Linear-response reflection-coefficient of the recorder air-jet amplifier

John Price

Department of Physics, University of Colorado, Boulder
john.price@colorado.edu

William Johnston
Colorado State University and Baker Hughes, Inc.

Daniel McKinnon *Exponent, Inc.*

Recorder geometry

- 2. block
- 3. lip
- 4. upper chamfer
- 5. lower chamfer

$$W/h \approx 4$$
 $Re = \frac{hU_0}{v} \approx 500 - 2500$

→ Jet is laminar

- Fixed duct
- Laminar jet
- We try to measure linear response
- → Simplest flute-drive system

Reflectometer method

Instrument assembled $S_h S_p = 1 \rightarrow$

Pipe-tone oscillation condition: $|S_h|^2 > 1$.

Connect head to an absorbing termination →

Edge-tone oscillation condition: $S_h \rightarrow \infty$.

Apparatus I

Calibration cell

|S_h| at zero mean pipe flow

Phase of S_h at zero mean pipe flow

Linear model

Powell (1953, 1961), Cremer & Ising (1967),

Elder (1973), Fletcher (1976),...

Verge, Hirschberg, Causse, JASA (1997)

Fabre, Hirschberg, Acustica (2000)

$$q_j = J(\omega)(\alpha_p q + \alpha_j q_j)$$

$$Z_h = \frac{p}{q} = r + i\omega M_1 + i\omega M_d \frac{1 + (\alpha_p - \alpha_j)J(\omega)}{1 - \alpha_j J(\omega)} + i\omega M_2$$

$$S_h = \frac{Z_h - Z_0}{Z_h + Z_0}$$

follow Verge
$$\begin{cases} \alpha_p = 2/\pi \\ \alpha_j = 0.38 \\ M_d = 0.88 \rho/H \\ Z_0 = \rho c/(\pi R^2) \end{cases}$$

$$M$$
 is fit at $J = 0$ $M = M_1 + M_d + M_2$

Jet model

Fletcher, JASA (1976) Nolle, JASA (1998)

jet gain parameter g

$$J(\omega) = -g \frac{U_o}{W} \frac{1}{i\omega} (1 - e^{\mu \widetilde{W}} e^{-i\omega \widetilde{W}/c_p})$$

$$U(y) = U_0 sech^2(y/b)$$
 Bickley jet profile with $b = \frac{2}{5}h$ (follow Verge)

$$\widetilde{W} = W + d$$

Jet path length includes chamfers

$$Stb = \frac{\omega b}{U_0}$$

Jet transfer function $J(\omega)$ (for g = 1)

|S_h| at zero mean pipe flow

Phase of S_h at zero mean pipe flow

|S_h|=1 points at zero mean pipe flow

Normal playing region is bounded by measured $|S_h|=1$

|S_h| versus mean pipe flow

Conclusions

- Linear-response reflection measurements on an unmodified recorder head are possible for mean pipe flow ≈ 0 and for mean pipe flow ≈ jet flow.
- Mean pipe flow can be used to control the jet gain g.
- With an absorbing termination, the head shows edge-tone oscillations for intermediate values of mean flow. The oscillation frequency is very close to the frequency of the gain peak. Edge-tone oscillations disappear at high incident amplitudes.
- The linear model after Verge shows fair agreement with the data. A jet deflection model gives g = 0.58 but data fits g = 0.145. Jet phase velocity c_p is too large at higher St.. Effects of chamfers? Segoufin JASA (2004), Giordano JASA (2014).
- The observed $|S_h| = 1$ boundary at St = 0.27 agrees closely with the low-blowing-pressure boundary for pipe-tone oscillations under normal playing conditions.

Supplemental Slides

Questions

- Can the linear model be refined for linear-response conditions? (Is the jet gain really too large? Why are the higher $|S_h| = 1$ boundaries at wrong St? Can parameter estimates be improved?)
- Can this measurement method be used to characterize gainsaturation? Could we then infer a useful model of the head that could help explain the observed limit cycles?
- Can the linear model be extended to describe pipe-tone and edge-tone saturation behavior?

Some questions in recorder acoustics

Dynamics

Can we model periodic limit cycles vs blowing pressure and fingering?

Can we understand multiphonic limit cycles?

Can we understand why some notes "sound" more easily?

Structure

What is the role of chamfers?

What is the role of windway length and curvature?

What is the role of lip asymmetry?

Why do some instruments "burble"?

Why do fingering patterns of recorders differ from those of traversos?

Modeling

How well do existing lumped models work?

Can gain saturation be understood using lumped models?

What are useful observables for computational experiments?

Kinds of experiments

Complete instrument

Radiated steady sound field vs. blowing pressure, geometry amplifier saturated

Internal steady sound field vs. blowing pressure, geometry

Flow visualization

Transients

amplifier saturated amplifier saturated

amplifier saturated

briefly unsaturated

Instrument in parts

Free jets no amplifier

Embouchure impedance (transverse flute) no amplifier

Unblown normal modes no amplifier

Tone hole properties, tone hole arrays no amplifier

Central jet velocity U₀

Assume Poiseuille profile at the duct exit.

→ must measure jet flow

Reflectometer method I

- 1. When the instrument is assembled $S_h S_p = 1$ or $Z_h + Z_p = 0$.
- 2. If the system is linear, solutions for real ω give oscillation thresholds.
- 3. The pipe is passive and almost lossless: $\left|S_p\right|^2 \lesssim 1$. This implies:

Pipe-tone oscillation condition: $|S_h|^2 > 1$.

Reflectometer method II

- 1. Measure S_h with a matched transmission line and signal source. A microphone array on the line is used to infer φ_{in} and φ_{out} . The experimenter can control the wave amplitude, frequency and the mean pipe flow.
- 2. With an absorbing termination, the system only oscillates when $S_h \rightarrow \infty$

Edge-tone oscillation condition: $S_h \to \infty$.

Coltman JASA (1968): impedance head & tuner, transverse flute, in saturation Thwaites & Fletcher JASA (1983): "slotted line" SWR method, flue pipe, linear response