps, 
and pitfall 
traps 

18 Average 
Temperature (°C), 
Annual 
Precipitation 
(mm) 
[worldclim], 
elevational area 
(km2 per 100m 
elevational band) 
[DEM, ArcGIS] 

Christy 
McCain 

2000-
2002 

(McCain 
2004; 
McCain 
2005) 

Papua New Guinea Datasets 

Ants 
Mt. 
Wilhelm 
Transect 

5°44'S–
5°47'S, 
145°03'E–
145°20'E 

8 0.007, 
0.822 

0.815 0, 
4509 

Pitfall 
trapping and 
hand-
collecting  
Yusah et 
al.(2012) 

116 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

Jimmy 
Moses, 
Tom M. 
Fayle, 
Petr 
Klimes 

2012 (Moses 
2015) 

Butterflies 
Mt. 
Wilhelm 
Transect 

5°44'S–
5°47'S, 
145°03'E–
145°20'E 

8 0.022, 
0.876 

0.854 0, 
4509 

Modified 
Pollard 
transects 
(Caldas & 
Robbins 
2003) 

264 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

Legi Sam 
2009  

(Sam 
2011) 
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Dataset Locality 
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Environmental 
variables and 
their units 

Data 
provider 

C
ol

le
ct

io
n 

da
te

s 

Published 
references 
to the 
dataset 

Birds 
Mt. 
Wilhelm 
Transect 

5°44'S–
5°47'S, 
145°03'E–
145°20'E 

8 0.022, 
0.876 

0.854 0, 
4509 

Point-counts, 
mist-netting 

245 MAT (°C), Mean 
RH (%), Mean 
Tree Height (m), 
Mean Tree Basal 
Area (cm2) 

Katerina 
Sam  

2010-
2012 

(Tvardikova 
2013; Sam 
& Koane 
2014) 

Ferns 
Mt. 
Wilhelm 
Transect 

5°44'S–
5°47vS, 
145°03'E–
145°20'E 

8 0.022, 
0.876 

0.854 0, 
4509 

Plot-based 
(20x20m²) 

359 MAT (°C), Mean 
RH (%), MAP 
(mm), Area (% of 
total per 100m 
band) 

D.N. 
Karger, 
S. Noben, 
M. 
Lehnert, 
M.S. 
Sundue 

 2014  None 

Australia Datasets 

Moths 
(macromoths + 
Pyraloidea) 

Border 
Ranges 
(NSW) 

28°24'S–
28°22'S, 
153°1'E–
153°5'E 

5 0.220, 
0.959 

0.739 0, 
1100 

Light traps 612 °C min, max 
median, average 
plant richness 

Louise 
Ashton, 
Roger 
Kitching 

2009-
2010 

(Ashton et 
al. 2015) 

Leaf miners 
(Lepidoptera, 
Coleoptera, 
Diptera, 
Hymenoptera) 

Border 
Ranges 
(NSW) 

28°24'S–
28°22'S, 
153°1'E–
153°5'E 

5 0.183, 
0.981 

0.798 0, 
1100 

Hand 
collecting 
and rearing  

34 Average 
Temperature (°C), 
Annual 
Precipitation 
(mm), Vegetation 
cover (log of cm's 
intercepted) 

Sarah 
Maunsell 

2011 - 
2012 

(Maunsell 
et al. 2016) 
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Dataset Locality 
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their units 

Data 
provider 
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da
te

s 

Published 
references 
to the 
dataset 

Leaf miner 
parasitoids 
(Hymenoptera) 

Border 
Ranges 
(NSW) 

28°24'S–
28°22'S, 
153°1'E–
153°5'E 

5 0.183, 
0.981 

0.798 0, 
1100 

Hand 
collecting 
and rearing  

14 Average 
Temperature (°C), 
Annual 
Precipitation 
(mm), Vegetation 
cover (log of cm's 
intercepted) 

Sarah 
Maunsell 

2011 - 
2012 

(Maunsell 
et al. 2015) 

Borneo Datasets 

Geometrid 
moths 

NE 
Borneo 

1°28'N-
6°16'N, 
112°06'E-
117°53'E 

70 0.000, 
0.958 

0.958 0, 
4095 

Light traps 775 Average 
Temperature (°C), 
Annual 
Precipitation 
(mm) 
[worldclim], 
forest stratum, 
vegetation type 
[field 
descriptions] 

Jan Beck, 
Jeremy 
Hollo-
way, 
Chey 
Vun 
Khen 

1965-
2003 

(Beck et 
al. 2012) 
(undis-
turbed 
habitats 
only) 

Sphingid moths NE 
Borneo 

0°05'S-
6°18'N, 
109°43'E-
118°10'E 

19 0.000, 
0.958 0.958 

0, 
4095 

Light traps 102 Average 
Temperature (°C), 
Annual 
Precipitation 
(mm) 
[worldclim], area 
[of 200m bands], 
vegetation type 
[globcov] 

Jan Beck, 
Ian 
Kitching 
et al. 

1965-
2005 

(Beck & 
Kitching 
2009) 
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North America Datasets 

Butterflies 
Califor-
nia 

38°34'N-
39°20'N, 
120°20'-
121°25'W 

6 0.001, 
0.966 

0.965 0, 
2775 

Pollard 
walk, 
presence/ 
absence 

129 Average Max 
Daily 
Temperature (°C), 
Average Min 
Daily 
Temperature (°C), 
Annual 
Precipitation 
(mm) 

Arthur 
Shapiro 

1973-
2014 

(Forister et 
al. 2010).  

Mammals 
Yosemite 
NP 
(Califor-
nia) 

 37°30'N–
37°59'N, 
118°56'–
120°28'W 

40 0.000, 
0.990 

0.990 0, 
3997 

Live traps, 
kill traps, 
hunting, 
visual 
observations 

46 Average 
Temperature (°C), 
Annual 
Precipitation 
(mm) 
[worldclim], 
elevational area 
(km per 100m 
elevational band) 
[DEM, ArcGIS] 

Joseph 
Grinnell 
& Tracy 
Storer 

1914-
1916, 
1919. 

(Grinnell 
& Storer 
1924; 
McCain 
2005) 
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Table S2. Midpoint attractors in relation to environmental variables and observed species richness, analyzed by multiple regression 
with AIC-based model selection. Values of R2 < 0.5 are set in italics. Values of delta AIC > 3 are boldfaced. The corresponding 
scatterplots appear in Fig. S1. Because the attractor is a continuous function (a doubly-truncated Gaussian distribution) and the other 
variables are spatially autocorrelated, significance probabilities cannot be assigned to R2 values, which are thus best viewed as 
comparative. Dark grey fill indicates datasets for which the same environmental predictor (or predictor set) best explains both the 
Attractor and Empirical richness, by a strict ΔAIC criterion (ΔAIC > 3). Light grey fill indicates datasets for which the same 
environmental predictor (or predictor set) best explains both the Attractor and Empirical richness, disregarding the ΔAIC criterion. 
 

Dataset Response Variable Predictor Variables n R2 Condition 
Number 

Delta 
AIC 

Costa Rica Datasets 		   		 	 		 		
Ants Empirical richness Modeled richness 10 0.942 1 0 
  		 Attractor 10 0.845 1 9.563 
  Attractor Temperature & Relative humidity 10 0.971 2.354 0 
    Temperature & Area 10 0.971 4.625 1.332 
    Temperature & Precipitation 10 0.972 2.548 1.857 
  Empirical richness Temperature 10 0.856 1 0 
Arctiine moths Empirical richness Modeled richness 10 0.879 1 0 
    Attractor 10 0.762 1 6.77 
  Attractor Precipitation & Area 10 0.852 1.616 0 
    Relative humidity & Precipitation 10 0.833 1.04 1.217 
    Temperature & Precipitation 10 0.825 2.548 1.712 
    Precipitation 10 0.678 1 1.793 
  Empirical richness Temperature & Area 10 0.927 4.625 0 
    Precipitation 10 0.839 1 1.896 
Geometrid moths Empirical richness Modeled richness 10 0.898 1 0 
    Attractor 10 0.869 1 2.448 
  Attractor Relative humidity 10	 0.623 1 0 



Midpoint Attractors, Appendices, page  
	

	

8 

Dataset Response Variable Predictor Variables n R2 Condition 
Number 

Delta 
AIC 

  Empirical Area 10 0.647 1 0 
    Temperature & Area 10 0.788 4.625 0.899 
    Relative humidity 10 0.608 1 1.037 
    Precipitation & Area 10 0.744 1.616 2.377 
Ferns Empirical richness Modeled richness 10 0.898 1 0 
    Attractor 10 0.883 1 1.312 
  Attractor Relative humidity 10 0.666 1 0 
  Empirical richness Precipitation & Area 10 0.785 1.616 0 
    Temperature & Area 10 0.770 4.625 0.69 
    Relative humidity 10 0.560 1 1.165 
Mammals Empirical richness Attractor 10 0.630 1 0 
    Modeled richness 10 0.611 1 0.538 
  Attractor Area 10 0.483 1 0 
  Empirical richness Area 10 0.043 1 0 
    Precipitation 10 0.020 1 0.267 
    Temperature 10 0.013 1 0.348 
Papua New Guinea 
Datasets 

	 	

	
	

	 		

Ants Empirical richness Modeled richness 8 0.894 1 0 
    Attractor 8 0.861 1 2.142 
  Attractor Temperature 8 0.586 1 0 
   Tree height 8 0.539 1 0.859 
  Empirical richness Temperature 8 0.867 1 0 
Butterflies Empirical richness Modeled richness 8 0.975 1 0 
    Attractor 8 0.950 1 5.461 
  Attractor Temperature 8 0.925 1 0 
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Dataset Response Variable Predictor Variables n R2 Condition 
Number 

Delta 
AIC 

   Temperature & Relative humidity 8 0.968 1.812 2.486 
  Empirical richness Temperature 8 0.842 1 0 
Birds Empirical richness Modeled richness 8 0.935 1 0 
    Attractor 8 0.876 1 5.222 
  Attractor Temperature 8 0.804 1 0 
   Tree height 8 0.731 1 2.53 
  Empirical richness Temperature 8 0.958 1 0 
    Temperature & Basal area 8 0.985 1.36 1.299 
Ferns Empirical richness Modeled richness 8 0.813 1 0 
   Attractor 8 0.810 1 0.137 
  Attractor Basal area 8 0.447 1 0 
   Humidity 8 0.272 1 2.207 
  Empirical richness Basal area 8 0.442 1 0 
    Humidity 8 0.236 1 2.518 
Australia Datasets 		 		 		 	 		 		
Moths* Empirical richness Attractor 10 0.926 1 0 
    Modeled richness 10 0.907 1 1.966 
  Attractor Temperature-Precipitation PCA 10 0.139 1 0 
    Tree Richness 10 0.078 1 0.625 
  Empirical richness Temperature-Precipitation PCA 10 0.123 1 0 
    Tree Richness 10 0.122 1 0.007 
Leaf-miners Empirical richness Modeled richness 10 0.342 1 1 
    Attractor 10 0.163 1 2.162 
  Attractor Temperature-Precipitation PCA 10 0.560 1 0 

  Empirical richness Temperature-Precipitation PCA 
   & Tree richness 10 0.704 1.357 0 
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Dataset Response Variable Predictor Variables n R2 Condition 
Number 

Delta 
AIC 

    Tree Richness 10 0.338 1 0.032 
    Temperature-Precipitation PCA 10 0.164 1 2.131 
Leaf-miner parasitoids Empirical richness Attractor 10 0.939 1 0 
    Modeled richness 10 0.770 1 11.878 
  Attractor Temperature-Precipitation PCA 10 0.442 0.939 0 
  Empirical richness Temperature-Precipitation PCA 10 0.476 1 0 
Borneo Datasets 

	 	
	 	 	 		

Geometrid Moths Empirical richness Attractor 10 0.469 1 0 
    Modeled richness 10 0.461 1 0.152 
  Attractor Temperature 10 0.680 1 0 
  Empirical richness Temperature 10 0.188 1 0 
    Precipitation 10 0.068 1 1.337 
Sphingid moths Empirical richness Modeled richness 10 0.994 1 0 
    Attractor 10 0.713 1 38.012 
  Attractor Temperature 10 0.702 1 0 
    Cover Classes 10 0.683 1 0.614 
  Empirical richness Temperature & Area 10 0.944 2.034 0 
North American Datasets 		 		 		 	 		 		
Butterflies Empirical richness Modeled richness 11 0.968 1 0 
    Attractor 11 0.936 1 7.506 
  Attractor Precipitation 11 0.404 1 0 

    Precipitation & Minimum 
   temperature 11 0.624 2.324 0.17 

    Precipitation & Maximum 
   temperature 11 0.590 2.265 1.12 

  Empirical richness Precipitation 11 0.533 1 0 
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Dataset Response Variable Predictor Variables n R2 Condition 
Number 

Delta 
AIC 

Mammals Empirical richness Modeled richness 10 0.725 1 0 
    Attractor 10 0.697 1 4.655 
  Attractor Precipitation 10 0.429 1 0 
  Empirical richness Precipitation 10 0.154 1 0 
    Area 10 0.140 1 0.163 
    Temperature 10 0.034 1 1.327 

 
 
*Temperature and precipitation were highly (inversely) correlated for the Australian moths dataset (Condition Number = 21.696). 

PCA was extracted to reduce the effects of collinearity. 
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Table S3. Analysis of midpoint predictor models for range midpoint locations. Each row 
represents a different environmental variable used to model probabilities of midpoint 
occurrence along the domain. A plus sign (+) indicates P < 0.05, meaning that the results 
were improbable relative to a particular model (P(data|model)). Numerical entries 
indicate one-tailed P values, based on 1000 simulations, for which P > 0.05 indicates that 
the data were not improbable, given the model. See Materials and Methods in the main 
text for the algorithms of the two midpoint predictor models. 

Dataset Environmental Variable  Model 1  Model 2 
Costa Rica Datasets 

  
  

Ants Temperature + + 
  Precipitation + + 
  Relative humidity + + 
  Area + + 
Arctiine moths Temperature + + 
  Precipitation + + 
  Relative humidity + + 
  Area + + 
Geometrid moths Temperature + + 
  Precipitation + + 
  Relative humidity + + 
  Area + + 
Ferns Temperature + + 
  Precipitation + + 
  Relative humidity + + 
  Area + + 
Mammals Temperature 0.277 0.294 
  Precipitation 0.300 0.305 
  Area + + 
Papua New Guinea Datasets 

  
  

Ants Temperature + + 
  Relative humidity + + 
  Tree height + + 
  Basal area + + 
Butterflies Temperature + + 
  Relative humidity + + 
  Tree height + + 
  Basal area + + 
Birds Temperature + + 
  Relative humidity + + 
  Tree height + + 
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Dataset Environmental Variable  Model 1  Model 2 
  Basal area + + 
Ferns Temperature + + 
  Relative humidity + + 
  Tree height + + 
  Basal area + + 
Australia Datasets 

  
  

Moths Temperature + + 
  Precipitation + + 
  Tree richness + + 
Leaf-miners Temperature + + 
  Precipitation 0.132 0.083 
  Tree richness + + 
Leaf-miner parasitoids Temperature + 0.053 
  Precipitation + 0.056 
  Tree richness 0.074 0.153 
Borneo Datasets 

  
  

Geometrid moths Temperature + + 
  Precipitation + + 
Sphingid moths Temperature + + 
  Precipitation + + 
  Area + + 
  Cover classes + + 
North American Datasets 

  
  

Butterflies Minimum temperature + + 
  Maximum temperature + + 
  Precipitation + + 
Mammals Temperature 0.266 0.069 
  Precipitation 0.230 + 
  Area 0.154 + 
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SUPPLEMENTAL FIGURES S1–S3  

 

  



Midpoint Attractors, Appendices, page  
	

	

15 

  



Midpoint Attractors, Appendices, page  
	

	

16 

  



Midpoint Attractors, Appendices, page  
	

	

17 

Fig. S1, A-D. Relationships between the modeled attractor, simulated species richness, 
empirical species richness, and measured environmental variables for each of the 16 
datasets (in four geographical groups). Each dataset is represented by the four panels in a 
row. Within a panel, each point represents one of 9 or 10 elevations within the (rescaled) 
domain at which variables were evaluated. First panel: the regression of empirical 
richness vs. the magnitude of the modeled midpoint attractor function. Second panel: 
unity-line regression (slope = 1, Romdal et al. 2005) of modeled richness vs. empirical 
richness. Third panel: regression of the magnitude of the modeled midpoint attractor 
function vs. the best-fitting (by AIC) environmental variables. Fourth panel: the 
regression of empirical species richness vs. the best-fitting (by AIC) environmental 
variables. See Table S2 for statistical results. As explained in the caption for Table S1, 
the regressions plotted in this figure cannot be assessed for statistical significance, 
because the points are not independent. Nevertheless, R2 is as an appropriate measure of 
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linear goodness-of-fit between variables, sensitive both to linearity and scatter. In the 
plots here, we have set an arbitrary lower threshold of R2 = 0.5 for display of regression 
lines. 	
	
	

	

	

Fig. S2. Sampled (A, B) pairs of midpoint attractor parameters generated by the MCMC 
Gibbs sampler for the Costa Rican arctiine moth dataset. Point width is proportional to 
the coefficient of determination (R2) between modeled and observed species richness 
across the elevational domain. Point color is arbitrary. The green lines indicate an 
optimized pair of parameter values (A = 0.378, B = 0.294), centered in the cluster of 
coordinate pairs with highest R2, which was used to produce the model for the arctiine 
moth dataset in Fig. 3 (main text). 
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Fig. S3. The geometric constraint triangle, subdivided into 16 smaller, equal-sized 
triangles.
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APPENDIX 2: SUPPLEMENTAL TEXT 

SUPPLEMENTAL INTRODUCTION 

Beginning with Lees et al. (1999) and Jetz and Rahbek (2001), many authors have taken 
a statistical approach to integrating geometric constraints with environmental variables, 
treating “pure” MDE model predictions as candidate predictor variables. In most of these 
studies, the observed range-size frequency distribution (RSDF) was sampled without 
replacement to generate the MDE model predictions of expected species richness at each 
location in the domain (Colwell et al. 2004, 2005). The MDE predictions and standard 
environmental variables were then used together in traditional correlative modeling of 
species richness patterns. Increasingly rigorous versions of this statistical approach have 
incorporated formal model selection, spatial statistics, and assessment of multicollinearity 
(Bellwood et al. 2005; Davies et al. 2007; Wu et al. 2012).  

Several studies have integrated constraints and drivers directly, incorporating the 
interacting effects of geometric constraints and environmental drivers on species richness 
(Gotelli et al. 2009), using environmental variables to condition probabilities of range 
placement and expansion within a spatially bounded domain (Storch et al. 2006; Rahbek 
et al. 2007), thus relaxing the assumption of a pure MDE model that all parts of the 
domain are environmentally identical. These models were also conditioned on the 
empirical range size frequency distribution (RSFD). In contrast, Grytnes et al. (2008) 
modeled plant species richness on a bounded elevational gradient by drawing range sizes 
from theoretical distributions and range midpoints from a probability distribution fitted 
directly to the observed richness gradient. 

Rangel and Diniz-Filho (2005) built a stochastic, mechanistic model that 
integrates speciation, range expansion, and extinction on a bounded, monotonic 
environmental “favorability” gradient, without reference to empirical data. The model is 
effectively a spatially explicit version of the neutral model (Hubbell 2001) in a one-
dimensional bounded domain, but with an underlying environmental gradient. The 
Rangel and Diniz-Filho (2005) model generated off-center species richness peaks that 
emerged from the interaction between the gradient and the geometric constraints (Colwell 
& Rangel 2009). Without the environmental gradient—or with a very weak gradient—
Rangel and Diniz-Filho’s model generated a peak of species richness in the center of the 
domain that was qualitatively similar to the predictions of a simple MDE model.  

Wang and Fang (2012) developed a third approach. They fitted a multiple 
regression model of species richness as a response to environmental variables, but they 
used only the subset of species with the smallest geographic ranges to parameterize the 
model. They reasoned that the placement of small-ranged species within a bounded 
domain is little affected by the location of range boundaries, so that, for this subset of 
taxa, correlations between species richness and environmental variables would not be 
distorted by geometric constraints. They then used the resulting model coefficients, 
together with the empirical RSFD, to simulate the placement of range midpoints of the 
larger-ranged species within the bounded domain. They showed that a single 
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environmental model, combined with strong geometric constraints, best explains the 
species richness of both small- and large-ranged plant species along elevational gradients 
in China.  

 

SUPPLEMENTAL MATERIALS AND METHODS 

Dataset selection and preparation 

As a criterion for inclusion in this study, we applied the rule (McCain 2007; McCain 
2009) that at least 70% of the physical gradient between sea level and mountaintop must 
have been sampled and at least four environmental variables had been reported for the 
gradient.  

Each of the 16 datasets (Table S1) was prepared in the same way. Domain limits 
were defined as sea level and the highest elevation on the mountain massif upon which 
the gradient was located. This domain was converted to the unit line, and all empirical 
sampling elevations were proportionally scaled within this [0,1] domain. Environmental 
variables (Table S1) were resampled, as necessary, after smoothing with cubic spline 
interpolation, using the splinefun function in R, version 3.1.1 (R Core Team 2014).  

If the highest elevation at which a species was recorded was not at the highest 
sampling location, the upper boundary for that species range was estimated to occur 
halfway between the highest elevation of recorded occurrence and the next higher 
sampling elevation. If the highest elevation at which a species was recorded at was the 
highest sampling elevation, the upper boundary of that species range was estimated to 
occur halfway between that sampling elevation and the upper limit of the domain. The 
lower boundary for each range was treated analogously, being extended halfway to the 
next lower sampling elevation or halfway to the lower domain limit (sea level), if a 
species was recorded at the lowest sampling elevation, but that sampling elevation was 
not the domain limit. The ranges of each species found at only one sampling elevation 
were treated similarly; otherwise, these point ranges would have had a zero range, and 
would have been lost from the model. We assumed that the occurrence of each species 
was continuous between its estimated upper and lower recorded range boundaries. These 
range-adjustment procedures and assumptions have been widely used in previous studies 
(e.g., Cardelús et al. 2006; Longino et al. 2014). 

The protocol for range adjustment, described above, leaves most datasets without 
any empirical ranges that actually reach the domain boundaries, resulting in zero 
estimated empirical richness at one or both limits of the domain. A few zeroes are real 
(e.g., ants do not occur at very high elevations in the Costa Rica and New Guinea 
gradients), but most others are artifacts of the location of original sampling elevations and 
the range estimation protocol. Data providers (Table S1) were asked in each case whether 
such zeroes in their data sets were real or artifactual. If real, zero richness at the domain 
endpoint (and in some cases adjacent sampling points) was plotted and included in 
analyses; if artifactual, we proportionally adjusted all empirical range midpoints so that 
ranges nearest to the domain limit exactly reached it. The shifts needed to achieve this 
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adjustment, which effectively shifts the domain boundary slightly, were consistently very 
small (0.002 to 0.02 on the unit line).  

To cope with the wide variation among datasets in number and spacing (often not 
uniform) of empirical sampling points, we took a mixed approach. For fitting the attractor 
(see below), we used a series of 11 evenly spaced sampling locations across the entire 
unit line (domain), including both ends of the domain (0 and 1), for all datasets except the 
New Guinea group. The New Guinea transect was sampled in the field at 8 evenly-spaced 
elevations, so with the domain ends added, we used 10 sampling points for fitting the 
attractor in those datasets. For plotting model results (main text Figs. 3, 4, and 5), we 
used the original sampling points for datasets with fewer than 11 original points (eight 
points for the four Papua New Guinea datasets, five for the three Australia datasets, and 
six for North American butterflies), and 11 points for all other datasets. 

The Bayesian Midpoint Attractor model 

The MCMC sampler and richness pattern simulation. We designed a simple MCMC 
Gibbs sampler (Gelman et al. 2013) to select (A, B) pairs for the mean (A) and standard 
deviation (B), the parameters of the Gaussian midpoint attractor, with the objective of 
simulating the richness pattern over the domain for a particular empirical dataset, using 
only the range-size frequency distribution (RSFD) as input. Empirical midpoints were 
completely ignored for the simulations. The goodness of fit between modeled and 
empirical richness was then assessed for each simulation, as detailed below. 

Running the simulation. For each candidate (A, B) pair, each empirical range was 
placed stochastically on the domain, without replacement, using either Algorithm 1 or 2 
(Main text, Materials and Methods). The modeled richness was recorded for L (10 or 11, 
see above) evenly spaced sampling locations across the domain, always including both 
ends of the domain (0 and 1). The process was repeated M (= 100) times, for the same (A, 
B) pair. The mean richness for each of the L sampling points on the domain was then 
computed, among the M runs, to estimate the expected richness pattern, given the (A, B) 
pair and the empirical RSFD. 

Measuring goodness-of-fit. The next step in the MCMC procedure assessed the 
goodness-of-fit (GOF) between the empirical richness pattern and the mean modeled 
richness pattern, for a given candidate (A, B) pair, at the L sampling points. We applied 
three alternative GOF measures: (1) r, the Pearson product-moment correlation 
coefficient (but only when positive), squared; (2) the chi-squared statistic computed on 
standardized richness (the richness at each sampling point, divided by total richness at all 
L points), treating the empirical richness as “expected” and the modeled richness as 
“observed” (as is customary in Bayesian modeling); and (3) the two-sample 
Kolmogorov-Smirnov (K-S) statistic. Note that none of these measures can be used in 
this way to yield a probability test of significance; they are simply mathematically 
suitable measures of GOF for richness patterns. The protocol for choosing the best GOF 
for each dataset is described, in context, in the next section. 

Sampling the parameter space. Using the procedure just described, the MCMC sampler 
tested a series of (A, B) pairs. At each step in this process, a candidate (A, B) pair was 
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proposed by drawing a new value for A and a new value for B from uniform distributions 
[0 < A < 1] and [0 < B < 1]. In Bayesian terms, A was a flat prior, with the full [0,1] 
domain sampled uniformly for the location of the mean (A). For the standard deviation 
(B), we also set the upper limit at 1 because this value produces a spatial pattern of 
richness broader and flatter than any empirical richness pattern we have seen; thus the 
prior distribution of B incorporated this information. (An even higher limit for B could 
have been used, but the results would not have changed.)  

The candidate (A, B) pair was evaluated by running the simulation (M times) and 
assessing goodness-of-fit (GOF) between the mean modeled richness (averaged among M 
runs) and empirical richness (as described above). If the GOF for the candidate (A, B) 
pair was better, or not much worse, than the GOF for the previous pair, the new pair was 
added to the chain and the process repeated. The criterion for “not much worse” is 
important. If only parameter sets (A, B pairs) that yield a better fit than the previous step 
are kept, the chain may become stuck on a local GOF “peak” in the parameter space, and 
fail to detect a higher peak nearby. 

The criterion for accepting a candidate (A, B) pair in our model was the threshold-
for-acceptance ratio T, between the GOF of the candidate (A, B) pair and the GOF of the 
previous (A, B) pair in the chain. The ratio T was compared to a uniform random number 
on the interval [0,1] (Gelman et al. 2013). If T was greater than this number, the 
candidate (A, B) pair was accepted and the chain continued; if T was smaller than this 
number, the candidate pair was rejected, and a new candidate pair was proposed. In this 
way, better pairs (T > 1) were always accepted, and some not-as-good pairs (T < 1) were 
also accepted, ensuring a better sampling of the parameter space.  

For each dataset, C = 200 to 500 candidate pairs were tried, and the accepted (A, 
B) pairs (the chain) were tabulated, each with its GOF and step number in the chain. 
When the process was complete, the accepted (A, B) pairs were plotted (Fig. S2), and 
ranked by their GOF (largest to smallest for Pearson and Kolmogorov-Smirnov GOFs, 
smallest to largest for the chi-squared GOF).  

For each dataset, when results differed substantially between the two stochastic 
range placement algorithms in the Bayesian attractor model (Main text, Materials and 
Methods), GOF measures were used to choose the better of the two algorithms. When 
results differed substantially among GOF measures for a given algorithm for a particular 
dataset, choice of GOF was based on minimizing overall deviation of empirical points 
from the 95% confidence intervals of the model. On the basis of this procedure, Pearson 
correlation emerged as the most successful GOF (13 of 16 datasets), with chi-squared 
providing a better result in two cases (Australian leaf-miners and Bornean geometrid 
moths), and Kolmogorov-Smirnov in one case (North American mammals).  
Midpoint predictor models 

For each of the two midpoint predictor models, we assessed the same set of 
environmental variables used to interpret modeled attractors in the Bayesian midpoint 
attractor model (Table S1), one variable at a time. To construct the probability density 
functions, the [0,1] domain was divided into 1000 bins. For each bin, the magnitude of 
the environmental variable was approximated by linear interpolation between measured 
values at sampling locations on the elevational gradients (Table S1). Next, probabilities 



Midpoint Attractors, Appendices, page  
	

	

24 

for each bin were assigned proportional to these measured values. Finally, a range 
midpoint representing each empirical species was placed stochastically in the domain in 
proportion to these values. For Model 1, no geometric constraints were enforced. In 
Model 2, range placement was constrained by the domain boundaries. 

Midpoint predictor model evaluation. For each midpoint predictor model, we 
calculated the cumulative distribution function (cdf) of species range midpoints across 
the domain, averaged over 1000 simulations. Steeply rising sections of this cdf indicate 
elevations with a high concentration of species range midpoints, whereas flatter sections 
of the cdf indicate elevations where few or no species range midpoints occur. We refer to 
this averaged cdf as the model reference cdf. 

We next constructed the cdf for the empirical midpoint data and calculated the 
maximum difference between this curve and the model reference cdf. This difference is 
the traditional Kolmogorov-Smirnov test statistic. To generate a null distribution and 
estimate the tail probability for the empirical data, we generated 1000 additional midpoint 
distributions with the midpoint predictor model, and for each of these we calculated the 
K-S test statistic between the cdf of the single simulated midpoint distribution and the 
model reference cdf. 

We then compared the histogram of the 1000 simulated K-S differences with the 
observed K-S difference between the empirical data and the model reference cdf. A non-
significant one-tailed value (P > 0.05) indicates an adequate fit with the data. In contrast, 
unusually large K-S values for the observed data would suggest that the midpoint 
predictor model does not successfully reproduce the pattern of midpoints in the data.  
 
Software 

The midpoint attractor simulator and the MCMC sampler were implemented in 4th 
Dimension, in an extension of the RangeModel application (Colwell 2008) that is 
available from the authors. The midpoint predictor models were programmed in R 
version 3.1.1 (R Core Team 2014), with base functions from the EcoSimR development 
package (https://github.com/GotelliLab/EcoSimR), which is available as an R package. R 
scripts for the midpoint predictor model analyses and for plotting the graphics for the 
midpoint attractor models (main text Figs. 3, 4, and 5) are available from the authors.  
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