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1.  Introduction 
 

 Welcome to the world of AcousticVNA, a flexible and accurate acoustic 
waveguide measurement system.  This User’s Guide will get you up and running with 
AcousticVNA no matter who you are:  an engineer characterizing acoustic materials, a 
researcher modeling ventilation systems, an audio pro designing a new tweeter, a student 
learning about the physics of waves, or a teacher preparing classroom demonstrations.  If 
you find that you need to know more about acoustics or acoustic waveguides, we suggest 
you have a look at the book Acoustic Waveguides (AW).*  We will point you to specific 
sections from time to time, like this:  For an overview of different kinds of acoustic 
waveguide measurements, see AW Section 1.1. 
 

AcousticVNA is a collection of hardware and software components for acoustic 
waveguide measurements, suitable for both research and educational use.  The hardware 
components are modular and can be assembled in many configurations.  The software, 
AVNA Lab v1.0,  is written in MATLAB, and is open source and freely distributed from 
our web site.   

 
Figure 1.1(a) shows a set-up for studying radiation from a horn.  On the left is a 

compression driver, a type of loudspeaker designed to feed cylindrical waveguide.  The 
driver is connected to the rest of the system with a standard ARS-25 coupler, which 
consists of two flanges and an o-ring seal.  If you are used to working with vacuum 
equipment, you will notice that our coupler design is similar to the ISO- KF seal;  
however, we have made some changes to provide a smooth and uninterrupted bore.  Next 
comes the microphone section, a length of straight cylindrical waveguide with several 
miniature electret microphones mounted flush to the inner wall.  The microphones are 
sealed by o-ring fittings so they may be removed easily for calibration.  Finally there is 
another standard coupler, and the device under test, in this case a horn.   

 
Not shown in the figure are the buffer amplifiers that adapt the electret 

microphone elements to drive standard audio microphone preamplifiers, the preamplifiers 
themselves, and a digitizer that captures the audio signals for analysis in a computer.  The 
digitizer is one of the enabling technologies that makes AcousticVNA powerful and 
affordable.   Thanks to the market for home audio recording equipment, units are now 
available with 8 channels of preamplification and 96 kHz simultaneous-sampling 
digitization for under $500.  The simultaneous-sampling feature is essential;  it allows 
measurement of the relative phases of the microphones.   
 

                                                 
* Acoustic Waveguides, by John C. Price, 2007, University of Colorado, Boulder. 
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Figure 1.1.   Reflectometer configurations for studying (a) radiation from a 
horn, (b) reflection from a closed end, (c) radiation from an open end and 
the ‘end correction.’ 
 
The signal that drives the compression driver is generated by the computer and 

may be a sine wave, a pulse, a random waveform, or any other waveform.  In this manual 
we mostly consider the simplest case of sine-wave excitation.  There is generally a small 
and inaccurately known time shift (the latency) between the recorded samples and the 
excitation waveform.  Latency is not usually an important limitation, even though it 
means that the phase between the drive signal and microphone signals is unknown.  In 
those cases where it is important to know the overall phase, one preamplifier channel can 
be used to record the drive signal. 
 

Data from the microphones can be analyzed to yield the horn’s reflection 
coefficient, the ratio of the amplitude of the reflected left-going wave to the amplitude of 
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the incident right-going wave.  The reflection coefficient is a single complex number at 
each frequency that describes completely the linear behavior of the horn, as viewed from 
the waveguide that drives it.  In this case, the magnitude of the reflection coefficient can  
 

 

 
 

Figure 1.2.  Reflectometer configurations for (a) reflection from an 
absorbing material, (b) impedance discontinuity, (c) transmission through 
an absorber. 
 

tell us how much power is being radiated by the horn.  Because of the primary 
importance of the reflection coefficient, an apparatus like this is often called a 
reflectometer; in this case a ‘vector’ reflectometer, because it measures both the 
magnitude and the phase of the reflection coefficient.  The word vector is used because 
the reflection coefficient may be plotted as a vector on the complex plane. 

Figures 1.1(b) and (c) show closed and open terminations in place of the horn.  
The closed termination is the simplest possible since it has a reflection coefficient of +1.0 
at all frequencies, with no important corrections.  The open termination has a reflection 
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coefficient near -1.0, the change of sign being due to inversion of the wave upon 
reflection, or equivalently to the presence of a pressure node at the open end.  However, 
in this case there are important and interesting corrections:  the effective position of the 
reflection is not quite at the end of the tube but somewhat beyond it, and the magnitude of 
the reflection coefficient is less then unity because some power is lost to radiation, 
though much less than from a horn. 
 

Figure 1.2(a) shows a closed end faced with an absorber.  This arrangement is 
used for characterizing sound absorbing materials, and is similar to the apparatus 
specified for such measurements by ASTM standard (E 1050-98).  In Figure 1.2(b) an 
extension has been added with a step in the diameter, allowing study of transmission and 
reflection by an abrupt change in impedance.  Similarly, Figure 1.2(c) shows a set-up for 
study of transmission through an absorbing material.  In these last two configurations 
analysis of the transmission property is complicated by the presence of a reflection at the 
far end.  An alternative approach is to replace the closed end by an absorbing termination.  
However, it is difficult to make a compact absorbing termination that works well over a 
broad range of frequencies, so the more easily characterized closed end may be preferred. 

 
 

 
 

Figure 1.3.  Acoustic vector network analyzer (VNA) for scattering matrix 
measurements. 

 
A powerful arrangement that permits simultaneous transmission and reflection 

measurements with high accuracy is shown in Figure 1.3.  Two drivers and two 
microphone sections are used.  Only one driver operates at a time, but simultaneous 
coherent data from microphones on both sides is needed to measure the 2-by-2 scattering 
matrix of the object under test, in this case a sample of absorbing material.  The scattering 
matrix, containing four complex numbers at each frequency, relates the two incident 
waves (one from each side) to the two out-going waves.  The attenuators reduce 
reflections and simplify extraction of s-matrix elements.  Alternatively, both drivers can 
be used, one acting as a sound source and the other as an active absorbing termination.  

 
Electrical engineers who work with microwave and radio-frequency electronics 

use an closely analogous instrument called a vector network analyzer (VNA), where 
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‘network’ refers to the circuit under test.  Since the late 1960s the VNA has been the most 
important measurement tool for high-frequency electronics, as essential as the 
oscilloscope is at lower frequencies.  AcousticVNA brings the power and convenience of 
general-purpose vector network analysis to the world of acoustics. 
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2. Set-up and Verification 
 
2.1  Software Set-up: Digitizer and MATLAB 
 
 These instructions assume that you are starting from scratch and need to set up a 
system that has never been used before.  If you know that your digitizer drivers and the 
MATLAB system are already set up, skip to Section 2.2 on setting up AVNA Lab, the 
software used to operate the AcousticVNA hardware.  All new users should read Sections 
2.2, 2.3, and 2.4. 

 
The AcousticVNA system requires a computer running Windows XP or Vista, 

with an IEEE-1394 port, and at least 512 MB ram.  The CPU clock should be 1 GHz or 
faster, and dual processors are preferred. 

 
If your computer does not already have an IEEE-1394 port, you can buy an 

inexpensive card to provide this feature.  For laptops, we have used the Dynex ED-FC202 
adapter, which is available for about $60.  Be sure to read the instructions that come with 
your IEEE-1394 hardware, since you may have to install or update a driver. 
 

We assume in this manual that your digitizer is a Presonus FP-10 or FirePod 
Firewire Recording Interface.  The FirePod and FP-10 are almost identical units, but they 
have different drivers and it is important to install the correct one.  Both units are 
combination 8-channel preamplifiers and digitizers that connect to your computer’s 
IEEE-1394 port.  It is likely that any preamplifier/digitizer combination supporting 
Steinberg’s ASIO audio driver protocol for Windows could also be used.  However, we 
have only tested the Presonus units and their drivers for compatibility with the MATLAB 
audio interface software. 

 
 

To begin, download the latest driver for your FirePod or FP-10 from the Presonus 
web site at www.presonus.com.  Be sure to get the correct driver for your operating 
system.  If you don’t already have it, download the latest version of the manual for your 
digitizer as well.  Following the instructions in the manual, install the driver.  Install all 
three parts of the driver software (ASIO, MIDI, and WDM) if you are given the choice, 
and do not connect and turn on the digitizer until you are told to do so.  Set the sampling 
rate to 44.1 kHz, the clock source to internal, and the latency to 10 ms.  You might want 
to change the sampling rate or latency later, but these are good starting points.  Note that 
the latency setting here does not fix the actual latency to 10 ms.  Rather, it is a request to 
the driver to try to achieve 10 ms latency.  If your system can’t keep up, you will 
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experience ‘drop outs’ in the recorded data and should change to a longer latency setting.  
Finally, choose an optimization setting that matches your processor’s speed.   

 
You can skip the final part of the Presonus instructions which tell you how to 

install the CUBASE recording software.  CUBASE is not used by the AcousticVNA 
system.  However, if you have problems later you might want to install it for debugging 
purposes.  It allows you to test your digitizer without involving MATLAB or the AVNA 
Lab software. 
 
 If you want to set-up a vector network analyzer configuration with two or more 
microphone sections, you may need to run several FirePods, several FP-10s, or a 
combination of these at the same time.  In some cases this requires driver updates or 
updates to firmware in the digitizers.  See instructions on the Presonus downloads page. 
 
 Next, install MATLAB version 7.4 or later, following the MATLAB 
documentation.  The procedure varies according to how your copy of MATLAB is 
licensed.  If you are using a site license, you may have to contact your site administrator 
for help.  MATLAB is available with many add-ons to the core program, and we 
recommend that you install everything that is covered by your license.  For AcousticVNA 
you only need the MATLAB core, the Optimization Toolbox, and the Signal Processing 
Toolbox.  The MATLAB Data Acquisition Toolbox does not currently provide ASIO 
support and is not used by AcousticVNA. 
 
2.2  Software Set-up:  AVNA Lab v1.0 
 
 AVNA Lab runs under on MATLAB.  If your MATLAB skills are rusty, or if you 
have never used MATLAB before, take 10 minutes now to get oriented.  Launch the 
application, and choose MATLAB Help under the Help menu.  Under the Contents tab, 
expand the topics MATLAB and Getting Started.  Read the section Introduction.  Then, in 
the next section Matrices and Arrays, read and try out the examples in Matrices and 
Magic Squares, and Expressions.  This will give you a quick introduction to the most 
important MATLAB syntax, and will introduce the MATLAB desktop.  Later, you may 
want to go back and work through the rest of the Getting Started section. 
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Figure 2.1.  File organization for AVNA Lab and pa_wavplay.  The system 
software is in AVNA Lab v1.0, while Jack, Jill, and Pat are user folders. 

 
AVNA Lab is a set of MATLAB script and function files.  The individual files are 

known as M-files in MATLAB jargon, after their file extension .m.  They each contain a 
sequence of MATLAB commands just like those that are entered directly into the 
Command window.  You can view (and edit) them using the Editor window.  The 
difference between scripts and functions is that scripts use the base workspace that is 
visible in the Workspace window on the MATLAB desktop, while functions use a private 
workspace that is deleted when the function finishes executing.  AVNA Lab requires a 
set of files called pa_wavplay that define MATLAB functions for communicating with 
your digitizer.  The AVNA Lab files are available as a free download from our web site.  
The pa_wavplay files can be found by searching the MathWorks website at 
www.mathworks.com .  They were developed by Matt Frear and are also available as a 
free download. 
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 When MATLAB was installed, it created a folder with a path similar to: 
 
C:\Documents and Settings\User Name\My Documents\MATLAB 
  
By default, this path becomes the current directory when MATLAB is launched.  The 
current directory is displayed in a toolbar widow near the top of the MATLAB desktop.  
We suggest that you arrange the AVNA Lab files and the pa_wavplay files in the 
…\MATLAB folder as shown in Figure 2.1.  The folder AVNA Lab v1.0 contains thirteen 
M-files that are the functions and scripts used to control AcousticVNA, a private folder, 
and   the pa_wavplay folder.  In MATLAB, a private folder contains functions that can 
only be called by routines in the folder containing the private folder.  This folder cannot 
be renamed and must be immediately inside AVNA Lab v1.0.  The pa_wavplay folder 
contains the six pa_wavplay routines (3 M-files and 3 .dll files) and a documentation file.  
If the files in the AVNA Lab v1.0 folder are shared by several users, care should be taken 
not to alter them, except for documented updates. 
 
 The other folders in …\MATLAB, Jack, Jill, and Pat, are for user M-files and data.  
 
 To complete the set-up of AVNA Lab, open the MATLAB path browser by 
choosing Set Path… in the File menu.  The window that appears lists all of the folders 
that MATLAB searches when it needs to find an M-file, in the order in which they are 
searched.  You will see many paths like: 
 
C:\Program Files\MATLAB\… 
 
These contain the MATLAB system and add-on toolboxes, and should not be altered 
unless you are sure you know what you are doing.  At the top of the list you should see 
the default current directory: 
 
C:\Documents and Settings\User Name\My Documents\MATLAB 
 

Click on Add Folder… and add the following two paths to the top of the list: 
 
 
C:\Documents and Settings\User Name\My Documents 
    \MATLAB\AVNA Lab v1.0 
 
C:\Documents and Settings\User Name\My Documents 
    \MATLAB\AVNA Lab v1.0\pa_wavplay 
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Do not add the …\private path (because private folders are included automatically 
with their enclosing paths) or the user paths …\MATLAB\Jill, …\MATLAB\Jack, or 
…\MATLAB\Pat.      
 
 When you get ready to write programs, you will begin by setting the current 
directory to your user folder, such as …\MATLAB\Jill.  Your programs will have 
access to the AVNA Lab routines and the pa_wavplay routines, because their folders 
have been added to the search path.  Your programs will also have access to whatever 
you place in your user folder because MATLAB always searches the current directory, 
and searches it first.  You may want to create modified versions of the AVNA Lab M-
files with the same names as the standard ones.  If you put these in your user folder, your 
versions will ‘overload’ the standard ones for you only, and other users will not be 
disturbed.  (If you were to add your user folder to the search path this might not be true, 
so don’t do that unless you are certain that all your M-file names are unique to you.)  All 
of the AVNA Lab routines search for data files only in the current directory, and only 
write to the current directly, so there is no risk that you will read or write someone else’s 
data. 
 
 If every user of the system has a separate Windows account, the above 
precautions are not important.  Just be sure that all the AVNA Lab routines and all the 
pa_wavplay routines are in folders on the search path, and that any routines you add are 
either in the current directory or on the search path.  Also, make sure that the private 
folder is directly inside the folder containing the AVNA Lab routines, and don’t forget 
that the AVNA Lab routines always read from and write to the current directly. 
 
2.3  Hardware Set-up 
 
 To get started, you will need at least the components shown in Figure 2.2.  If you 
can’t tell from photo if you have the right parts, you can find more information about 
each component in Chapter 7 below.  You may have other AcousticVNA components, 
such as a horn or flanged open.  These will not be needed for the set-up procedures or for 
the Introductory Mesaurements discussed in Chapter 4 below.  Some of the Applications 
described in Chapter 7 do require additional hardware.   
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Figure 2.2.  Minimum hardware for reflectometry.  Starting at the top,  the 
photo shows three waveguide stands, a compression driver, a straight 
section, and a six-station microphone section.  Below the microphone 
section on the left are three coupler clamps, three seals with o-rings, and a 
closed end.  At center are six buffer amplifiers, and below them is a cable 
for the compression driver.  To the right is a six-station calibration cell, 
three cotton balls, and six microphones.  Each microphone has a black 
rubber cap over the sensitive end for protection. 

 
 If you have not already done so, connect power to your computer and to your 
digitizer, turn both on, and connect an IEEE-1394 cable between the digitizer and the 
computer.  The Presonus digitizers show gain drifts of several percent during warm-up, 
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which takes about six hours.  It is best to turn your digitizer on the day before you plan to 
use it and to leave it on until you are finished.   
 
 AcousticVNA waveguide sections are assembled using ARS-25 couplers, as 
shown in Figure 2.3.  The two brass flanges are permanently attached to the waveguide 
sections.  Be sure that the aluminum seal ring is properly aligned with both flanges before 
tightening the clamp, shown in Figure 2.4.  When the clamp is tight, the inner edge of the 
flange will press against the aluminum seal ring, forming a smooth inner bore with no 
gap.  The washer on the clamp should be between the wing-nut and the clamp body.  
 

 
 

Figure 2.3.  Assembling the ARS-25 coupler for 25 mm I.D. waveguide.  
 

 We will first assemble the system for microphone calibration.   Connect the six 
buffer amplifiers to preamplifier inputs numbers three through eight of the digitizer, and 
connect the six microphones to the buffer amplifier inputs.  Turn on the 48V phantom 
power for the buffers and mics by pushing in the two buttons at the left end of the 
digitizer’s front panel.  Once the microphones are calibrated it will be important to 
distinguish them.  This will be easier to do if you connect your lowest numbered 
microphone to the lowest channel number, the next highest mic to the next channel, and 
so on.  Do not remove the black protective caps on the microphones until you have to.  
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The sensitive ends of the microphones are fragile and should be kept covered whenever 
possible.   

 
 

Figure 2.4.  ARS-25 coupler with clamp. 
 

 
 
Figure 2.5.  Assembling the calibration cell.  Place the threaded cap and 
the o-ring on the microphone before inserting it into the calibration cell. 
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 Referring to Figure 2.5, install the microphones in the calibration cell.  The 
calibration cell has six o-ring compression seals for mounting the microphones.  Before 
inserting a microphone, remove one of the threaded caps and an o-ring from the cell, 
remove the protective cap from the microphone, and then slide the threaded cap and the 
o-ring onto the microphone, being careful not to touch the exposed sensitive end of the 
microphone.  Slide the microphone into the cell until it rests on the shoulder of the 
microphone body, and gently tighten the seal with your fingers only.  You should be able 
to see that the end of the microphone is flush with the inner wall of the cell.  Install all six 
microphones.  Place the compression driver on its back with the coupler flange up, and 
attached the compression cell to the driver using a seal and a clamp.  To avoid feedback, 
turn the Mixer control on the digitizer front panel fully clockwise, to the Playback (1-2) 
setting.  Finally, connect the cable that goes from the headphone output of the digitizer to 
the compression driver.  See Figure 2.6. 
 

 
 

Figure 2.6.  AcousticVNA set-up for microphone calibration.   
 

2.4  System Test and Latency Adjustment 
 
 You are now ready to test the system for proper operation.  Check that the 
digitizer is on and the 48V phantom power buttons are pushed in.  The front-panel Main 
Level knob controls rear-panel outputs that will not be used.  Turn it fully counter-
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clockwise.  Check that the Mixer knob is set fully clockwise;  this routes the play signals 
from the computer to the headphone output jack.  Set the Phones level knob to about nine 
o’clock, and turn all eight Preamp Input Gain knobs counter-clockwise to their lowest 
settings. 
 
 Launch MATLAB, and wait until it initializes (see the status message at the 
bottom of the MATLAB desktop).  Using the current directory window at the top of the 
MATLAB desktop, set the current directory to your user folder (see Figure 2.1) and enter 
in the Command Window: 
 
>> scope 
            
You should hear a beep, and MATLAB should respond with 
 
Using ASIO driver 
Recording on device 0 
Playing on device 0 
Converting result to doubles 
Any command or 'q' to quit, 'r' to rescale:  
 
You have invoked scope.m, one of the AVNA Lab script files.  If MATLAB instead 
responds with 
 
??? Undefined function or variable 'scope'. 
 
or with 
 
??? Undefined function or method 'pa_wavplayrecord' for 
input arguments of type 'double'. 
 
this means that it cannot find the scope.m script or the pa_wavplay files.  Make sure 
your files are set up as in Figure 2.1, and that the …\MATLAB\AVNA Lab v1.0 folder 
and the …\MATLAB\AVNA Lab v1.0\pa_wavplay folder are on the search path.   
 
 Assuming that scope.m is now running, you should find that it has created a 
Figure window containing three plots: the played time series, the recorded time series, 
and the spectrum of the recorded time series.  (The Figure window could be hidden 
behind the MATLAB desktop.)  The second two plots both have eight curves, one for 
each channel.  Take a moment to play with the toolbar items at the top of the Figure 
window.  If you select one of the Zoom tools and then right-click, you will see that it is 
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possible to zoom to a selection, or to zoom only horizontally or only vertically.  The Pan 
tool lets you pan data within the plot frame, and the Data Cursor can be used to read 
specific values.  The Edit Plot tool (arrow icon) can be used to move, resize, or delete 
sub-plots.   MATLAB has many other interactive plotting features that can be accessed 
through the Figure menus or through the Show Plot Tools icon. 
 

 
 

Figure 2.7.  Plots created by scope.m script.  The played sine-wave burst 
has 50 ms rise and fall envelopes to avoid creating clicks.  The default 
value of params.latency should be adjusted so that the middle plot is 
aligned with the upper plot.   

 
 The scope.m script is an infinite loop.  The beep will repeat and the plots will 
be updated each time you hit the Enter key.  Zoom into the recorded time series plot and 
turn up the Preamp Input Gain knobs for channels 3 to 8 until the recorded amplitude is 
between 0.2 and 0.3 for each channel.  The final gain settings should be around ten 
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o’clock.  Now enter 'r' in the command window to rescale the plot axes, and you 
should see a plot similar to Figure 2.7.  These gain settings are a useful starting point.  If 
you explore more, you will discover that the input circuits of the digitizer begin to 
saturate at recorded amplitudes over 1.0. 
 
 The scope.m script will accept any valid MATLAB command from the 
keyboard.  Try the effect of these commands:  level=0.5, freq=2000, 
dur=2.0.  The first of these changes the amplitude of the played sine-wave burst.  
Freq controls the frequency, and dur the duration.  If you try higher levels you will find 
that the output circuits of the digitizer begin to saturate for played amplitudes over 1.0.  
You can view these variables and all others created by scope.m in the Workspace 
window.  However, the workspace window does not show variable values while a script 
is running.  Enter q at the command line to quit scope.m and see the changed values.  
Then enter clear all to clear the workspace variables.   
 
 There are three ways to get information about scope or any of the other AVNA 
Lab routines:  Enter the command help scope, read about the routine in Chapter 6, or 
open the M-file in the AVNA Lab v1.0 folder and read the comments. 
 
 The scope.m script relies on a set of hardware parameters that are contained in a 
data structure called params.  This data structure is created with default values by the 
AVNA Lab function defaults.m.  Enter in the Command Window 
 
>> params=defaults 
 
MATLAB responds with: 
 
params =  
    playdevice: 0 
     recdevice: 0 
    devicetype: 'asio' 
         fsamp: 44100 
         nchan: 6 
     firstchan: 3 
       latency: 0.0380 
      micscale: 0.3000 
       miclocs: [0 0.0782 0.2793 0.4396 0.6786 1] 
     micoffset: 0.0500 
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The function defaults has returned a data structure named params with 10 fields, 
each assigned default values.  (Your default values might be different.)  To query one of 
the fields enter 
 
>> params.nchan 
ans = 
     6 
 
MATLAB responds with the value of the field.  To change the value of a field enter 
 
>> params.firstchan=1 
params =  
    playdevice: 0 
     recdevice: 0 
    devicetype: 'asio' 
         fsamp: 44100 
         nchan: 6 
     firstchan: 1 
       latency: 0.0380 
      micscale: 0.3000 
       miclocs: [0 0.0782 0.2793 0.4396 0.6786 1] 
     micoffset: 0.0500  
 
To reset the fields back to default values, invoke the function defaults again: 
 
>> params=defaults; 
 
The semicolon suppresses output to the Command Window.  To check that the params 
fields have really been set back to defaults, double click on the params item in the 
Workspace window.  The Array Editor will come up, showing the fields of the params 
data structure. 
 
 In Figure 2.7, the sine burst in the recorded time series starts about 50 ms late.  
(Your plot may show a delay or an advance, or neither.)  In fact, the played time series 
always starts after the digitizer begins to sample its inputs by an amount called the 
latency time.  The params.latency field (a time, in seconds) is used to correct for 
this effect.  The AVNA Lab routines record for an extra time equal to 
params.latency, and then drop a time period at the beginning of the recorded time 
series equal to params.latency.  Data will be wasted or invalid if 
params.latency is not set correctly. 
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 To find the correct value for params.latency, invoke scope again and 
adjust params.latency until the second plot is aligned with the first to an accuracy 
of 10 ms.  Use the command  params.latency=n.nnn  where n.nnn is the latency 
value you wish to set.  Once you find the correct value, quit scope and set this value as 
the default for all users.  Choose Open… from the File menu, navigate to the file 
defaults.m (in the AVNA Lab v1.0 folder) and open it for editing.  Edit the line 
params.latency=n.nnn to reflect the correct value, and save the file.  Now, when 
you type params=defaults in the Command Window, you should see the updated 
params.latency default value, and when you invoke scope you should see the 
played and recorded time series aligned.  Do not change any other fields of the shared 
copy of defaults.m that is located in the AVNA Lab v1.0 folder.  If you want to create 
a personal version of defaults.m with your own parameter values, just save it to your 
user folder, where it will ‘overload’ the shared version. 
  

19 



3. Relative Microphone Calibration 
 

Reflection coefficients and S-parameters are ratios of amplitudes.  Measuring 
them requires relative, but not absolute, calibration of the microphone channels.  Both the 
relative sensitivity and phase shifts of the microphone channels must be known.  In this 
section, we explain how to perform a relative calibration, and how to compare a new 
calibration with an older one. 
 
 If you have just finished the steps in the previous chapter, your system is already 
set up for calibration.  Otherwise, check that your hardware is set up as described in 
Section 2.3 above, and run scope to check that params.latency is set correctly, as 
described in Section 2.4. 
 
 The principle of the calibration method is simple.  The calibration cell has six-fold 
symmetry about the axis of the compression driver.  If the pressure field in the cell also 
has six-fold symmetry, then each microphone is subject to exactly the same pressure.  We 
measure the complex amplitude (or phasor) from each microphone at every frequency of 
interest, and use this data to normalize subsequent measurements.  The phase reference is 
used is just the beginning of the time series.  Because the latency varies somewhat, the 
overall phase has no meaning.  However, the relative phases (and magnitudes) of the 
channels contain the important information for a relative calibration. 
 
 Check that the current directory is set to your user folder, and then enter this 
command in the Command Window: 
 
>> calibrate(defaults,0.8,1.0,500,2000,50,'cal5c2k50e') 
 
You should hear 50 tone bursts, each one second long, with frequencies ranging from 
500 Hz to 2000 Hz.  After calibrate finishes it will return a data structure to the 
temporary variable ans, and write a file in the current directory named cal5c2k50e 
.mat.  (To help keep track of our files we like to include the frequency range in the file 
name.  5c2k50 means 500 Hz to 2 kHz, 50 steps.)  As you can see, the calibrate 
function takes seven parameters.  The first is the params data structure, which can be 
passed to calibrate using defaults, since this function evaluates to the params 
data structure.  The next two parameters are the burst amplitude and duration.  Then 
comes three parameters that specify the first frequency, the last frequency, and the 
number of frequencies at which to calibrate.  The frequencies are distributed 
logarithmically over the specified interval.  The last parameter is a string, the file name to 
which the calibration data will be written.   
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 To check that the calibration file really exists, enter the command 
load('cal5c2k50e').  This will read the file and load its variables into the 
workspace.  In this case, the file contains one data structure called caldata.  You can 
explore the fields of caldata by double-clicking on it in the Workspace window.  The 
.phasors field contains the measured phasors, the .freqs field is the frequency list, 
.params is the parameters data structure that was passed to calibrate when it was 
invoked, .level is the burst amplitude, .duration is the burst duration, and finally 
there is a time stamp field.  The file has a .mat extension and can only be read by 
MATLAB.  If you need to export data to other applications, MATLAB has several 
functions for writing text files. 
 
 MATLAB can readily plot the calibration data: 
 
>> plot(caldata.freqs,abs(caldata.phasors)) 
 
(The abs function finds the magnitude of complex numbers.)  However, AVNA Lab has 
functions for conveniently visualizing most of the data structures it creates.   
 

Try this: 
 
>> viewdata('cal5c2k50e') 
 
You should see a plot similar to Figure 3.1.  The top curve is the magnitude of the 
phasors plotted against frequency, with one curve for each channel.  If you have set the 
system up as suggested in Chapter 2, all of the channels should have amplitudes close to 
0.25 at 1 kHz.  Several resonances are visible;  these are coupled acoustic-mechanical 
resonances that involve both the air in the cell and the compression driver diaphragm.  
The resonances cause the pressure amplitude to vary over a wide range;  however, there 
is little evidence of these resonances in the second plot, where each phasor has been 
normalized to the first-channel phasor.  The last sub-plot shows the phase relative to the 
first channel. 
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Figure 3.1.  The calibration file cal5c2k50e.mat as displayed by 
viewdata. 

 
 Create a second calibration file by entering:  
 
>> calibrate(defaults,0.8,1.0,500,2000,50,'cal5c2k50f') 
 
Note that you do not have to type this in.  You can use the up-arrow to scroll through 
previous commands, and edit only the characters that need to be changed.  When 
calibrate finishes, you can compare the two calibration files with the command: 
 
>> viewdata('cal5c2k50e','cal5c2k50f') 
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Figure 3.2.  Comparing the calibration files cal5c2k50e.mat and 
cal5c2k50f.mat. 

 
 The first sub-plot is the ratio of the phasor magnitudes in the two files, without 
any normalization to the first channel.  We see that all channels move together, with 
about 0.1 % variations of the magnitude ratio.  If we are primarily interested in the 
reflection coefficient, magnitude variations that are common to all channels are not 
important.  They can be removed by normalizing to the first-channel phasor in both files, 
as is done in the second sub-plot.  Now we see that the magnitude ratios between 
channels have not changed by more than about a part in 10,000 between the two 
calibration files.   The final plot shows that the phases relative to the first channel differ 
for the two calibration files by only a few times 10-5 radians.   
 
 The comparison shown in Figure 3.2 is between two calibration files recorded 
about 30 minutes apart in a laboratory environment, without removing the microphones 
from the calibration cell or changing anything else about the apparatus.  This is an ideal 
situation.  If the time period between calibrations is longer, or there are larger 
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temperature drifts, or the microphones become contaminated, the calibration stability is 
bound to suffer. 
 
 Stability of the calibration depends upon the microphones, the buffer amplifier 
gains, the preamps in the digitizer, and the converter in the digitizer.  If any of the 
Preamp Input Gain knobs are adjusted, or the microphones or buffer amplifiers are 
switched between channels, new calibration files will be needed.  Note that the AVNA 
Lab software only allows a calibration file to be used with data taken at the same set of 
frequencies.  Because of this, it is helpful to have calibration files for several different 
frequency resolutions. 
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4. Introductory Measurements 
 

In this chapter we describe four simple measurements:  reflection from a closed 
end, propagation through a straight section, absorption by cotton ball, and reflection from 
an open end.  We recommend that new users try each of these measurements to become 
acquainted with AcousticVNA.  If you are unfamiliar with the concepts of reflection 
coefficient and/or reference plane, see AW Sections 3.3 and 3.5. 

 
4.1  Reflection from a Closed End 
 
 Set up the apparatus as shown in Figure 4.1.  The compression driver is mounted 
at the left end of the microphone section, and the closed end is mounted at the right end.  
Assemble the two ARS-25 couplers, referring to Figures 2.3 and 2.4 above.  The six 
microphones are mounted in the compression fittings on the microphone section.  These 
fittings as the same as those on the calibration cell, shown in Figure 2.5.   

 
Notice in Figure 4.1 that the microphones are irregularly spaced along the 

waveguide.  This provides better frequency coverage than any regular arrangement.  
Assemble the system with the two closely-spaced microphones at the driven end, as 
shown in the photo.  You could install the microphone section the other way around, but 
default parameters in the software would have to be changed.  Similarly, the default 
software parameters assume that the first microphone is connected to channel 3 of the 
digitizer and is in the location closest to the driver, the next microphone is connected to 
channel 4 and in the next location, etc..  To avoid confusion, it is best to move the 
microphones directly from the calibration fixture to the microphone section without 
disconnecting them from the buffer amps or digitizer.  Remember that the microphones 
are fragile, and you should avoid touching the sensitive ends. 
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Figure 4.1.  AcousticVNA set-up for studying reflections from a closed 
end.  The two closely-spaced microphones are at the same end as the 
driver. 
 
To collect data, launch MATLAB, set the current directory to your user folder, 

and enter this line in the Command Window: 
 
>> acquire(defaults,0.8,1.0,'cal5c2k50e','dat5c2k50closed') 
 

The acquire function is very similar to the calibrate function, and it 
produces a similar data structure.  The first three arguments are the params data 
structure (supplied by the function defaults), the burst amplitude and the burst 
duration.  Next is the name of the calibration file that will be used.  The last parameter is 
the output file name for the data.  There are no parameters specifying the frequency list, 
because it is taken from the calibration file. 

 
After acquire returns, enter the command load(‘dat5c2k50closed’) 

and inspect the data structure phasordata that appears in the Workspace window.  
The .phasors field contains the measured complex phasors for each microphone at 
each frequency, the .freqs field is the frequency list, .params contains the 
parameters data structure that was passed to acquire, .level is the burst amplitude, 
and .duration is the burst duration.  The next field gives the name of the calibration 
file that was used, and finally there is a time stamp.  The phasordata structure 
contains an ‘audit trail’; it includes the conditions under which the data was taken and 
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points to the calibration file where the calibration conditions can be found.  All of the 
files created by AVNA Lab have this feature. 
 
 If you want to add notes to a data structure, just enter 
 
>> phasordata.notes='This file is for the Users Guide.' 
>> save('dat5c2k50closed') 
 
MATLAB is very weakly typed, so new variables and fields can be created simply  by 
assigning something to them.  Data structure fields are referred to by name in AVNA 
Lab, so if you add a field with a new name it will not cause problems. 
 

The action of acquire is very similar to the action of calibrate.  It plays a 
sine-wave burst, measures the phasor for each microphone, and then repeats at the next 
frequency.  However, once the data has been collected, acquire calibrates the data 
using phasors in the calibration file.  The calibration phasors are first divided by the first-
channel calibration phasor at each frequency.  The first-channel phasor thus becomes 
equal to one, and the other calibration phasors have magnitudes and phases that are due to 
differences in gain or phase-shift between the channels.  Then, the data phasors are 
divided by their corresponding calibration phasors, removing these differences from the 
data. 

 
The next step is to do a fit to the measured phasors to find the right-going and 

left-going wave amplitudes.  (We always use right-going to mean away from the driver, 
regardless of the true orientation of the system.)  The most general one-dimensional 
pressure wave is 

 
),exp()exp()exp()exp( xikxAxikxAp LR αα +++−−=  (4.1) 

 
where  andRA LA are the right- and left-going wave amplitudes, and k is the wave 
number, related to the phase velocity v by 
 

v
k ω
= . (4.2) 

 
The attenuation constant α  models damping of the wave due to dissipation at 
boundaries.  Equation 4.1 gives the pressure phasor at each position x.  To find the time-
dependent pressure, multiply by )exp( tiω+ and take the real part.   
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The AVNA Lab function wavefit finds the wave amplitudes.  Try this 
command: 

 
>> wavefit(defaults, 
              '3param','dat5c2k50closed','wav5c2k50closed3') 

 
Several fitting methods are implemented.  The one specified here, '3param', describes 
the phase velocity v by a constant plus a small term proportional to 2 , and the 
attenuation 

/1−ω
α  by a single term proportional to . These forms are motivated by the 

Kirchhoff-Helmholtz theory for the dissipation effects (see AW Section 3.5). 

2/1ω

 
 Load the output file by entering 
 
>> load('wav5c2k50closed3') 
  
and examine the data structure wave in the Workspace window.  Most of the fields are 
self explanatory:  .Ramp and .Lamp are the fit right- and left-going wave amplitudes, 
.vphase and .atten are the phase velocity and attenuation constant at each 
frequency, .phasors are the phasor data that were fit, .freqs is the frequency list, 
.params is the parameters structure from the from the data file, and the last two fields 
give the data file name and the name of the fitting method used.  The .phasors field is 
included so that the fit residuals can be computed.   

 
There is one other field called .global.  Double-click on it to examine its 

contents.  This is a cell array, a MATLAB structure that can contain mixed data types.  It 
gives the names and values of the three fit parameters that describe the phase velocity and 
the attenuation.  They are referred to as global parameters because they apply to all 
frequencies, while the wave amplitudes are fit separately at each frequency.  The values 
in the .vphase and .atten fields are computed from the global parameters.  (In other 
fitting methods, .vphase and .atten are fit locally at each frequency.)  There is an 
AVNA Lab function called viewwaves for examining files containing the wave data 
structure.  However, let’s move on to the reflection coefficient. 
 

The reflection coefficient is the ratio of the left-going pressure amplitude to 
the right-going pressure amplitude: 

)(xS
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and is a function of position.  The location x at which the reflection coefficient is 
evaluated is known as the reference plane.  Enter the command: 
 
>> reflect('wav5c2k50closed3') 
 

 
 

Figure 4.2.  Reflection coefficient for a closed end, with the reference 
plane at the location of the closed end. 

 
The reflection coefficient will be plotted on the complex plane, and as magnitude and 
phase versus frequency.  If the default reference plane location is coincident with the 
closed end, your result should be within a few percent of +1 on the complex plane, as 
shown in Figure 4.2.  A reflection coefficient of +1 means that the pressure wave is 
reflected off the closed end without any change in amplitude or phase. 
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If your result is more spread-out in phase than shown in Figure 4.2, you can try to 
improve it by adjusting the location of the reference plane.  While reflect is running 
you can enter a new value for the reference plane location and the plots will update.  The 
reference plane is measured (positive to the right) from the face of the flange at the left 
end of the microphone section.  Changes of just a tenth of a millimeter make a visible 
difference in the reflection plot.  Since the closed end is the simplest acoustic termination, 
we will use it as a reference for other measurements.  Find the reference plane location 
where the reflection data are closest to the point +1 on the complex plane and record it.  
Later, we will compare other reflection plane locations to this value.  If you wish, you 
can edit reflect.m to change the default reference plane location.  Store the edited 
version in your user folder.  (Be sure to quit reflect by typing q before you do this.  
Most featured of the MATLAB desktop do not work when a program is running.) 

 
Try moving the reference plane 1 cm to the right.   You will see an arc at positive 

angles, and a linear variation of the phase with frequency.  The fit phase velocity can 
viewed with viewwaves or by plotting the .vphase field of the wave structure.  It is 
slightly frequency dependent.  To a first approximation you can use an average value. 
  
 If you want to preserve your reflection data, give reflect an output file name 
as a second input parameter.  Once you have adjusted the reference plane to the value you 
want, type s to save the reflection data to the output file.   As before, you can load the 
output file and examine the data structure it contains. 
 
4.2  Straight Section and Wave Attenuation 

 
           Assemble AcousticVNA as shown in Figure 4.3, with a straight section after the 
microphone section, and the closed end following the straight section.  For this example, 
we will automate the data collection and analysis.  Open the Editor window in the 
MATLAB desktop, and click on the New M-File icon to create a blank document.  Enter 
these commands in the file, and save it to your user folder with the name quick.m: 
 
% quick.m script acquires phasor data, fits wave amplitudes, and  
% plots the reflection coefficient. 
  
acquire(defaults,0.8,1.0,'cal5c2k50e','dat5c2k50extend') 
wavefit(defaults,'3param','dat5c2k50extend','wav5c2k50extend3') 
reflect('wav5c2k50extend3') 

 
Check that the current directory is set to your user folder, and then try the script by 
entering quick in the Command Window.  It works, but there is a problem.  If you run it 
a second time, you will get errors because the output files will already exist.   
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Here is a better way: 
 
function quicker(base) 
% quicker.m is a function that acquires phasor data, fits wave  
% amplitudes, and plots the reflection coefficient.  It takes the 
% base name for the output files as input. Base must be a string. 
  
datafile=['dat' base]; 
wavefile=['wav' base]; 
  
acquire(defaults,0.8,1.0,'cal5c2k50e',datafile) 
wavefit(defaults,'3param',datafile,wavefile) 
reflect(wavefile) 
 

 
 
Figure 4.3.  AcousticVNA set-up for studying propagation through a 
straight section with a closed end. 

 
Now we pass the string base and construct full file names using the MATLAB 
concatenation operator [].  With this function, you can collect data and make plots of the 
reflection coefficient simply by entering quicker('firsttry'), and then the next 
time, quicker('nexttry').  
 
 Typical reflection data are shown in Figure 4.4.  Note that the phase plot always 
starts in the interval ),( ππ −+ , regardless of the phase delay actually present between the 
reflected and incident wave at the starting frequency.  Because of this, one should be 
cautious about using the absolute value of the phase delay to infer the line length.  
 
 However, we can relate the phase slope to the line length.  The general formula 
for translating a reflection coefficient is (see AW, Equation 3.14, 3.30) 
 

)).(2exp())(2exp()()( lxlx
v

ilSxS −−= αω  (4.4) 
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Figure 4.4.  Magnitude and phase of the reflection coefficient for a straight 
section with a closed end.  The reference plane is at 428.6 mm, the 
location of the closed end without the straight section.  The straight 
section moves the closed end 429.0 mm to the right. 
 

Suppose l is the location of the closed end, so 1)( +=lS , and x is the reference plane.  
Then the phase slope is 
 

.4))(arg(
v

lxxS
df
d −

= π  (4.5) 

 
Using the data cursor to read from the graph gives a measured phase slope of 

.  With the fit phase velocity v of 341.2 m/s, this corresponds to 
.  Inserting the straight section moves the closed end a distance equal to 

the flange-face to flange-face length of the straight section, plus 4 mm for the additional 

rad/Hz 01570.0−
mm 3.426=− xl

32 



seal.  The measured distance was mm 1429± , close to the value inferred from the phase 
slope. 
 
 The data can also be used to measure the attenuation constant α  in the straight 
section.  Again using (4.4) and 1)( +=lS , we find 
 

)).(2exp()( lxxS −= α  (4.6) 

 
From the graph we have 899.0=S at 2 kHz, which implies  in the straight 
section.  The fit value in the microphone section at 2 kHz is .  These can 
both be compared to the Kirchhoff-Helmholtz prediction, which is for a 
25 mm I.D. tube at 2 kHz and standard conditions (see AW, Section 3.5).  The slightly 
higher dissipation values seen in the microphone and straight sections may be due to 
surface roughness.  The Kirchhoff-Helmholtz theory assumes a perfectly smooth surface. 

-1m 124.0=α
-1m 120.0=α

-1m 1087.0=α

 
4.3  Absorption by Cotton Ball 
 

Next we return to the configuration shown in Figure 4.1, but with a small cotton 
ball (about half of a standard cosmetic cotton ball) just in front of the closed end.  The 
reflection data are shown in Figure 4.5.  The termination is now much more absorbing 
than it was without the cotton.  Notice that the phase is negative, corresponding to an 
increase in the effective length of the line by about 3 mm.   

 
It may seem surprising that adding material can increase the effective length.  The 

cotton ball is near a pressure anti-node and a velocity node.  It influences the reflection 
primarily by changing the effective compressibility of the medium, rather than by 
changing the inertia.  The heat capacity of the cotton tends to make the gas more nearly 
isothermal, which softens the equation of state and increases the compressibility.  This 
has an effect similar to increasing the volume near the end of the line, or the line length.  
The theory of sound propagation in porous media is rather involved and it can be difficult 
to make convincing comparison  with experiments, but measurements like this have 
practical importance for characterizing acoustic materials used for sound damping (see 
references in AW, Section 1.1). 
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Figure 4.5.  Reflection coefficient for a closed end with a cotton ball.  The 
reference plane is at the closed end.  The trajectory starts at 500 Hz on the 
right and ends at 2 kHz at the left. 

 
4.4  End Correction and Radiation Resistance of  an Open End 
 
 Closed ends are nearly ideal in the sense that the reflection coefficient at the plane 
of the closed end is almost exactly +1.  (There are very small corrections due to the 
thermal boundary layer.)  However, the plane of an open end is only approximately a 
location with a reflection coefficient of −1 (see AW Section 3.2 for discussion and 
references).   
 

Figure 4.5 shows the reflection coefficient, with the apparatus set up as in Figure 
4.1 except with the closed end (and its seal) removed.  The reference plane has been 
adjusted to place the data as close to the real axis as possible.  The resulting location, 
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428.0 mm, is 8.4 mm beyond the plane of the open end, or the face of the flange.   (The 
cavity in the closed end is 5 mm deep, and the seal is 4.0 mm thick.  Thus the open end is 
at 428.6−9.0=419.6 mm.)  At low frequencies, the open end does have an almost ideal 
reflectance of −1, but with an end correction of 8.4 mm, or 0.67a, where a is the inside 
radius of the waveguide.  Detailed calculations show that the end correction for a tube 
with an infinite flange is 0.85a, and for a tube without a flange is 0.61a.  Our result is in 
between these values, as expected for a small flange. 

 

 
 

Figure 4.6.  Reflection coefficient on the complex plane for an open end, 
with the reference plane at 428.0 mm, or 8.4 mm beyond the face of the 
flange.  The trajectory starts very close to the point −1 at 500 Hz and then 
moves to the right, ending at 2 kHz.. 
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When the frequency is increased, the magnitude of the reflection coefficient 
begins to decrease.  This is due to the power lost to radiation, or equivalently, to the 
radiation resistance R.  Theory predicts  

 
...)( 2

0 += kabZR  (4.7)  
 

to lowest order in ka.  Here, is the line impedance and b is a numerical constant, equal 
to 1/2 for an infinite flange and 1/4 for a tube without a flange. 

0Z

 
 

 
 

Figure 4.7.  Magnitude of the reflection coefficient for the open end (blue 
curve) with the reference plane at 428.0 mm.  Plotted in red is the 
predicted magnitude from (4.8) with m/s 6.341=v  and 26.0=b . 

 
 The corresponding reflection coefficient is 
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As shown in Figure 4.7, this fits the data well with 26.0=b , a value close to the value 
given by the lowest order theory for a tube without a flange. 
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5.  Applications 
 

In this chapter we briefly describe some possible applications of the 
AcousticVNA system. 

 
Impedance Discontinuity  

There are two ways to make an impedance discontinuity.  The first, by changing 
the waveguide diameter, is illustrated in Figure 1.2(b).  In this case the impedance change 
is not abrupt because the acoustic flow must spread continuously at the discontinuity.  A 
more abrupt discontinuity can be created by placing a thin membrane across a plane 
perpendicular to the axis of the waveguide, and then filling each side of the membrane 
with a different gas.  Measurements can  be made in reflectometer or VNA modes. 

 
Woodwind Tone Holes 
            Woodwinds are cylindrical acoustic waveguides with one of several kinds of 
acoustic amplifiers at the blowing end (reed, lip-reed, or air-jet).  The tone holes (finger 
holes) vary the effective acoustic length of the tube.  They can be studied with 
AcousticVNA by attaching a straight tube with holes to a microphone section, and 
observing the reflection for various fingerings.  Alternately,  the complete S-matrix of a 
tone hole can be measured.   Effects of forked fingerings and of interactions between 
closely-spaced tone holes can also be observed. 
 
Ocarina 
 The ocarina is a globular or vessel flute.  There are several holes which can be 
covered or uncovered to change the pitch, but, quite unlike the situation with an ordinary 
woodwind, the pitch is largely independent of the location of the holes.  The vessel and 
holes together function as a Helmholtz resonator.  The holes act together like a single 
variable inertance, which resonates with the compliance of the vessel.   The inertance of 
holes of various geometries can be studied with AcousticVNA by making a closed end 
with a hole on the axis.  Both the diameter of the hole and its length are important.  
Smaller holes have more inertance, but their losses are also greater, lowering the Q of the 
resonator. 
 
Horns 
        The theory of acoustic horns is old and well developed.  Horns for loudspeakers 
attempt to match the waveguide to the radiation field with small reflections over some 
bandwidth.  Musical instrument horns are designed with larger reflections so that the 
instrument will have high-Q resonances and definite pitch.  Both the effective length and 
the radiation resistance can readily be measured by reflectometry.  The acoustic 
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environment outside the horn can be important and difficult to control, especially for 
large, low-reflection horns. 
 
 
Periodic Media and Acoustic Bandgaps 

Waves propagating in media with periodic variations of impedance exhibit band-
gaps, or frequency intervals where there are no propagating modes.  This effect should be 
observable in a tube with periodically varying diameter.  If an absorber is placed after the 
periodic section, the tube will be highly reflective inside the band-gap and absorptive 
outside. 

 
Optical Modes 
  In solid state physics, and optical mode is a propagating lattice distortion with 
finite frequency in the limit where the wavelength goes to infinity.  In uniform acoustic 
waveguides, all propagating modes above the lowest one are optical.  Propagation of such 
modes can be observed by coupling the microphone section to a tube of larger diameter.  
A 25 mm I.D. cylindrical microphone section will be single-mode up to 8 kHz, but a tube 
with larger inside diameter d will begin to propagate a mode with one diametrical node at 
a frequency that is lower by a factor of (25 mm)/d.  To excite the first optical mode, the 
transition between the microphone section and the larger tube must break cylindrical 
symmetry.  All optical modes are dispersive, and any transmission or reflection 
measurement that includes contributions from higher modes will also be sensitive to the 
dispersion relation. 
 
Resonators 
 The theory of acoustic cavities is analogous to that for electromagnetic cavities, 
and many of the same kinds of experiments can be done.  A cavity of any shape 
(cylindrical, rectangular, spherical, etc.) can be coupled to the reflectometer through an 
aperture, the size of which controls both the amount of coupling and the degree to which 
the reflectometer disturbs the modes that would be present without the coupling.  
Lumped-element models are very helpful for describing cavities and cavity coupling.  At 
very weak coupling (small aperture), the cavity Q will be limited by the thermal and 
shear boundary layers, or in exceptional cases, by bulk viscosity.  At stronger coupling 
the Q may be controlled by radiation into the reflectometer.  When the Q has equal 
contributions from these two sources, the coupling is said to be critical.  Acoustic cavities 
have been used to make very precise measurements of the thermodynamic properties of 
gasses and liquids. 
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Gas Physics 
The phase velocity in a uniform waveguide is very close to the free-space sound 

velocity: 
 

ρ∂
∂

=
pvs , 

 
where the derivative of pressure with respect to density is taken under adiabatic 
conditions.  For an ideal gas, is independent of pressure at constant temperature and 
proportional to the square root of absolute temperature at constant pressure.  The small 
pressure dependence of the sound velocity at constant temperature in real gasses can be 
used to measure the second virial coefficient, which parametrizes deviations from ideality 
in the equation of state.  The sound velocity also varies inversely as the square root of the 
molecular weight, so it depends dramatically on gas composition at constant temperature 
and pressure. 

sv

 
The attenuation in a waveguide provides access to the shear viscosity and the 

thermal diffusivity, through the shear and thermal boundary layer thicknesses.  However, 
these two effects are of similar magnitude and are difficult to disentangle.  In a cavity, Q 
values of the different modes can depend differently on the two boundary layer 
thicknesses.  In particular, the breathing mode of a spherical cavity has no tangential 
acoustic velocity at the boundary, and thus no losses due to the shear viscosity. 
 
Wall Attenuation 
 The Kirchhoff-Helmholtz attenuation theory applied to perfectly smooth walls.  
What happens if the walls are very rough, say lined with sand paper?  Does it have the 
same frequency dependence as it has with smooth walls? 
 
Absorbing Materials 
 Many kinds of sound absorbing materials are used in architectural acoustics and 
in other engineering areas, such as vehicle design.  These include, plastic foams, fabrics, 
porous ceramics, and various kinds of composite structures.  Some commercial sound 
absorbing materials are characterized by reflectometry.  The parameter that is usually 
reported is given the symbol α  and called the ‘normal incidence sound absorption 
coefficient.’  In our notation it is given by 
 

21 S−=α  
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Terminators and Attenuators 
            In electronics, resistive terminators and attenuators with impedances and 
connectors matched to standard transmission lines are commonplace.  They can have 
excellent properties and work over many decades of frequency.  For example, co-axial 
terminators are available with return loss (magnitude squared of the reflection 
coefficient) less than -50 dB from dc to 5 GHz.  Nothing like this exists for acoustic 
waveguides; even rather crude terminations working over several octaves are difficult to 
make and bulky.  In the experimental literature one typically finds long line sections 
stuffed with absorbers such as cotton or steel wool.  Is there a better way to make these 
components? 
 
Acoustic Amplifiers 
 Woodwind musical instruments are acoustic oscillators.  Like all oscillators, they 
have a gain element and a resonator.  The resonator is a cylindrical waveguide, in some 
cases straight and in some tapered.  The amplifier is either an air-jet (flutes, recorders, 
whistles, etc.) a reed (clarinet, oboe, saxophone) or a lip reed (trumpet, trombone).   To a 
first approximation, the resonator is open at the amplifier end for an air-jet instruments 
and closed for reeds and lip reeds.  The blowing end of a woodwind can be attached to a 
reflectometer.  When pressure is applied to the mouthpiece, a reflection coefficient 
magnitude greater than one indicates that the amplifier has gain.  Measurements can be 
made as a function of frequency, blowing pressure, and incident amplitude.  The reed and 
lip reed amplifiers are very non-linear, so strong harmonics will be present in the 
reflected wave. 
 
Vector Network Analyzer and S-parameters 
 The AcousticVNA hardware can be used with any number of ports, and the 
Presonus Firepod and FP-10 can be daisy-chained up to three units, for up to 24 
microphone channels.  However, the AVNA Lab v1.0 software only supports a single 
port.   
 
Pulse Propagation 

The hardware allows for arbitrary waveforms to be played, including pulses.  
However, you should not expect the measured pressure pulse to duplicate the played 
waveform, because of frequency dependence in the compression driver.  It may be 
possible to write software that adjusts the played waveform adaptively to achieve a 
desired pulse shape at the first microphone.  Alternately one could try to characterize the 
transfer function from the played waveform to the acoustics pressure, and use this 
information to compute waveforms that will generate desired acoustic pulse shapes.  To 
avoid problems from the latency, it would be necessary to record the voltage applied to 
the compression driver with an unused microphone channel. 
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Stochastic Excitation 
 In so far as the system of interest is perfectly linear, there is no need to study just 
one frequency at a time, as is done with the AVNA Lab v1.0 software.  The opposite 
approach is to use a very broadband waveform, such as random or pseudo-random noise.  
The most commonly specified standard method for characterizing acoustics materials 
uses a stochastic waveform (ASTM Standard E 1050-98), and a two-channel FFT 
analyzer to extract correlations between microphones.  This method, or a version of it 
extended to more microphones, could be implemented with the AcousticVNA system. 
  
Flow 
 In a flowing medium, the sound velocity relative an external stationary reference 
frame is offset by the vector flow velocity.  One approach to studying such situations 
would be to inject gas between the compression driver and the microphone section, let it 
flow through the microphone section, and then out through an open end.  This allows one 
to study the effect of changes in flow without any change in geometry, and avoids the 
possibility of damaging pressure build-up. 
 
Coupled Mechanical-Acoustic Systems 

The strong resonance present in the calibration cell is due to a coupled system 
involving the loudspeaker diaphragm, the compliance of air in the cell, and also the 
external electrical circuit.  To study these effects in a controlled way, the apparatus can 
be set up as a reflectometer and a second compression driver can be used at the object 
under test.  The reflection coefficient of the second driver will depend on the electrical 
impedance connected to its terminals.   

 
Finite-Element Calculations 
 Finite element calculations can be used to solve the Helmholtz equation and to 
predict reflection coefficients of both simple and complex geometries.  Calculations in 2-
d are simpler and more precise than those in 3-d.  For cylindrically symmetric situations, 
the Helmholtz equation can be solved on a constant-theta plane in 3-d cylindrical 
coordinates.  The PDE Toolbox in MATLAB has enough flexibility to solve such 
problems.  Problems involving radiation into free space require some kind of absorbing 
boundary condition, so they are more difficult than closed problems.  Attenuation can be 
handled most simply by adding a dissipative bulk term to the equations, but dissipative 
boundary conditions can also be implemented.   
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6. AVNA Lab v1.0 Software Reference 
 

In this chapter we describe the MATLAB scripts and functions that comprise 
AVNA Lab v1.0.  The routines are primarily aimed at measuring the reflection 
coefficient as a function of frequency by playing and recording sine-wave bursts.  One 
burst is played and recorded at each frequency in a list.  The frequency list is chosen at 
the time of calibration, and then inherited by the other routines from the calibration file.  
One can create any number of calibration files, each with a different frequency list.   
 

This preliminary version of the code is limited to one-port measurements. 
             
6.1  Overview 
             

The main data acquisition and analysis work-stream depends on four functions 
which are used in the sequence: calibrate → acquire → wavefit → reflect.  
Each of these routines gets an input file from the previous routine in the stream, and 
provides an output file for the next routine, except that calibrate needs no input file.  
To identify the different kinds of files, we use the name of the variable that contains the 
file name string, which is always the same for a given kind of file.  For example, the 
variable containing the name string of a calibration file is named calfile, and we refer 
to this kind of file as a calfile.  In cases where we need to refer to more than one file 
of this kind, we use calfile1, calfile2, etc..  Of course, when the routines are 
actually used, variables in the argument lists that contain file names can be given any 
name, as can the files themselves. 

 
The input and output files for each of the main work-stream routines are given in 

Table 6.1.  Each kind of file contains a single data structure.  To help identify the 
different kinds of structures, we give each one a fixed name.  For example, the data 
structure contained in a calfile is called caldata.  As for files, we append an 
integer if we need more than one structure of a particular kind; for example caldata1 
and caldata2. 

 
The process starts with calibrate, which performs a relative calibration of 

microphones in a calibration cell.  Calibrate creates a calfile, which contains the 
data structure caldata.  Next, acquire plays sine-bursts and measures the resulting 
phasor (complex amplitude) of each microphone at each frequency, using the relative 
calibration to correct the data.  The results of acquire are stored in a datafile, 
which contains the data structure phasordata.  The routine wavefit uses the results 
of acquire to find left- and right-going complex wave amplitudes, the phase velocity, 
and the attenuation constant at each frequency.  These results are saved in a wavefile 
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containing the structure wave.  Finally, the results of wavefit are used by reflect 
to compute the reflection coefficient, which is saved in a reflfile containing the 
structure refl. 

 
Function Input File Input  

Data Structure 
Output File Output  

Data Structure 
calibrate -- -- calfile caldata 
acquire calfile caldata datafile phasordata 
wavefit datafile phasordata wavefile wave 
reflect wavefile wave reflfile refl 

 
Table 6.1.  Main routines with their files and data structures. 

 
In addition to the main work-stream routines, there are four other top-level 

routines.  The script scope is used to interactively play, record, and view single sine-
bursts of any frequency, amplitude, or duration.  It is used for hardware set-up and debug.  
The function defaults creates a data structure called params whose fields describe 
the current hardware configuration.  This data structure is needed as input to several of 
the other routines.  Files of the types calfile and datafile may be viewed or 
compared using viewdata, and files of the type wavefile may be viewed using 
viewwaves. 

 
There are five other functions which are used by the top-level routines, and which 

can also be called directly by the user to perform lower-level functions.  These are 
burst, playrecord, fourier, sweep,  and spectrum. 

 
Finally, there are four functions in a private folder.  In MATLAB, functions in 

private folders are only for use by routines in the folder directly enclosing the 
private folder.  Three of the private functions (wavefcn2, wavefcn3, 
wavefcnlocal) are called by wavefit, and the other (reflfcn) is called by 
reflect. 

  
All of the AVNA Lab routines read and write files in MATLAB’s own .mat data 

format.  MATLAB includes mechanisms for accessing .mat files from other software 
systems, and for writing files in other formats, should the need arise.  AVNA Lab reads 
and writes files only to the current directory.  Name strings for the files are always given 
without the .mat extension.  
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In AVNA Lab, phasors (complex amplitudes) are converted to sinusoids by 
multiplying by )exp( tiω+ and taking the real part. 

 
 

6.2  Data Structures 
 
params 
Contains parameters describing the hardware configuration. 
Created by: defaults 
Fields: 
params.playdevice      

integer, the play device number used by pa_wavplay drivers. 
params.recdevice       

integer, the record device number used by pa_wavplay drivers 
params.devicetype      

device type used by pa_wavplay drivers, see help file for pa_waveplay 
params.fsamp           

integer, sampling rate for play and record, allowed values determined by 
hardware 

params.nchan           
integer, number of record channels 

params.firstchan       
integer, channel number of first record channel, other channels are consecutive 

params.latency         
The latency correction parameter, which should be set to the actual time in 
seconds that the start of playing is delayed relative to the start of recording, when 
simultaneous play and record are desired. 

params.micscale        
distance from first mic to last mic in meters 

params.miclocs         
A row vector of dimensionless mic locations.  Must start with 0.0, and end with 
1.0, and must have params.nchan elements 

params.micoffset       
The distance in meters from the fiducial plane to first microphone.  The fiducial 
plane is the face of the left flange (end closest to driver) of the microphone 
section. 

 
caldata 
Calibration data structure, contained in a calfile. 
Created by: calibrate 
Fields: 
caldata.phasors     

complex amplitudes for each frequency and channel 
            number of rows = number of frequencies 
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            number of columns = number of channels 
caldata.freqs       

column vector of frequencies 
caldata.params      

the parameters data structure passed to calibrate 
caldata.level       

burst amplitude 
caldata.duration    

burst duration in seconds 
caldata.timestamp   

time of creation of the file containing this structure 
 
phasordata 
Data structure for measured microphone phasors, contained in a datafile. 
Created by: acquire 
Fields: 
phasordata.phasors     

complex amplitudes for each frequency and channel 
number of rows = number of frequencies 
number of columns = number of channels 

phasordata.freqs       
column vector of frequencies, taken from the calibration file 

phasordata.params      
the parameters data structure passed to acquire 

phasordata.level       
burst amplitude 

phasordata.duration    
burst duration in seconds 

phasordata.calfile 
 string, name of the calfile passed to acquire 
phasordata.timestamp   

time of creation of the file containing this structure 
 
wave 
Data structure for the fit wave amplitudes, contained in a wavefile. 
Created by: wavefit 
Fields: 
wave.Ramp             

Complex wave amplitude for the right-going wave, a column vector with one 
entry for each frequency. 

wave.Lamp             
Complex wave amplitude for the left-going wave, a column vector with one entry 
for each frequency. 

wave.vphase           
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Column vector containing the phase velocity at each frequency.  In some methods 
it is fit independently at each frequency; in others it is fixed or calculated from a 
number of fit quantities. 

wave.atten            
Column vector containing the attenuation constant at each frequency.  In some 
methods it is fit independently at each frequency, in others it is calculated from a 
number of fit quantities. 

wave.phasors          
The fit phasors.  The fitting routine adjusts the wave amplitudes and propagation 
parameters so that the fit phasors are as close as possible to the data phasors in the 
input structure phasordata.  The number of rows is equal to the number of 
frequencies and there is one column for each channel.  This is the same format as 
in phasordata.phasors. 

wave.global           
A cell array containing any quantities that are fit along with the wave amplitudes. 
These quantities are global in the sense that they apply to all frequencies.  The 
format is:  {'name1',value1,'name2',value2,...}  There may be any number of 
name, value pairs. 

wave.freqs           
column vector of frequencies, same as input frequencies in 
phasordata.freqs 

wave.params          
the parameters data structure input to wavefit 

wave.datafile         
a string, the name of the datafile passed to wavefit 

wave.method           
fitting method, the string passed to wavefit named method 

 
refl 
Data structure for the reflection coefficient, contained in a reflfile. 
Created by: reflect 
Fields: 
refl.reflcoef    

complex reflection coefficient, a column vector with one entry for each frequency 
refl.freqs       

column vector of frequencies, inherited from input structure wave 
refl.refplane    

location of the reference plane, measured in meters from the fiducial plane. 
refl.wavefile    

name of the input wavefile 
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6.3  Acquisition and Analysis Functions 
 
calibrate(params,level,duration,firstf,lastf,nf,calfile) 

 
Performs relative calibration of microphones placed at a common reference plane. 

 
Routine type: M-file function 
Returns: caldata data structure 
Reads: nothing 
Writes: a calfile containing caldata data structure 
Uses: sweep 
Argument list: 
params 
 hardware configuration parameters data structure 
level 
 real number, amplitude of played sine-wave burst 
duration 
 real number, duration in seconds of played sine-wave burst 
firstf 
 real number, first frequency 
lastf 
 real number, last frequency 
nf 
 integer, number of frequencies 
calfile 
 string, name of output calfile without .mat extension 
 

The routine calibrate plays a sine-wave burst at the frequency firstf while 
recording each microphone channel, and finds the phasor (complex amplitude) for each 
microphone.  It then repeats these steps at the next frequency, continuing for a total of nf 
frequencies ending with lastf.  The frequencies are uniformly distributed on a 
logarithmic scale.  (See comments in code for linear scale.) Once all phasors have been 
measured, calibrate writes an output file in the current directory with the name 
contained in the variable calfile. The output file contains the caldata data 
structure.  If the output file already exists in the current directory, calibrate reports 
an error and returns without doing anything.  Normally calibrate is used when the 
microphones are at a common reference plane in a calibration cell.  However, it may be 
used any time to play bursts and measure the resulting phasors without normalizing to a 
pre-existing calibration.   
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acquire(params,level,duration,calfile,datafile) 
 

Plays sine-bursts at a series of frequencies, records microphones, measures the 
microphone phasors at each frequency, and calibrates the phasors. 
 
Routine type: M-file function 
Returns: phasordata data structure 
Reads: a calfile containing the data structure caldata 
Writes: a datafile containing the phasordata data structure 
Uses: sweep 
Argument list: 
params 
 hardware configuration parameters data structure 
level 
 real number, amplitude of played sine-wave burst 
duration 
 real number, duration in seconds of played sine-wave burst 
calfile 
 string, name of input calfile without .mat extension 
datafile 
 string, name of output datafile without .mat extension 
 

The routine acquire plays a sine-wave burst at a list of frequencies while 
recording each microphone channel, and finds the phasor (complex amplitude) for each 
microphone and frequency.  The frequencies are obtained from the frequency list in the 
input calibration file.  The phasors in the input calibration file are normalized by dividing 
them by the first-channel calibration phasor at each frequency.   The phasors measured by 
acquire are calibrated by dividing them by the corresponding normalized calibration 
phasor.  Finally, acquire writes an output file in the current directory with the name 
contained in the variable datafile. The output file contains the phasordata data 
structure.  If the output file already exists in the current directory, acquire reports an 
error and returns without doing anything.  The name of the input calibration file is 
contained in the variable calfile.  An error is also reported if the input calibration file 
does not exist, or if the number of channels in the input calibration file does not agree 
with the number of channels specified in the params data structure that is passed to 
acquire. 
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wavefit(params,method,datafile,wavefile) 
 

Finds the right- and left-going wave amplitudes that best model the phasors 
contained in the input file.  Also finds the best-fit phase velocity and attenuation. 
 
Routine type: M-file function 
Returns: wave data structure 
Reads: a datafile containing the data structure phasordata 
Writes: a wavefile containing the wave data structure 
Uses: private functions wavfcn3, wavfcn2, wavfcnlocal 
Argument list: 
params 
 hardware configuration parameters data structure 
method 
 String specifying the fitting method.  Implemented methods are '3param', 

'2param' and 'local'. 
datafile 
 string, name of input datafile without .mat extension 
wavefile 
 string, name of output wavefile without .mat extension 
 
 The routine wavefit finds the right- and left-going complex wave amplitudes, 
the phase velocity and the attenuation constant that best fit the phasor data in the input 
file (see Equations (4.1) and (4.2) for the form of a general wave).  Here and elsewhere in 
AVNA Lab, right-going always refers to propagation away from the compression driver, 
regardless of the actual orientation of the microphone section.  The name of the input data 
file is passed in datafile.  The output data structure wave is written to the file whose 
name is passed in wavefile.  Several fitting methods are implemented and these are 
selected by the input string variable named method.  In all methods, no constraint is 
placed on the values of the right- or left-going wave amplitudes and no relation between 
them is assumed.  The three implemented fitting methods are:   
 
'3param' fits the wave amplitudes at each frequency, and fits three global parameters 
to model the  phase velocity v and the attenuation α : 
 

)/1(    , ωδωβα ss vvv −== , 
 
 The three fit parameters are the free-space sound velocity , and the coefficients sv β  and 
δ .  According to the Helmholtz-Kirchhoff theory, β  and δ  are equal, but in this method 
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they are treated as independent parameters.  (In air under standard conditions, for a 
25 mm I.D. tube, Helmholtz-Kirchhoff theory predicts .) 1/214 s m 105.9 -−⋅≅= βα

 
'2param' fits the wave amplitudes at each frequency, and fits two global parameters 
used to model the propagation constant at all frequencies.  The two fit parameters are the 
phase velocity, assumed to be independent of frequency, and the β  coefficient of the 
attenuation, defined above. 
 
'local' fits the wave amplitudes, the phase velocity and the attenuation constant 
independently at each frequency.   
 

In all methods, the values of the fit attenuation and phase velocity at each 
frequency are reported in the wave data structure fields wave.atten and 
wave.vphase. 
 

An output file is written to the current directory using the name contained in the 
variable wavefile. The output file contains the wave data structure.  If the output file 
already exists in the current directory, wavefit reports an error and returns without 
doing anything.  The name of the input data file is contained in the variable datafile.  
An error is also reported if the input data file does not exist in the current directory, or if 
the number of channels in the input data file does not agree with the number of channels 
specified in the params data structure that is passed to wavefit. 
 
 
reflect(wavefile,reflfile) 
 

Calculates the reflection coefficient and plots it, both on the complex plane and as 
magnitude and phase versus frequency. 
 
Routine type: M-file function 
Returns: refl data structure 
Reads: a wavefile containing the data structure wave 
Writes: a reflfile containing the refl data structure 
Uses: private function reflfcn 
Argument list: 
wavefile 
 string, name of input wavefile without .mat extension 
reflfile (optional) 
 string, name of output reflfile without .mat extension 
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The routine reflect is used to calculate, plot, and store the reflection 
coefficient.  The input wavefile must contain a wave data structure.  If the input file 
is not present in the current directory, an error will be reported.  When the reflection 
coefficient plots have been displayed, the user is prompted to type a new value for the 
reference plane location (in meters).  After it is entered the plots are updated.  This 
continues until the user types 'q' to quit or 's' to save the refl data structure to a 
reflfile.  The file name variable reflfile is an optional input parameter.  If it is 
specified, the file it names must not already be present in the current directory, or else an 
error will be generated.  See the code comments to change the default starting location of 
the reflection plane.  The reflection plane location is measured from the fiducial plane, 
which is at the face of the flange at the driven end of the microphone section.  See the 
section on the params data structure for additional geometry information. 
 
6.4  Auxiliary Routines 
 
scope 

 
Plays a sine-wave burst and records all channels, plots played and recorded 

waveforms, plots recorded spectrum, prompts user to change a parameter, and repeats. 
 
Routine type: M-file script 
Reads: nothing 
Writes: nothing 
Uses: defaults, burst, playrecord, spectrum 
 
 The script scope is used to interactively play and record sine-wave bursts while 
adjusting parameters of the burst, the hardware levels,  and the correction for latency.  
The script takes no parameters and is invoked simply by entering scope at the command 
line.  First, scope calls defaults to bring the default params data structure into the 
workspace. Then, a sine-wave burst is played and all channels are recorded, using the 
hardware configuration specified in params.  Default values for the burst amplitude, 
duration and frequency are coded in the M-file.  The first 5% and last 5% of the burst 
duration are smooth transitions with a sine-squared envelope.  Plots are created of the 
played time-series, the recorded times-series and a flat-top windowed spectrum of the 
recorded time-series.  Finally, scope prompts the used to enter a command.  After a 
command is entered, scope plays and records another burst and updates the plots.   
 

Recognized commands are 'r' to rescale the plots, 'q' to quit the script, or any 
valid MATLAB command.  Some useful MATLAB commands are: 
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level=0.5    change the burst amplitude to 0.5 
dur=2.0    change the burst duration to 2.0 seconds 
freq=1345    change the burst frequency to 1345 seconds 
params.latency=0.015 change the latency correction to 15 ms 
 
These commands only change the values of variables currently in the workspace.  To 
change the default values that will be used when scope is next invoked, edit the 
scope.m file for level, dur, and freq, or the defaults.m file for any of the 
params fields. 
 
 Both the play time-series and the record time-series are pure numbers to the 
AVNA Lab software.  The connection between the pure numbers and the actual sound 
pressure levels are determined by the digitizer hardware, the input and output gain 
settings, the compression driver, and the microphones.  Generally, clipping or saturation 
on both record and play occur when the record and play time-series values are near 1.0.  
Clipping and saturation can be checked by examining the spectrum plot.   
 

The spectrum plot is also useful for measuring fundamental and harmonic 
amplitudes.  No special relationship between the burst frequency and the sampling rate is 
required for accurate amplitude measurements because a flat-top window is used with 
very small ‘picket-fence’ errors. 
 
 The best value for the latency correction parameter params.latency can be 
found by examining the two time-series plots.  When a sine-burst is played, the played 
samples always start slightly after the start of the recorded samples.  To correct for this, 
recording is continued for the play duration plus an additional time interval given by 
params.latency.  Then, the first params.latency time interval of the recorded 
time-series is deleted.  The plots generated by scope show the played time-series and 
the time-shifted recorded time-series.  The value of params.latency should be 
adjusted until the two plots are aligned to within 10 ms.  Then, the defaults.m file 
should be edited to set the correct default value of params.latency. 
 
 
defaults 

 
Creates a params data structure with default parameter field values that specify 

the hardware configuration. 
 

Routine type: M-file function 
Returns: params data structure 
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Reads: nothing 
Writes: nothing 
Uses: nothing 
Argument list:  none 
 
 The function defaults returns the params data structure defined in Section 
6.2.  The function name can be passed directly to other AVNA Lab routines that require 
the params data structure as input.  For example 
 
>> acquire(defaults,0.5,2.0,'cal21','dat21') 
 
passes the params structure to acquire.  The default values of the params fields 
can be changed by editing defaults.m.  Several versions of defaults (for example 
defaults4ch, defaults6ch,…) can be created if several hardware configurations 
are in use.  Note, however, that scope calls defaults directly and will always use the 
version named defaults.  No other routines call defaults directly. 
 
 
viewdata(datafile1,datafile2) 
 

Creates graphs of the phasors in a datafile or a calfile, or creates graphs 
comparing two files of either type. 
 
Routine type: M-file function 
Returns: nothing 
Reads: one or two files of type datafile or wavefile 
Writes: nothing 
Uses: nothing 
Argument list: 
datafile1 

String, name of input datafile without .mat extension.  May also be a 
calfile. 

datafile2 (optional) 
String, name of input datafile without .mat extension.  May also be a 
calfile. 

 
 The routine viewdata displays graphs of the phasor data contained in files of 
type datafile or calfile.  If two file names are given, the data in the two files are 
compared.  Only the .phasors and the .freqs fields of the data structures in the 
files are used, so any files containing a single data structure with these fields can be used 
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as input.  Errors are generated if a specified file does not exist, or if two files are specified 
but they cannot be compared.  For files to be compared, the .phasors fields must be of 
the same size (same number of channels and frequencies), and corresponding frequency 
values in the .freqs fields must agree to within 0.01 Hz.  
 

If one file is specified, viewdata displays three graphs: 1) phasor magnitudes, 
2) phasor magnitudes normalized to the first channel, and 3) phase relative to the first 
channel.  Each quantity is plotted versus frequency with separate colored-coded curves 
for each channel.  Colors are assigned to channel numbers sequentially in the standard 
MATLAB order.  If )( fnϕ refers to the nth channel phasor at frequency f, the quantities 
plotted are: 
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If two files are specified, viewdata displays three comparison graphs:  1) the 

ratio of the phasor magnitudes in the second file to the phasor magnitudes in the first file, 
2) the ratio of the normalized magnitudes in the second file to the normalized magnitudes 
in the first file, 3) the phase relative to channel one in the second file minus the phase 
relative to channel one in the first file.  If )(1 fnϕ and )(2 fnϕ refer to the nth channel 
phasor at frequency f in the first and second files, the quantities plotted are: 
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viewwaves(wavefile) 
 

Creates graphs of the data in a wavefile. 
 
Routine type: M-file function 
Returns: nothing 
Reads: one file of type wavefile 
Writes: nothing 
Uses: private function wavefcnlocal 
Argument list: 
wavefile 

String, name of input wavefile without .mat extension. 
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 The routine viewwaves creates graphs for inspecting files containing the wave 
data structure generated by wavefit.  The input wavefile must be present in the 
current directory or an error will be generated.  To compare the fit phasors in the wave 
data structure with the experimentally measured phasors that were used to generate  the 
fit, viewwaves also opens the datafile containing the phasordata structure.  
This file must also be present in the current directory.  The name of the file containing the 
phasordata structure is taken from the field wave.datafile. 
 
The first two graphs show the magnitudes of the right- and left-going wave amplitudes 
versus frequency (see Equations (4.1) and (4.2) for the form of a general wave): 
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Graphs 3) and 4) show the phase velocity v and attenuation α  versus frequency.   
 

The normalized chi-squared for each channel is shown in graph 5).  Its is defined 
as 
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where )( fnϕ are the measured phasors from the datafile, and )(~ fnϕ are the fit 
phasors from the wavefile (the index n runs over the channels). 
 
 Finally, graph 6) is a polar plot of the measured and fit phasors for each channel, 
at the first frequency in the list wave.freqs.  The measured phasors are plotted with a 
black X, and the fit phasors are plotted with a red O.  Also, fit phasors are evaluated at 
100 locations starting at the first microphone and ending at the last one.  These are 
plotted as a red curve on the complex plane. 
 

After all plots are displayed the user is prompted to enter '+' or '-' to scan up 
or down through the frequency list.  Each time the frequency is changed the polar plot 6) 
is updated.  If enter key is held down, the frequency scans rapidly in the direction of the 
most recent change.  Entering 'q' quits the routine. 
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6.5  Lower-Level Functions 
 
burst(params,level,duration,frequency) 
 

Returns a sine-wave burst time-series. 
 
Routine type: M-file function 
Returns: data structure timeseries with fields 
 .samples    

column vector of  samples 
 .times         

column vector of times of the samples, starting at zero 
Reads: nothing 
Writes: nothing 
Uses: nothing 
Argument list: 
params 
 hardware configuration parameters data structure 
level 
 real, amplitude of the sine time-series 
duration 
 real, total duration in seconds of the time-series, including transitions 
frequency 
 real, frequency of the sine-burst 
 
 The function burst creates a sine-wave burst time-series with sine-squared 
envelope transitions at the beginning and end to avoid clicks.  The transitions are each 
5% of total duration. 
 
 
playrecord(params,playseries) 
 

Plays an arbitrary time-series and records multiple channels simultaneously, with 
time-shifting to correct for the latency delay. 
 
Routine type: M-file function 
Returns: data structure recordseries with fields 

.samples    
Recorded samples corrected for latency with one column for each channel.  
The number of samples per channel is the same as number of samples in 
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the input playseries. The number of channels is determined by 
params.nchan. 

 
 .times         

column vector of times of the samples, starting at zero 
Reads: nothing 
Writes: nothing 
Uses: nothing 
Argument list: 
params 
 hardware configuration parameters data structure 
playseries data structure with the fields: 
 .samples 
  time-series column vector to play 
 .times 

times of the samples, starting at 0=t .  (This field may be present but it is 
not used.) 

 

 Plays and records multiple channels simultaneously.  To correct for latency, 
recording is continued for a time params.latency seconds longer than the duration 
of the input playseries, and the first params.latency seconds of the recorded 
time series is dropped.  The play and record sampling rate is determined by 
params.fsamp, not by playseries.times. 
 
 
fourier(params,timeseries,frequency) 
 
 Computes the fourier amplitude, or phasor, of a multi-channel time series at a 
specified frequency. 
 
Routine type:  M-file function 
Returns: phasors, a row vector containing one phasor for each channel in 

timeseries. 
Reads:  nothing 
Writes:  nothing 
Uses:  nothing 
Argument list: 
params 
 hardware configuration parameters data structure 
timeseries data structure with the fields: 
 .samples 
  time-series column vector 
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 .times 
Column vector of times of the samples, starting at 0=t .  (This field may 
be present but it is not used.) 

frequency 
 frequency at which the phasors are to be determined 
 
 To find the phasors, fourier first deletes the first and last 10% of the time-
series, in an effort to eliminate transients.  Next, it trims the time-series so it contains, as 
nearly as possible, an integer number of cycles of the specified frequency.  The time-
series sampling rate is assumed to be params.fsamp.  Then the time-series is 
integrated times a complex exponential at the specified frequency to find the phasor.  
This algorithm requires no special relationship between frequency and the sampling 
frequency, or the time-series duration.  It works well when there are higher harmonics in 
the time series. 
 
 
sweep(params,level,duration,freqs) 
 

Plays a sine-wave burst at each frequency, records multiple channels 
simultaneously, and returns a complex phasor for each frequency and channel. 

. 
Routine type: M-file function 
Returns: data structure phasorseries with fields 

.phasors    
The phasors (complex amplitudes) for each frequency and channel.  The 
number of rows is equal to the size of the input frequency list freqs.  
There is one column for each channel and the number of channels  is equal 
to params.nchan. 

 .freqs         
column vector of frequencies, same as the input frequency list freqs. 

Reads: nothing 
Writes: nothing 
Uses: burst, playrecord, fourier 
Argument list: 
params 
 hardware configuration parameters data structure 
level 
 amplitude of each sine-wave burst 
duration 
 duration of each sine-wave burst 
freqs 

59 



column vector of frequencies 
 

 The function sweep measures phasors for multiple channels using sine-wave 
bursts.  The input frequency list freqs need not be ordered and can contain repeated 
frequencies.  Accurate phasors are measured for arbitrary frequencies below the Nyquist 
limit.  There does not need to be any special relationship between the sine burst 
frequency, the sampling frequency, and the burst duration. 
. 
 
spectrum(params,timeseries) 
 

Computes the magnitude spectrum of a time-series using the FFT and a flat-top 
window. 
 
Routine type:  M-file function 
Returns: spectseries data structure, containing the fields: 

.mags 
An array of measured magnitudes with one column for each channel in 
timeseries and number of rows equal to the size of .freqs field. 

.freqs 
Column vector of frequencies corresponding to the entries in .mags.  The 
first frequency is zero and the last frequency is exactly the sampling 
frequency divided by 2. 

Reads:  nothing 
Writes:  nothing 
Uses:  nothing 
Argument list: 
params 
 hardware configuration parameters data structure 
timeseries data structure with the fields: 
 .samples 
  column vector of samples 
 .times 

Column vector of times of the samples, starting at 0=t .  (This field may 
be present but it is not used.) 

 

The function spectrum uses a Fast Fourier Transform with a flat-top window to 
compute the magnitude spectrum of timeseries.  No phase information is provided 
and the frequency resolution is relatively poor, but amplitudes can be measured 
accurately with very little ‘picket fence’ error.  Before computing the spectrum, 
fourier removes the first and last 10% of the time series to allow for transients.  Then 
one sample is dropped if necessary to leave an even number of samples, which centers 
the last frequency bin at exactly one-half the sampling rate.   Finally, the time-series is 
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windowed, transformed, and the magnitude is computed.  The normalization factor used 
adjusts the spectrum so that it gives the amplitude of a sinusoidal time-series, not the rms 
value.  The time-series sampling rate is assumed to be params.fsamp. The sample 
times in timeseries.times are not used. 
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7. Hardware Reference 
            
7.1  Mechanical Drawings 
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 Figure 7.1.  Calibration Cell 
 
 
 

25 mm flange to 1-inch driver
brass
standard ID 0.9843 = 25.0 mm
inside thread to fit Selenium D210 Ti driver
thread sealed with PTFE tape

John Price
9/8/07

0.
98

4

1.
03

0

1.
57

0

0.120

0.280

0.1000.550

1-3/8 - 18

1.
16

0

15 deg

0.630

 
 
 
           Figure 7.2.  Compression Driver Adaptor 
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 Figure 7.3.  25 mm Flange, Seal, Closed End 
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25 mm 6-position microphone section
brass flange
flange press-fit to CPVC sched. 80 pipe reamed to ID
standard ID 0.9843 = 25.0 mm
alternate ID 0.9688 to match 0.972 recorder ID

A =0.9237 (inches) 
B =3.2990
C =5.1920
D =8.0151

John Price
9/8/07

drill and ream 6 places 
21/64 = 0.3281
press fit mic mount

1.969 (50.0 mm)

11.811 (300.0 mm)

approx. 70 mm
A

C

D
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 Figure 7.4.  Microphone Section 
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