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Understanding the forces that shape the distribution of biodiversity across spatial scales 
is central in ecology and critical to effective conservation. To assess effects of possible 
richness drivers, we sampled ant communities on four elevational transects across two 
mountain ranges in Colorado, USA, with seven or eight sites on each transect and 
twenty repeatedly sampled pitfall trap pairs at each site each for a total of 90 d. With 
a multi-scale hierarchical Bayesian community occupancy model, we simultaneously 
evaluated the effects of temperature, productivity, area, habitat diversity, vegetation 
structure, and temperature variability on ant richness at two spatial scales, quantifying 
detection error and genus-level phylogenetic effects. We fit the model with data from 
one mountain range and tested predictive ability with data from the other mountain 
range. In total, we detected 105 ant species, and richness peaked at intermediate 
elevations on each transect. Species-specific thermal preferences drove richness at 
each elevation with marginal effects of site-scale productivity. Trap-scale richness was 
primarily influenced by elevation-scale variables along with a negative impact of canopy 
cover. Soil diversity had a marginal negative effect while daily temperature variation 
had a marginal positive effect. We detected no impact of area, land cover diversity, trap-
scale productivity, or tree density. While phylogenetic relationships among genera had 
little influence, congeners tended to respond similarly. The hierarchical model, trained 
on data from the first mountain range, predicted the trends on the second mountain 
range better than multiple regression, reducing root mean squared error up to 65%. 
Compared to a more standard approach, this modeling framework better predicts 
patterns on a novel mountain range and provides a nuanced, detailed evaluation of ant 
communities at two spatial scales.
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Introduction

Understanding the distribution of biodiversity has been 
a longstanding drive in ecology and is critical to effective 
conservation. Many explanations for the observed pat-
terns have been proposed (Pianka 1966, Rosenzweig 1995, 
Mittelbach et al. 2007), and building evidence points toward 
several drivers jointly shaping richness in complex ways. 
Global elevation analyses have identified current climate as 
a key driver, though effects may be indirect via productivity, 
or moderated by variables like area (McCain 2007a, 2009, 
2010, Beck et al. 2012, Szewczyk and McCain 2016). Some 
hypothesized drivers, including habitat complexity and biotic 
interactions, remain insufficiently evaluated.

Robust and generalized inference is made difficult by the 
complex suite of potentially interacting hypothesized pro-
cesses (Pianka 1966, Rosenzweig 1995, Lomolino 2001, 
Currie  et  al. 2004, Mittelbach  et  al. 2007, Laiolo  et  al. 
2018). These richness drivers may be causally linked or exert 
influence through multiple mechanisms (Rosenzweig 1995, 
Beck et al. 2012) with effects contingent on spatial grain and 
extent (Hortal et al. 2010, McGill 2010). Along a given ele-
vational gradient, a taxon’s empirical richness pattern is the 
emergent product of any number of processes at the com-
munity- and species-scale, including deterministic effects of 
underlying local and regional drivers, evolutionary history, 
and inherent stochasticity. Additionally, the true richness 
may be obscured by imperfect detection, which varies among 
species (MacKenzie et al. 2002, Kéry and Royle 2008). The 
integration of local and regional effects is natural to hierarchi-
cal models, and Bayesian models in particular are amenable 
to incorporating data at several spatial scales, accounting 
for multiple sources of uncertainty, and including nuanced 
structural relationships (Dennis 1996, Ellison 2004, Kéry 
and Royle 2008, Beck et al. 2012).

The large spatiotemporal scales of many relevant processes 
also make generalized inference challenging. Mountains, 
encompassing a broad range of conditions on every continent, 
provide compact, naturally ‘replicated’ elevational gradients 
to assess the relative influence of hypothesized richness drivers 
(Rahbek 1995, McCain 2007b). Though logistical realities 
often limit elevational richness studies to one transect, those 
studies with replicated elevational transects confirm that simi-
lar conditions can generate quite disparate richness patterns 
(Grytnes 2003, Sanders et al. 2003). This suggests either the 
exclusion of relevant variables or a large degree of stochasticity 
and process error, and emphasizes the necessity of replication 
across multiple transects or across multiple years.

The vast majority of animals are insects, though a dis-
proportionate amount of work has focused on vertebrates 
(Hortal  et  al. 2010, Beck  et  al. 2012). Here, we focus on 
ants, a particularly useful insect clade. Diverse in nearly all 
terrestrial systems, they have large ecological impacts and are 
well-described. Like most taxa, ants are most diverse in the 
tropics (Moreau and Bell 2013). Across elevations, richness is 
variable; the best-sampled transects often show mid-elevation 
richness peaks, though decreases and low-elevation plateaus 

also occur (Szewczyk and McCain 2016, and references 
therein, Longino and Branstetter 2018).

Available energy has often been suggested to drive rich-
ness, both directly and indirectly (Pianka 1966, Fisher 1996, 
Kaspari et al. 2000, 2004, Hawkins et al. 2003, Currie et al. 
2004, Evans et al. 2005, Mittelbach et al. 2007, Sanders et al. 
2007, Longino and Colwell 2011). Warmer temperatures may 
increase metabolic rates, driving increases in both ecological 
and evolutionary processes (Allen et al. 2002). In ectothermic 
taxa such as ants, temperature could increase foraging times 
or hasten larval development, allowing more rapid colony 
growth (Hölldobler and Wilson 1990, Kaspari  et  al. 2000, 
2004) and perhaps accelerating specialization and diversifica-
tion over evolutionary time. Indirectly, warmer temperatures 
often lead to higher productivity, which may increase spe-
ciation rates, decrease extinction rates, or allow more indi-
viduals to coexist (Currie  et  al. 2004, Harrison and Grace 
2007). Productivity may be relevant broadly as the average 
productivity or locally as microsite variation (Harrison and 
Grace 2007, Hortal et al. 2010, Munyai and Foord 2012). 
Though monotonic increases in richness with temperature 
have been observed in ants (Sanders et al. 2007), as predicted 
by direct effects of temperature, ants in aggregate are incon-
sistent with such a relationship, often exhibiting highest rich-
ness at intermediate elevations (Olson 1994, Samson et  al. 
1997, Botes et al. 2006, Sabu et al. 2008, Munyai and Foord 
2012, Szewczyk and McCain 2016, Longino and Branstetter 
2018). A lack of global high-resolution data has prevented a 
comprehensive evaluation of thermal effects via productivity 
(McCain 2010), though ant elevational richness is broadly 
consistent with productivity predictions since richness is 
often highest in the warmest, wettest elevations (McCain 
2007a, Szewczyk and McCain 2016, but see: Kaspari et al. 
2000, 2004, Sanders  et  al. 2003, 2007). Thermal stability 
may also shape richness (Pianka 1966, Stein et al. 2014), as 
tolerance to high annual climatic variation allows species to 
occupy a broader set of conditions in space, resulting in larger 
range sizes (Janzen 1967, Stevens 1992).

Aside from climate, several other aspects of the physical 
environment likely affect richness. Larger areas with simi-
lar conditions allow larger ranges, which in turn decrease 
extinction rates and increase speciation rates (Rosenzweig 
1995). More immediately, larger areas are more likely to 
encompass more habitats and consequently more species 
(Terborgh 1973, Rosenzweig 1995). Habitat heterogeneity 
and complexity have many definitions (Stein  et  al. 2014), 
and so we distinguish ‘habitat heterogeneity’ as diversity of 
broad habitat types, and ‘habitat complexity’ as local vegeta-
tion structure. Habitat heterogeneity affects species diversity 
given any degree of specialization, but does not follow a con-
sistent elevational pattern. The relevant habitat complexity 
axes depend on the focal taxon (Rosenzweig 1995, Stein et al. 
2014), and for ants, proposed variables include litter depth 
(Bharti  et  al. 2013), undergrowth structure (Lassau and 
Hochuli 2004, Pacheco and Vasconcelos 2012), tree density 
(Queiroz and Ribas 2016), and canopy cover (Lassau and 
Hochuli 2004, Pacheco and Vasconcelos 2012, Queiroz and 
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Ribas 2016). While area is partly consistent as a driver of 
ant elevational richness (Sanders 2002, Bishop et  al. 2014, 
Szewczyk and McCain 2016), even the direction of any 
effect of habitat complexity on ant richness is unclear, with 
decreases attributed to less efficient movement or chemical 
signaling (Lassau and Hochuli 2004), and increases to more 
varied niche space (Andersen 1986, Pacheco and Vasconcelos 
2012). Species richness is determined by the overlap of spe-
cies’ geographic distributions, which are influenced by the 
taxon’s evolutionary history (Moreau and Bell 2013). The 
climate during a major diversification may have long-lasting 
effects, with the ancestral niche echoing through descendent 
species (Webb  et  al. 2002, Wiens and Donoghue 2004). 
Current ant richness patterns may reflect the warm climate 
of the Cretaceous Neotropics where many major clades arose 
(Brady  et  al. 2006, Moreau and Bell 2013). While ther-
mal tolerances certainly vary among species, the historical 
preference for warmth may be evident at deeper taxonomic 
levels (Wiens and Donoghue 2004). Further, accounting for 
the phylogenetic non-independence of species allows more 
robust inference of overall aggregate effects.

In this study, we evaluate hypothesized richness drivers 
along four elevational transects across two mountain ranges 
using replicated productivity, habitat heterogeneity, habi-
tat complexity, climate, and species richness data. While 
accounting for detection error and potential phyloge-
netic effects, we incorporate the intricacies of the sampling 
design and the possibility of multiple factors acting at dif-
ferent spatial scales. We use data from one mountain range 
to parameterize this community-level hierarchical Bayesian 
occupancy model, reserving the other mountain range as a 
novel, out-of-sample dataset to test its predictive ability.

Methods

Sampling

We sampled four elevational transects (Fig. 1) in Colorado, 
USA during the summers of 2010–2012 with eight sites 
separated by ~250 m elevationally on each transect, and 

Figure 1. Sampling design and model spatial structure. Four eleva-
tional gradients in Colorado were sampled, with two in the San 
Juans and two in the Front Range. Each gradient consisted of 7–8 
sites, i, separated by ~250 m in elevation. At each site, 20 pairs of 
pitfall traps, j, collected insects. Traps were set for 90 d during the 
summer with up to 6 collections, kij, per trap. Each ant species, s, 
was detected 0 – kij times at each trap, with yijs total detections at a 
trap. (a) The probability that species s occurs at site i, Ψis 
(darker = higher probability of occurrence), is driven by its response 

to the variables within that elevational band (site variables: land 
cover diversity, soil type diversity, area, NPP, mean annual tempera-
ture, daily temperature variation). (b) The presence, Zis = 1, or 
absence, Zis = 0, of species s at site i depends on Ψis. That is, in each 
iteration of the model, Zis = 1 with probability Ψis. (c) The probabil-
ity that species s occurs at trap j of site i, ψijs (darker = higher prob-
ability of occurrence), is driven by its response to the conditions at 
the trap (trap variables: canopy cover, number of trees, understory 
vegetation volume, percent bare ground), but also by the overall 
probability of occurring at the site, Ψis. (d) If present at site i, species 
s is present at trap j, zijs = 1, with probability ψijs. (e) If absent at site 
i, species s is absent at all traps within that site. (f ) If present at trap 
j, species s is detected with probability δs in each collection of the 
trap, with a total of yijs detections. (g) If not detected at a trap, yijs = 0, 
species s could either be present but undetected, or truly absent.

Figure 1. Continued



980

with two transects in the San Juan Range (SJ-1: 1796–3508 
m; SJ-2: 1493–3517 m) and two in the Front Range (FR-
1: 1728–3640 m; FR-2: 1811–3659 m). The mountains of 
Colorado comprise a large portion of the Southern Rocky 
Mountains. The San Juan Range is a massif found in the 
southwestern corner of the state, while the Front Range runs 
primarily north-south through north central Colorado. The 
San Juan Range extends from desert shrubland at ~1400 
m through pinyon-juniper, Gambel’s oak, Douglas fir, and 
Engelmann spruce forests to the alpine as high as 4365m. 
The Front Range extends from semi-arid grassland at ~1600 
m through Ponderosa pine, Douglas fir, Engelmann spruce 
forests, and the alpine to 4352 m (Gregg 1963). Each site 
was sampled for one summer (i.e. 90 d). At each site, twenty 
sampling plots, separated by 70 m, were distributed among 
meadow, forest, rocky, and riparian habitats in proportion 
to the habitat abundance as estimated by satellite images. At 
each plot, two pitfall traps were placed 3m east and west of a 
center point. Each trap consisted of two nested plastic cups 
(d: 9 cm, h: 12 cm) with propylene glycol as a killing agent 
and preservative. Due to non-independence, the samples 
from each pair of pitfall traps were pooled, leaving twenty 
independent samples at each site; hereafter, each pair of traps 
is referred to as a pitfall trap. Pitfall traps were collected up 
to six times throughout the 90-d sampling period, with a 
median of four collections. The traps from several FR sites, 
though set for the full period, were collected less regularly 
(Supplementary material Appendix 1 Table A1). Hence, we 
parameterized the model with the SJ transects, reserving the 
FR transects as novel datasets to test the model as an out-of-
sample validation. We excluded three sites from this analysis 
due to excessive disturbance by mammals, mostly bears and 
marmots, with one excluded site each on SJ-1, SJ-2, and FR-
2 (Supplementary material Appendix 1 Table A1). With four 
transects across two mountain ranges, 7–8 sites per transect, 
40 pitfall traps per site, and 90 sampling days per pitfall, this 
is the most exhaustive elevational ant richness study in the 
Rocky Mountains to date.

Pitfall samples were cleaned and sorted in the lab. Ants 
were separated, transferred to 70% ethanol, and identified 
to species or morphospecies using appropriate keys (Gregg 
1963, Mackay and Mackay 2002) and comparison to 
museum specimens. Specimens are stored in 70% ethanol in 
the Univ. of Colorado Museum entomology collections.

Understory vegetation ground coverage (< 1 m) was 
estimated within a 1 m radius of the center point of each 
sampling plot for grass, forb, shrub, cactus, and bare ground 
using Braun–Blauquet coverage classes (+: < 1%; 1: 1–5%; 2: 
5–25%; 3: 25–50%; 4: 50–75%; 5: > 75%). At 3 m north, 
south, east, and west of the center as well as center, we mea-
sured understory vegetation height (< 1 m) and recorded 
canopy coverage with a densiometer facing the plot center. 
Within a 5 m radius, the number of trees was counted and 
the diameter at breast height measured for trees > 3 cm. 
These surveys were performed at the start, middle, and end of 
the summer sampling season.

Despite thorough sampling and including detection and 
sampling error, we also calculated richness estimators using 
EstimateS 9.1.0 (Colwell 2013). We calculated ICE and 
Fisher’s α using the number of instances of a species at a trap 
instead of abundance, due to the social nature of ant for-
aging and hence pitfall captures (Bestelmeyer  et  al. 2000). 
In addition, we calculated species accumulation curves with 
the R package ‘vegan’, and rarefaction and extrapolation 
curves with the R package ‘iNEXT’ (Chao and Jost 2012, 
Colwell et al. 2012, Chao et al. 2014).

Hypothesized drivers

At the site-scale, we evaluated climate, productivity, habitat 
heterogeneity, and area as drivers. We used mean annual tem-
perature (PRISM 30-yr normals; resolution: 800 m2; 1981–
2010) and mean diurnal temperature range (WorldClim; 
resolution: ~1 km2; 1950–2000), calculating the mean of each 
variable in each 100 m elevational band. Temperature and 
precipitation were highly correlated, so we did not include 
precipitation due to its slightly higher correlations with other 
variables (e.g. precipitation-area: r = –0.91; precipitation-
diurnal temperature range: r = –0.81). To test site-scale 
productivity, we calculated mean net primary productivity 
(NPP) in each 100 m elevational band using MODIS esti-
mates (MOD17A3; resolution: ~1 km2; 2000–2013). We 
estimated habitat heterogeneity at the site-scale as land cover 
diversity (National Land Cover Database 2011; excluding 
perennial ice/snow, open water, developed high and medium 
intensity; resolution: 30 m) and as soil type diversity (USDA: 
STATSGO2; resolution: rasterized to 30 m). For each, we 
calculated Shannon’s diversity index within each 100 m 
elevational band. We calculated area from the USGS NED 
dataset (resolution: ~30 m2; accessed 2016) using the Real 
Surface Area SAGA 2.1.4 algorithm, summing the surface 
area within each 100 m elevational band.

At the trap-scale, we evaluated local productivity and 
habitat complexity as drivers. For productivity, we used 
vegetation measurements at each sampling plot, estimat-
ing the vegetation biomass as the mean across visits of the 
vegetation volume, and the proportion of bare ground as 
the mean across visits. We estimated habitat complexity as  
the maximum canopy coverage recorded during the summer 
and as the number of trees in each sampling plot.

For GIS-based datasets (e.g. climate, area), transect bound-
aries were determined by creating a 30 km buffer around a 
line connecting the sites of each transect, then clipping using 
the 8-digit hydrologic unit watershed boundaries (USDA/
NRCS). Transect boundaries are thus defined by major ridge-
lines within a 30 km radius of the transect lines (McCain 
2007b, Szewczyk and McCain 2016). All GIS analyses were 
performed in QGIS 2.14.0 and R 3.2.0 with the ‘vegan’ and 
‘raster’ packages.

A full species-level phylogeny is not available for 
Colorado ants. Instead, we evaluated the influence of genus-
level relationships (Smith 2015) using a genus phylogeny 
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(Kumar  et  al. 2017) pruned to inlcude only genera occur-
ring within Colorado with the ‘ape’ package in R 3.5.1 
(Supplementary material Appendix 1 Fig. A1).

Model structure

We developed a community-level hierarchical Bayesian occu-
pancy model to evaluate the influence of hypothesized rich-
ness drivers simultaneously while accounting for possible 
phylogenetic covariance, differences in the spatial scale of 
the driver’s effects, and imperfect detection (MacKenzie et al. 
2002, Nichols  et  al. 2008). The full model includes a data 
submodel describing the observation process, a trap-scale 
ecological submodel describing local processes, a site-
scale ecological submodel describing regional processes, 
and a parameter submodel describing how species-specific 
responses are distributed among ant species. The observed 
richness pattern can be considered one realization from mul-
tiple underlying probabilistic ecological and observational 
processes (Fig. 1; Supplementary material Appendix 2).

Occupancy & detection
The probability that species s occurs at trap j of site i depends 
on the conditions at the site-scale, e.g. temperature (Fig. 1a), 
and at the trap-scale, e.g. canopy cover (Fig. 1c; Nichols et al. 
2008, Kroll  et  al. 2015). However, a species may not be 
detected at a trap or site even though it is present (Fig. 1g). In 
the data submodel, we use the number of detections of each 
species at each trap, yijs, to estimate a species-specific detection 
probability, δs, as well as the true, latent occupancy state at each 
site Zis (Fig. 1b) and trap zijs (Fig. 1d–e), where 1 represents 
presence and 0 absence. Thus, species s has some probabil-
ity of occurring at site i, Ψis = Pr(Zis = 1), some probability of  
occurring at trap j if present at site i, ψijs = Pr(zijs = 1 | Zis = 1), 
and some probability of being detected if present at trap j, 
δs = Pr(yijs > 0 | zijs = 1). The number of detections of species s 
at trap j (Fig. 1f–g) is yijs ~ Binomial(δs zijs, kij), where kij is the 
number of collections at trap j.

Site-scale drivers
In the site-scale process submodel, the probability that spe-
cies s occurs at site i is driven by its response to the site-scale 
conditions (Fig. 1a):

log logit Yis i i i

s s i

HabDiv SoilDiv Area

b Temp b
( ) ( )

−

= + +

+ +

β β β

ω
1 2 3

1 22 3 1s i s i sNPP b DTR a+ +
  

where βx is a community-level response, bxs is a species-
specific response, and a1s is the species-specific intercept. 
Note that we do not assume monotonic responses to tem-
perature. Rather, we estimate each species’ thermal optimum 
(ωs) and a parameter describing thermal breadth (b1s), a more 
biologically realistic approach similar to mid-point attractor 
models (Colwell et al. 2016). Area and habitat heterogene-
ity theoretically affect richness more directly rather than each 
species individually (Pianka 1966, Rosenzweig 1995), and 

we estimate only aggregate responses for these three variables 
rather than species-specific responses. The site presence for a 
species (Fig. 1b) is then Zis ~ Bernoulli(Ψis).

Trap-scale drivers
In the trap-scale process submodel, the probability that spe-
cies s occurs at trap j of site i is driven by its response to the 
trap-scale conditions and the probability of presence at site i 
(Fig. 1c):

logit logity r Yijs is s ij s ij

s
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where r scales the effect of the site-scale probability and 
a2s is the species-specific intercept. Thus, the probability of 
site occurrence impacts the probability of trap occurrence if 
r > 0. Trap presence (Fig. 1d–e) is zijs ~ Bernoulli(ψijs Zis)  
with trap presence contingent upon site presence. For each 
species, therefore, the model estimates slopes bxs, a thermal 
optimum ωs, occupancy probabilities ψijs and Ψis, occupancy 
states zijs and Zis, and a detection probability δs.

Phylogenetic effects
In the parameter submodel, we allow two levels of phyloge-
netic correlation among species. The species-level responses, 
bxs, ωs, and axs, are distributed about latent genus-level 
means, Bxg, such that bxs ~ Normal(Bxg, ex) with one standard 
deviation term for each variable, ex, describing variation in 
congener responses. This method incorporates supported 
genus-level relationships in the absence of a comprehensive 
species-level phylogeny (Hadfield and Nakagawa 2010). The 
genus-level means are distributed about aggregate means that 
represent the overall response, such that Bxg ~ mvNormal(βx, 
λxSphylo + I(1 – λx)). Here, βx is the aggregate response, I is an 
identity matrix, Sphylo is the covariance matrix calculated from 
the phylogeny, and λx is Pagel’s λ, where λ = 1 indicates per-
fect phylogenetic covariance and λ = 0 indicates none (Pagel 
1999). Thus, for each variable, we estimate the overall aggre-
gate response βx, genus-specific responses Bxg, species-specific 
responses bxs, variation among congeners ex, and phylogenetic 
covariance among genera λx.

Uninformative priors were used for slopes; weakly infor-
mative priors restricted some parameters to allowable values 
(e.g. λx limited to 0–1; Supplementary material Appendix 1  
Table A2). All models were fit in R 3.5.1 using JAGS 4.0.1 
and the ‘R2Jags’ package. Highest probability density 
intervals (HPDIs) were calculated using the ‘coda’ package. 
Each model was run with 8 chains of 100  000 iterations 
each, with the first half discarded as burn-in and every 200th 
iteration retained for the posterior distribution to avoid auto-
correlation. The model code is available in Supplementary 
material Appendix 2.

Model comparison
After fitting the model using the two San Juan transects, we 
tested the ability of the model to predict richness along the 
two Front Range transects, representing true out-of-sample 
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evaluation. To generate candidate variable sets, we used a 
backwards stepwise method, given the prohibitive number 
of possible models and computing time. Beginning with the 
full model (mfull), we successively removed the variable whose 
β posterior distribution most overlapped zero, fitting the 
smaller model and repeating until the 95% HPDIs excluded 
0 for all β. This generated our set of candidate models for 
comparison.

To compare candidate models, we tested each model’s pre-
dictive accuracy with the novel FR-1 and FR-2 transects in 
two ways (Hooten and Hobbs 2015). First, we restricted pre-
dictions to species occurring in both mountain ranges, using 
species-level estimates (i.e. bxs) with Front Range covariates 
to predict the Front Range elevational richness of the mutual 
community (FRshared). Using full posterior distributions, we cal-
culated Pr(yijs | δs, zijs) for each iteration. The best model based 
on these out-of-sample predictions (mopt) was chosen using the 
log pointwise posterior density (Hooten and Hobbs 2015). 
Second, we repeated this using all Front Range species (FRall) 
including species not used to fit the model. This represents 
a community with a novel set of species in a novel moun-
tain range. From aggregate parameter estimates (i.e. βx), we 
drew genus- and species-level parameters from the associated 
distributions. To account for the additional stochasticity in the 
phylogenetic hierarchy, we drew ten sets of parameters for each 
iteration, resulting in 10 000 predicted richness curves.

Finally, we compared the predictive ability of our model 
with that of a multiple linear regression using site-scale inter-
polated richness and site-scale variables. We fit all possible 
models with San Juan data, using AICc to select the best 
model (mlm). We then predicted site-scale interpolated rich-
ness using the parameterized model and Front Range covari-
ates. Thus, all model comparisons were performed using 
transects FR-1 and FR-2 as novel, out-of-sample data.

Data deposition

Data available from the Dryad Digital Repository: < https://doi.
org/10.5061/dryad.rt679ng> (Szewczyk and McCain 2018).

Results

We detected 105 species (SJ: 92; FR: 76), with 8130 spe-
cies-instances and 135 039 workers in 1600 collections after 
eliminating disturbances. Richness peaked at intermediate 
elevations on all transects (Fig. 2), though the elevation var-
ied somewhat (SJ-1: 2200 m, SJ-2: 2300 m, FR-1: 1900 m, 
FR-2: 2200 m). Observed richness, ICE, and Fisher’s α were 
highly correlated (r > 0.97; Fig. 2) and species accumula-
tion and extrapolation curves generally appeared to approach 
asymptotes (Supplementary material Appendix 1 Fig. A2), 
confirming adequate sampling effort for richness pattern 
detection. The optimal model determined by out-of-sample 
predictive ability, mopt, included just mean annual tempera-
ture and trap-scale canopy cover (Fig. 3, Supplementary 
material Appendix 1 Table A3).

Site-scale drivers

At the site-scale, temperature was supported as a combi-
nation of species-specific thermal optimum and breadth 
(Fig. 3; Supplementary material Appendix 1 Table A3). The 
overall aggregate optimum occurred at mean annual tem-
peratures around 9.4°C, corresponding to ~1950 m in the 
San Juans and ~1850 m in the Front Range, with a strong 
decline in occurrence probability away from the optimum, 
indicated by the strongly negative thermal breadth. Nearly 
all genus-level thermal optima were in the lower half of 
each gradient, as were those of most species, though sev-
eral showed a clear preference for colder temperatures 
(Supplementary material Appendix 1 Fig. A3). No other 
site-scale variables were included in mopt, though mfull esti-
mated a positive effect of NPP, a negative effect of soil type 
diversity, and a marginal positive effect of daily tempera-
ture range. The responses for area and land cover diversity 
were not distinguishable from zero (Fig 3; Supplementary 
material Appendix 1 Table A3).

Trap-scale drivers

At the trap-scale, only canopy cover was supported, with 
a tendency for decreased richness where canopy cover was 
higher. Tree density, understory vegetation biomass, and bare 
ground coverage had no overall effect on richness (Fig. 3; 
Supplementary material Appendix 1 Table A3).

Figure 2. All estimators for site-scale richness were highly correlated 
with each other and with observed and modeled ant richness. On all 
transects, richness peaks at intermediate elevations. Shown are the 
site-scale estimates on each transect for observed richness (circles), 
interpolated richness (orange line), ICE (green line), and Fisher’s α 
(purple line). The boxplots show estimated richness based on the 
posterior distribution for occupancy states in mfull (i.e. Zis; thick bar: 
median; box: 50% highest posterior density interval (HPDI); 
capped line ranges: 95% HPDI). San Juan boxes (SJ: top row) show 
values estimated from the model; Front Range boxes (FR: bottom 
row) show values predicted by the fitted model.
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Phylogenetic effects

The genus-level phylogeny had minimal detectable 
impact, indicated by the highly uncertain estimates of λ 
(Supplementary material Appendix 1 Table A4 and Fig. A4a). 
However, congeners largely responded similarly; the median 
estimate for intrageneric standard deviation, ex, was less than 
one for all variables (Supplementary material Appendix 1 
Fig. A4b). Congeners varied more in their thermal breadth 
than in response to any other variable, though uncertainty 
was also higher.

Detectability

The distribution of species’ detection probabilities peaked 
at ~40% (Supplementary material Appendix 1 Fig. A5), 
corresponding to a species detected in 2 of 5 pitfall collec-
tions when present, assuming 2–3  week trapping bouts. 
Further, the distribution is skewed right, indicating a greater 

number of low-detectability species and relatively few high-
detectability species. The shape of this distribution held 
constant across candidate models (Supplementary material 
Appendix 1 Fig. A6).

Model comparison

The hierarchical models, mopt and mfull, predicted richness 
along the two novel transects dramatically better than did 
the multiple regression, mlm (Fig. 4, Fig. 5). In predicting the 
observed FR richness for species common to SJ and FR tran-
sects, FRshared, in the novel FR environmental conditions, mopt 
decreased root mean squared error (RMSE) by 63% com-
pared to mlm, and mfull decreased RMSE by 28%. Likewise, 
in predicting both shared and novel species, FRall, along the 
novel FR transects, mopt and mfull decreased RMSE by 65 and 
31%, respectively, compared to mlm.

Discussion

The hierarchical model dramatically outperformed the 
multiple regression in predicting richness along two novel 
transects, and explicitly incorporates species-specific varia-
tion to construct community-level patterns. Ant richness 
in both mountain ranges peaked at middle elevations, and 
the patterns were best described by the distribution of spe-
cies’ thermal preferences with canopy cover moderating the 
local trap-scale richness. Congeners tended to respond to 
variables similarly, with little effect of deeper relationships. 
Species generally had low detectability even with long trap-
ping bouts.

We did not assume the monotonic increase in richness 
with temperature typical of many richness studies (Pianka 
1966, Kaspari  et  al. 2000, Allen et al. 2002, Sanders et al. 
2007). Rather, we estimated species-level responses to tem-
perature, a key benefit to the more complex model structure. 
In accordance with the well-established existence of thermal 
envelopes (Kaspari et al. 2015), we estimated a thermal opti-
mum and breadth for each species. Under the phylogenetic 
niche conservatism hypothesis, the thermal breadth of each 
species would be most similar to that of its nearest relatives 
(Webb et al. 2002, Wiens and Donoghue 2004). In fact, genus 
explained a fair amount of the variation in ωs and bTempBreadth,s 
(Supplementary material Appendix 1 Fig. A3; σ2

among/σ2
total: 

ω = 0.17; TempBreadth = 0.16). Analyses of ants along eleva-
tional gradients in Costa Rica, the United States, Austria, and 
the Himalayas have documented high elevation phylogenetic 
clustering (Machac et al. 2011, Smith et al. 2014, Liu et al. 
2018), consistent with the similarity in thermal preferences 
we detected among congeners. As richness patterns are direct 
products of species’ elevational ranges, the distribution of 
thermal preferences has a large impact; our results suggest a 
strong effect of the evolutionary temperature preferences of a 
taxon – here at temperatures in the lower third of the gradient 
– diffused through some combination of selection and drift 
as species have diverged, on current richness patterns.

Figure 3. Parameter posterior distribution summaries for mfull and 
mopt. Boxes show aggregate (i.e. β) posterior distributions (thick bar: 
median; box: 50% highest posterior density interval (HPDI); 
capped line ranges: 95% HPDI) for the full model (mfull: green) and 
the optimal model based on predictions for the novel Front Range 
transects (mopt: blue). All covariates were centered and scaled to a 
standard normal distribution.
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Ant richness tended to decline with increased habitat 
complexity, as measured by canopy cover, possibly due to 
less effective chemical trails, less efficient travel, or less avail-
able heat, a deterrent to opportunistic or generalist ants 
(Hölldobler and Wilson 1990, Lassau and Hochuli 2004, 
Queiroz and Ribas 2016). However, the opposite has also 
been documented, attributed to abundant nesting and forag-
ing sites (Andersen 1986, Pacheco and Vasconcelos 2012). 
Colorado, like most temperate ecosystems, lacks the diverse 
arboreal ant fauna common in the tropics, and so the nega-
tive effect of canopy cover on richness is perhaps unsurpris-
ing. Moreover, the largely coniferous forests do not produce 
the thick leaf litter that supports so many tropical ants (Fisher 
1996, Longino and Colwell 2011), likely further limiting the 
utility of heavily forested habitats.

Figure 5. Boxplots of residual error in out-of-sample model predic-
tions. Boxes show the distribution of residual error in the predicted 
richness and observed richness for each site on the novel transects. 
The multiple regression (mlm: gray) tended to overestimate richness 
on both Front Range transects, both when fit with the shared spe-
cies set among the Front Range and San Juans and when fit with all 
species. Additionally, the error was more variable among sites, 
indicated by the broader distributions. In contrast, both Bayesian 
models (mfull: green, mopt: blue) predicted richness that was nearer to 
the observed values, with lower variation in error among sites.

Figure 4. Predicted elevational richness patterns generated from the 
fit models. Interpolated richness (thick line) on each transect (rows) 
is shown with predictions by each model (columns): mfull, mopt, and 
mlm (thin line: median; dark band: 50% highest posterior density 
interval (HPDI); light band: 95% HPDI; mlm band: 95% CI). All 
models estimated the San Juan transects well (SJ-1 and SJ-2). The 
Bayesian models (columns 1–2) estimated higher richness than was 
observed, accounting for undetected species. Using only species 
detected in both the San Juans and the Front Range and species-
level (i.e. b) estimates, the Bayesian models (columns 1–2) pre-
dicted the observed richness pattern better than the multiple 
regression (column 3), though none fully captured the low richness 
observed along FR-2. Using all species in the Front Range with 
phylogenetically structured species-level responses drawn from the 
aggregate or genus (i.e. β or B) estimates, the median predicted 
richness showed a similar pattern, though with much higher 
uncertainty.
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We found marginal support for an increase in ant rich-
ness with site-scale NPP, but no systematic variation of 
trap-scale richness with productivity. Productivity, or some 
climatic proxy, has been supported in other ant commu-
nities (Kaspari  et  al. 2000, Longino and Colwell 2011, 
Szewczyk and McCain 2016) as well as plants and vertebrates 
(Mittelbach et al. 2001, Hawkins et al. 2003, McCain 2007a, 
2009). However, the relationship between productivity and 
species richness has been contentious (Mittelbach et al. 2001, 
Evans et al. 2005), with multiple proposed mechanisms and 
multiple empirical relationships. In ants, species density has 
been shown to increase with productivity (Kaspari  et  al. 
2000), though most evidence involves large latitudinal spans 
(Kaspari  et  al. 2000, 2004), similar to the more regional, 
site-scale effects we detected. Additionally, pitfall traps are 
sensitive to ant activity levels (Bestelmeyer  et  al. 2000). If 
species density increases with local productivity, but activity 
decreases because resources are more accessible, pitfall traps 
may fail to detect any relationship. Manipulative experiments 
could disentangle these possibilities. Finally, we assumed con-
sistent effects of trap-scale variables across the gradient, pre-
cluding the detection of local productivity effects that vary 
with elevation.

Many variables showed no relationship or were excluded 
from mopt. Area had no detectible impact, in contrast to past 
analyses (Sanders 2002, Szewczyk and McCain 2016). The 
concurrent, opposing impacts of land cover and soil diversity 
in mfull lend support to the hypothesis that area summarizes 
such variables (Rosenzweig 1995), though as neither was in 
mopt, any influence is minor. Likewise, tree density, under-
story vegetation biomass, and bare ground cover did not drive 
richness. While individual ant species or genera may respond 
to these local variables (Supplementary material Appendix 1 
Fig. A3), their preferences negate one another, resulting in no 
aggregate impact.

In our explicitly top-down model, the aggregated effect of 
site-scale variables, scaled by r, determined the baseline for 
trap-scale occurrence. Estimates for r tended to be greater 
than 1 (Supplementary material Appendix 1 Table A3 and 
Fig. A6), suggesting strong site-scale effects on trap occupancy; 
a value of 0 would eliminate the term, indicating no impact. 
Additionally, site-scale occupancy probability described 75% 
of the variation in trap-scale occupancy probability in mopt and 
82% in mfull. Thus, the broader environment appears to drive 
local ant richness rather than local variation. Similarly, strong 
regional effects have been shown on local ant communities at 
a continental extent (Lessard et al. 2012). The dominance of 
site-scale effects is consistent with theoretical predictions as 
well, as the hyper-local positioning of ant colonies detected 
by pitfall traps is expected to be driven primarily by broader 
conditions (Hortal et al. 2010).

For the FR transects, the predicted richness intervals are 
much narrower when the b estimates are used directly, though 
this is only possible for species common to both mountain 
ranges (i.e. FRshared). Nevertheless, a novel community can be 
predicted, given a regional species pool (i.e. FRall). However, 

this requires generating species-level responses based on 
the fit genus-level responses, or based on the fit aggregate 
responses if the entire genus is novel. Further, a detectabil-
ity probability must be drawn for each species. Thus, this 
additional stochasticity correspondingly increased the uncer-
tainty (Fig. 4), though the median predictions of mopt and 
mfull were quite close to the observed patterns for FRall (Fig. 4, 
Fig. 5). The phylogenetic structure’s flexibility in predict-
ing richness in novel communities carries the cost of added 
noise. Nevertheless, the hierarchical model outperforms the 
clearly overfitted mlm in predictive ability for similar but novel 
communities.

The data required to fit a complex model such as this neces-
sitated several simplifying assumptions, highlighting areas for 
improvement in future efforts. First, we assumed that detec-
tion probability was constant for each species, though it could 
be allowed to vary across space or through time according 
to local conditions (Nichols et al. 2008, Kroll et al. 2015). 
Second, our sampling occurred across three years, with dif-
ferent sites and transects sampled each year (Supplementary 
material Appendix 1 Table A1). Incorporating an effect of 
sampling year may capture correlated interannual variation 
among species (Morris and Doak 2003, Bishop et al. 2014). 
Lastly, we relied on a genus-level phylogeny, assuming that the 
currently recognized taxonomy of each species was valid and 
that the relationships among genera were accurately reflected. 
However, our understanding of evolutionary relationships 
is continually improving (Brady  et  al. 2006, Moreau  et  al. 
2006, Ward 2007, Ward et al. 2015, 2016), and inferences 
based on the phylogenetic component of our model should 
be considered provisional.

This model explicitly accounts for often unevaluated 
sources of uncertainty (Fisher 1996, Longino and Colwell 
2011, Bharti et al. 2013). First, observations are samples from 
the true occupancy states, filtered through imperfect detec-
tion and sampling error (Fig. 1f–g). Second, the true occu-
pancy state (i.e. zijs and Zis) at each site or trap is probabilistic, 
representing one stochastic realization given the underlying 
occupancy probability (i.e. ψijs and Ψis; Fig. 1b, d–e). The true 
richness pattern therefore varies stochastically even under 
identical occupancy probabilities. This is evidenced by differ-
ences over time (Bishop et al. 2014) or between adjacent tran-
sects where environmental conditions are similar (Grytnes 
2003, Sanders  et  al. 2003). Third, occupancy probabilities 
depend on the environmental conditions and the species’ or 
community’s responses (Fig. 1a, c). The ultimate goal is to 
understand how and why these occupancy probabilities are 
shaped by environmental conditions and evolutionary his-
tory. These sources of uncertainty each undoubtedly contrib-
ute to the variation observed in elevational richness patterns 
(Grytnes 2003, Sanders et  al. 2003, McCain 2007a, 2009, 
2010, Szewczyk and McCain 2016) and hinder progress in 
understanding the factors that shape richness at this scale 
(Beck  et  al. 2012). Statistical methods (Colwell 2013) and 
repeated sampling (MacKenzie et al. 2002) can address the 
sampling and detection error of the first source of uncertainty 
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described above. However, only additional replication at the 
site- or transect-level can overcome the inherent stochastic-
ity in the true occupancy states. This stochasticity is process 
error where true presences or absences depend on underly-
ing occupancy probabilities, described above as the second 
source of uncertainty (Fig. 1b, d–g). The current true state, 
Zis, is a single stochastic realization of a probabilistic process, 
and as such, replicated samples are required to improve the 
estimation of the underlying probabilities. For transect-level 
inference, transect-level replication across space or years will 
best capture this process error. Unfortunately, the substan-
tial time and effort required make transect-level replication 
relatively uncommon (but see, Grytnes 2003, Sanders et al. 
2003, Munyai and Foord 2012, Bishop et al. 2014).

Our hierarchical model allowed for an integrated evalu-
ation of hypothesized richness drivers at two spatial scales 
while accounting for imperfect detection and phylogenetic 
effects. Further, species richness is conceptualized as an 
emergent property of the distribution of individual species, 
and is accordingly determined largely by the preferences 
and responses of each species. We found that the eleva-
tional richness of Colorado ants is driven by species-specific 
temperature preferences, local canopy cover, and site-scale 
NPP. The broader site-scale effects dominated, indicating 
a strong top-down influence on local trap-scale richness. 
Relationships among genera as incorporated here gave little 
information about responses to environmental variables, 
though congeners largely responded similarly. In addition 
to providing a much more detailed portrait of the commu-
nity’s responses to richness drivers, detectability estimates, 
and phylogenetic clustering, the more mechanistic, hierar-
chical model outperformed a simple multiple regression at 
predicting richness patterns in a novel mountain range, given 
a regional species pool. More complex statistical structures 
and transect-level replication, as implemented here, will 
allow for deep, robust insights into the processes that shape 
biodiversity.
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