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Abstract.  Species richness and productivity are correlated at global and regional scales,
but the mechanisms linking them are inconclusive. The most commonly invoked mechanism,
the more-individuals hypothesis (MIH), hypothesizes that increased productivity leads to
increased food resource availability, which leads to an increased number of individuals sup-
porting more species. Empirical evidence for the MIH remains mixed despite a substantial lit-
erature. Here we used simulations to determine whether interannual population variability
could be masking a “true” MIH relationship. In each simulation, fixed linear relationships
between productivity, richness, and 50-yr average abundance mimicked the MIH mechanism.
Abundance was allowed to vary annually and sampled for 1-40 yr. Linear regressions of rich-
ness on sampled abundance assessed the probability of detecting the fixed MIH relationship.
Medium to high population variability with short-term sampling (1-3 yr) led to poor detection
of the fixed MIH relationship. Notably, this level of sampling and population variability
describes nearly all MIH studies to date. Long-term sampling (5+ yr) led to improved detec-
tion of the fixed relationship; thus it is necessary to detect support for the MIH reliably. Such
sampling duration is nonexistent in the MIH literature. Robust future studies of the MIH
necessitate consideration of interannual population variability.

Key words:  climate richness; detection probability; long-term studies; productivity diversity; species
energy; stochasticity.

diversification rates (e.g., Brown et al. 2004, Mittelbach
et al. 2007), habitat heterogeneity (e.g., MacArthur and
MacArthur 1961, Stein et al. 2014, 2015), the more-indi-
viduals hypothesis (e.g., Srivastava and Lawton 1998,

INTRODUCTION

Primary productivity (hereafter “productivity”) and
diversity (here defined as species richness) are closely

related at global and regional scales. The most produc-
tive latitudes and elevations have the most species, and
vice versa. Termed the productivity—diversity relation-
ship, this correlation has been documented across plants
(Currie et al. 2004, Simovd et al. 2011), invertebrates
(Kaspari et al. 2000a, Beck et al. 2011, Classen et al.
2015), and vertebrates (Hawkins et al. 2003a, Hurlbert
2004, Evans et al. 2005, Jetz and Fine 2012, Ferger et al.
2014, Guan et al. 2016, Seoane et al. 2017, McCain et al.
2018), in many localities across the globe. Proposed
mechanisms include physiological adaptations (e.g.,
Turner et al. 1987, Currie 1991, Hawkins et al. 20035),
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McCain et al. 2018, Storch et al. 2018) among others.
But despite numerous empirical studies, the support
for various proposed mechanisms are mixed and
inconclusive.

The most commonly invoked mechanism is the more-
individuals hypothesis (MIH; Srivastava and Lawton
1998, McCain et al. 2018, Storch et al. 2018). The MIH
proposes that productivity determines the quantity of
food resources, which then regulates the number of indi-
viduals that can survive at a site. The number of species
at a site is then determined by the number of individuals,
as a species with low abundance is more likely to go
locally extinct. In this way, more productive sites pro-
duce more food resources, which can support larger
numbers of individuals and in turn can be divided into
more species with stable populations (Wright 1983,
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Wright et al. 1993, Srivastava and Lawton 1998;
Fig. 1a). Although the MIH mechanism can be criti-
cized for lacking the potential for bidirectional causation
(e.g., diversity influencing abundance) and the absence
of interspecific effects (among others), it remains the
most commonly tested mechanism of the productivity—
diversity relationship.

Empirical evidence for the MIH remains equivocal
even after numerous tests in plant (e.g., Currie et al.
2004, Pautasso and Chiarucci 2008, Sfmovi et al. 2011),
invertebrate (e.g., Kaspari et al. 2000a, Currie et al.
2004, Yee et al. 2007), and vertebrate systems (e.g., Gas-
ton and Evans 2004, Buckley and Jetz 2010, McCain
et al. 2018). Studies include meta-analyses (e.g., Currie
et al. 2004, Pautasso et al. 2011), manipulative experi-
ments (e.g., Srivastava and Lawton 1998, McClain et al.
2016), field surveys (e.g., Kaspari et al. 20005, Seoane
et al. 2017), as well as a few mechanistic tests of multiple
components of the MIH (Ferger et al. 2014, Classen
et al. 2015, McCain et al. 2018). When taken as a whole,
MIH results are a mixed bag of significant and non-
significant relationships (e.g., Ferger et al. 2014, Classen
et al. 2015, McCain et al. 2018, Storch et al. 2018, and
references therein).

Improper formulation of the quantitative predictions
of the MIH, ignoring potential feedback between levels
of the MIH mechanism (e.g., diversity influencing com-
munity abundance), may explain the inconclusive nature
of the literature (Storch et al. 2018). On the other hand,
mixed results may also be explained by sampling issues.
MIH studies are biased toward bird and insect systems,
both of relatively small average body size (McCain et al.
2018, Storch et al. 2018). These systems typically exhibit
relatively high interannual population variability (Rick-
lefs 1990, Begon et al. 1996, Morris and Doak 2002)
therefore producing single-year abundance measurements
not indicative of the long-term trend. Variation intro-
duced by single-year abundance measurements could
mask the relationship between long-term abundance and
diversity, providing evidence against the MIH. Notably,
all three studies testing multiple components of the MTH
used organisms prone to high levels of population vari-
ability while sampling for only 1 or 2 yr (birds: Ferger
et al. 2014, bees: Classen et al. 2015, small mammals:
McCain et al. 2018). Multiyear sampling could compen-
sate for population variability, but this is rarely done in
MIH studies. There are a few long-term meta-analyses of
the MIH (e.g., Carnicer and Diaz-Delgado 2008, Dobson
et al. 2015). However, we are not aware of any long-term
(>3 yr) MIH-specific field studies.

Thus, in empirical tests of the MIH, it is possible that
natural population variability could be masking the
“true” process—a positive abundance—diversity relation-
ship—that exists on a longer time scale. Herein, using a
simulation framework, we investigate whether natural
population variability could be masking the MIH in
empirical studies. These results will determine our confi-
dence in the ability of previous studies to detect the
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MIH, and will provide insight to the sampling effort
required to detect the MIH effectively, if it exists as a
mechanism in nature.

METHODS

To simulate the mechanism of the more-individuals
hypothesis (MIH), linear relationships were fixed among the
components of the mechanism (excluding food resources
for simplicity). First, a one-to-one linear relationship was
fixed between productivity (range: 500-6,450) and diversity
(range: 3-20; herein diversity represents species richness)
across simulated sites to mimic a productivity—diversity rela-
tionship (Fig. 1b). This range of diversity was chosen based
on the three empirical studies examining multiple compo-
nents of the MIH (mean = 21; Ferger et al. 2014, Classen
et al. 2015, McCain et al. 2018). To examine this question in
highly diverse systems, we also ran simulations with greater
diversity (i.e, 100, 500 maximum species richness;
Appendix S1). Additionally, a one-to-one linear relationship
was fixed between productivity and long-term average com-
munity abundance (Fig. 1b). This produces a fixed linear
relationship between long-term average community abun-
dance and diversity, as the MIH predicts (Fig. 1b).

At each site, the long-term average community abun-
dance was divided among the number of species present
according to a log-normal distribution to mimic the abun-
dance structure of a natural community (few abundant and
many rare species; Preston 1948, Ulrich et al. 2010). This
produces a long-term average abundance for each species.
The log-normal species abundance distributions were simu-
lated using the sim_sad function in the R package mobsim
(May et al. 2018; Appendix S1). We simulated log-normal
distributions across three levels of community evenness, as
more even communities may show reduced effects of popu-
lation variability (Appendix S1). Here, we present moderate
community evenness as it is the most biologically relevant
(details in Appendix S1).

Then, for each species, abundance was allowed to vary
over 50 yr, while maintaining the long-term average
abundance (Fig. Ic). Abundance varied according to a
stochastic Ricker model (Ricker 1954, Morris and Doak
2002, Melbourne and Hastings 2008):

Nipp = Nee"

where each year’s abundance (N, ) is equal to the abun-
dance of the previous year (V,) multiplied by the growth
rate (¢'"). Growth rates for each year were chosen at ran-
dom from a Normal distribution:

Ty~ Norm(u:?- <1—%>702:PV).

with mean equal to the average log intrinsic growth rate
(7), with a modifying term (1 — N,/K) to include density
dependence, and variance equal to the population vari-
ability (PV).
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Fic. 1. (a) Diagram of the more-individuals hypothesis mechanism. Arrows indicate hypothesized positive correlations. (b) A
fixed linear relationship (solid black arrows) between primary productivity and species diversity, and primary productivity and
long-term average community abundance. *Indicates implicitly fixed linear relationship between long-term average community
abundance and species diversity. (c) Example of abundance over time for individual species (gray lines) and the summed community
abundance (black line). (d) Shaded areas show examples of the sampled years for average community abundance (1, 5, 20 yr). (e)
Tested relationship between sampled community abundance and species diversity in simulations.

To maintain stable average abundance over time, the
initial population and the carrying capacity (No and K,
respectively) were set equal to the species’ 50-yr average
abundance determined by the log-normal distribution,

and the average log intrinsic growth rate was set equal to
one for all simulations (¥ = 1). Population variability
values ranged from 0.01 to 2.0 across simulations, based
on known values from the literature (McCain et al.
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2016, and references therein). Species extinctions were
prevented by setting a minimum population size of two
individuals.

Species abundances from all species in each year were
summed, producing 50 yr of community abundance for
each site (Fig. 1c). The community abundance was then
sampled for 1-, 2-, 3-, 4-, 5-, 10-, 20-, and 40-yr dura-
tions, starting at year 10 (Fig. 1d). We assumed perfect
detection of all individuals in the community for each
year in the sampling duration. Mean sampled commu-
nity abundance was used in simulations with more than
1 yr sampled, so that each site had a single value of sam-
pled community abundance regardless of the number of
years sampled.

For each sampling duration across all sites, linear
regressions of diversity on sampled community abun-
dance were constructed. Prior to regression, feature scal-
ing (normalization to range of 0-1) was used so that a
“perfect” regression in the absence of population vari-
ability would yield a coefficient of one. Additionally, this
means that the original fixed relationship between com-
munity abundance and diversity would have a slope of
one. We then evaluated the linear models (here called
detected relationships) according to three model attri-
butes: detected slope (coefficient of the sampled commu-
nity abundance regression term), significance of the
slope (P < 0.05), and variation explained (R?). We evalu-
ated these model attributes across population variability,
sampling duration (number of years sampled), and num-
ber of simulated sites (n = 18, 36, 54), across 1,000 simu-
lations for each combination of parameters.

In addition to the above procedure, two separate alter-
ations were made for two additional sets of simulations.
(1) We sampled abundances in nonconsecutive years to
compare with consecutive sampling (e.g., sampling first
and third years vs. first and second years) for sampling
durations of less than 5 yr. A simulation study evaluat-
ing range shift detections in the face of population vari-
ability found that in some cases nonconsecutive
sampling improved detection efficiency (McCain et al.
2016). We included nonconsecutive sampling to assess
this possibility in these simulations. (2) We designed sim-
ulations with a random fixed relationship between pro-
ductivity and 50-yr average community abundance. This
allows us to assess how likely we are to detect a spurious
relationship that resembles the MIH solely due to popu-
lation variability. In each of these two instances, all other
aspects were kept consistent with the above methodol-
ogy; more details can be found in Appendix S1.

All simulations were coded and run in R, version 3.5.2
(R Development Core Team 2018). Code is available in
Data S1, and on GitHub (http://doi.org/10.5281/zenodo.
3686307).

REsuLTs

Higher interannual PV resulted in decreased detection
of the more-individuals hypothesis (MIH) across all
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three metrics. As PV increased, mean detected slope
decreased and the range of detected slopes widened
(Fig. 2a). For example, for single-year sampling across
18 simulated sites, a PV of 0.1 yields a mean detected
slope of 0.99, and a range of [0.77, 1.2], and a PV of 2.0
yields a mean detected slope of 0.51 and a range of
[—0.25, 0.97]. With greater PV, the proportion of signifi-
cant (P < 0.05) detected relationships decreased (e.g.,
PV = 0.1: 100% sig., PV = 2.0: 48% sig.; 18 sites, 1 yr;
Fig. 2a, b). The amount of variation explained by the
detected relationship (median R?) decreased with
increasing PV. For example, the variation explained at
highest PV (2.0) was roughly 1/5 of that at lowest PV
(0.01) for 18 sites and single-year sampling (Fig. 2c).

With a longer sampling duration (i.e., more years sam-
pled), mean detected slopes tended to approach the fixed
slope of one (1 yr: 0.51, 10 yr: 0.88, 40 yr: 0.98;
PV = 2.0, 18 sites), and the range of detected slopes
shifted towards and narrowed around the fixed slope of
one (1 yr: [-0.25, 0.97], 10 yr: [-0.02, 1.19], 40 yr: [0.49,
1.23]; PV = 2.0, 18 sites; Fig. 2a). The proportion of sig-
nificant detected relationships increased with a longer
sampling duration (1 yr: 48%, 2 yr: 69%, 5 yr: 93%;
PV = 2.0, 18 sites), as did the variation explained (me-
dian R% 1 yr: 0.21, 2 yr: 0.3, 5 yr: 0.5; PV = 2.0, 18 sites;
Fig. 2b, ¢).

With an increase in the number of simulated sites,
mean detected slopes grew closer to the fixed slope of
one (18 sites: 0.51, 36 sites: 0.58, 54 sites: 0.63; PV = 2.0,
1 yr), and the ranges of detected slopes shifted upwards
towards the fixed slope (18 sites: [—0.25, 0.97], 36 sites:
[-0.26, 1.07], 54 sites: [—0.12, 1.14]; PV =2.0, | yr;
Fig. 3a). The proportion of significant detected relation-
ships increased substantially across all PV values given
an increase in the number of simulated sites (18 sites:
48%, 36 sites: 73%, 54 sites 82%; PV =2.0, 1 yr;
Fig. 3b). But an increase in the number of simulated
sites led to a slight decrease in the amount of variation
explained (median R? for 1 yr, 18 sites: 0.21, 36 sites:
0.17, 54 sites 0.16; Fig. 3c).

Nonconsecutive sampling did not yield substantial
differences from consecutive sampling (Appendix SlI:
Fig. S2). Detection of a spurious relationship due to PV
given a random underlying fixed relationship was rare.
Mean detected slopes were near zero (though with a
range of [—0.79, 0.87]; Appendix S1: Fig. S3), the pro-
portion of significant detected relationships was near
5%, and median R> was less than 0.04 (details in
Appendix S1). Results for varying levels of community
evenness and for higher diversity simulations are shown
in Appendix S1.

DiscussioN

Population variability (PV) can obscure the more-indi-
viduals hypothesis (MIH) relationship given low sam-
pling effort in the form of a small number of years
sampled across a small number of sites. This is especially
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Fic. 2. Simulation results across sampling duration. (a) Detected slopes across population variability (PV), for 1-, 2-, 5-, 10-,
and 40-yr samples at 18 sites relative to the fixed relationship (black line) and nonsignificant (P > 0.05) detected slopes indicated by
red points. (b) Proportion of significant detected relationships across PV at 18 sites sampled for 1, 2, 3, 5, and 10 yr (labels). (c)
Median R? across PV at 18 sites sampled for 1, 2, 3, 5, 10, and 40 yr (labels).

true at the highest PV (2.0) and the lowest sampling
effort (1 yr, 18 sites) where less than half of detected rela-
tionships were significant. Additionally, detected rela-
tionships remain poor in moderate-high PV (>0.5)
simulations for sampling effort of 1-2 yr across any
number of sites. With low PV (<0.5), detected relation-
ships fit the fixed relationship relatively well, even with
low sampling effort. For reliable detection of the under-
lying fixed MIH relationship in these simulations, multi-
year sampling (5+ yr) across many sites (36, 54) was
required.

Most MIH studies occur in systems such as birds
(e.g., Gaston and Evans 2004, Ferger et al. 2014), and
invertebrates (e.g., Currie et al. 2004, Classen et al.
2015), which are prone to moderate-high levels of PV
(Ricklefs 1990, Begon et al. 1996, Morris and Doak
2002). Additionally, most of the MIH field studies we
found only sampled their communities for a single year,

and none had more than 3 yr of data. Thus, negative
MIH results in the literature could be due solely to pop-
ulation variability. We can be slightly more confident of
supportive evidence for MIH results in the literature,
because spurious positive relationships were very rare
given a random underlying relationship (though there
are still potential confounding factors).

To avoid additional assumptions and complexity, each
species in a simulated community had the same popula-
tion variability. This is unlikely in nature, where commu-
nities are made up of species with different degrees of
population variability (e.g., Crowley and Johnson 1992,
Brady and Slade 2004), and may have resulted in higher-
than-expected variability in community abundance.
However, in communities with a log-normal species
abundance distribution, low-abundance species have less
influence on the community variability (in simulation;
but see Appendix S1 for highly even communities). Any
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variation added beyond what we would expect in nature
due to constant population variability across species is
likely swamped by the enormous variation inherent in
field studies.

We designed these simulations to represent a conser-
vative estimate of the degree to which population vari-
ability could mask the MIH. These simulations fixed
perfect, one-to-one linear relationships, which are rare
or nonexistent in nature. Imperfect (those with unex-
plained variation) underlying relationships would be
more easily masked by population variability. These sim-
ulations assumed perfect sampling of abundance and
diversity, though sampling bias or missed species detec-
tions due to small population size could further con-
found detection of the MIH in field studies (Link et al.
1994, Wilson et al. 1996, Magurran 2004). Additionally,

food resources were excluded from these simulations,
but in practice would have their own variability over
time. Real-world considerations make it less likely to
detect the MIH in the field reliably, if it exists, leaving
these simulations as a best-case scenario for detection of
the MIH.

Future MIH studies need to be designed with popula-
tion variability in mind. Choosing study systems with
low population variability (e.g., trees, ungulates, large
birds; Harper 1977, Clutton-Brock et al. 1997, Sather
and Engen 2002) can compensate for a low sampling
effort. However, these systems typically lack adequate
variation in richness, productivity, and abundance to test
the MIH effectively. In the systems commonly used for
MIH studies (birds, insects, small mammals), 5+ yr of
sampling across many sites (18+) is required to ensure
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high probability of detection of the MIH if it exists. To
be confident that negative MIH results are not due to
population variability, given sampling inaccuracies and
additional food resource variability, even longer sam-
pling durations are recommended (10+ yr).

The mixed evidence from empirical studies of the
MIH leaves us uncertain about whether it is truly a
mechanism of the productivity—diversity relationship.
However, despite the large body of literature on the sub-
ject, few to no studies have the sampling effort required
to be confident in their results from underlying interan-
nual population variability. In particular, studies without
support for the MIH may be suspect because of lack of
adequate sampling. These simulations point to the grav-
ity of considering population variability for past and
future studies.
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