Quantum Tunneling Overview

Introduction

At the heart of quantum mechanics is the idea that matter behaves as both a wave
and a particle. Experimental evidence from approximately 1900 through present
day shows that as we look more closely at the behavior of very small things, such
as molecules, atoms, and fundamental particles, the intuitive classical predictions of
how matter should behave are not adequate in predicting the results of experiments.
Perhaps the most fundamental reason for this is that these small particles were cla-
sically treated as point-like objects whose position and momentum can be predicted
with absolute certainty. It was not until the leading physicists of the early 20th cen-
tury started toying with the idea that these very small objects may behave as waves
at certain times and particles other times that they began predicting the results of
experiments.

One of the interesting findings of quantum mechanics is that, due to the wave-like
nature of matter, small particles can be found in places that would classically be
forbidden. This phenomenon is called “quantum tunneling”, and it has allowed for
new technologies to be developed throughout the 20th century. Such applications are:
the scanning-tunneling microscope, tunneling diodes, tunneling field-effect transistors,
and the understanding of radioactive decay (which, for example, powers any nuclear
power plant). This phenomenon not only demonstrates the ‘strangeness’ of quantum
mechanics, but also plays a fundamental role in society, and is therefore an important
subject in any quantum mechanics course. In the rest of this paper, we describe in
greater detail what tunneling is, and how it can be treated mathematically.

Basics of Quantum Mechanics

Energy barriers are ubiquitous in physics. A skate board ramp, an electronic circuit
element, a material’s emission properties, and much more, can be described with the
concept of an energy barrier. For example, a skateboard ramp provides a gravitational
energy barrier for the skater, such that while the skater is on the ramp, his/her energy
is constrained by the ramp. Similarly, a circuit element can provide an energy barrier
for electrons, such that only electrons with a certain energy may cross the circuit
element.

Quantum tunneling is a problem that involves an energy barrier. Specifically, this
barrier tells us about how a quantum particle (such as an electron or proton or small
molecule), can be spatially and temporally located within a region of space. One
barrier to consider is the one shown in Figure 1. In this figure, three ‘regions’ exist



in one dimension of space (imagine a very small wire, separated by another wire a
distance L away from each other).
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Figure 1: Energy Barrier for a Quantum Particle

In considering how the particle behaves near this barrier, we use the most funda-
mental equation in quantum mechanics: the Schrodinger equation. The Schrodinger
equation describes a quantum particle’s ‘wave function’, analagous to how Maxwell’s
equations describe electric and magnetic fields.
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In the Schrodinger equation, A is a constant, m is the mass of the particle under
consideration, V' (x) is the energy barrier that the particle will see, E is the energy of
the particle, and ¢(z) is the wave function of the particle. The wave function is really
what we want to figure out from this equation. If we know the mass of the particle,
the energy of the particle, and the energy barrier that the particle will encounter, we
can solve for ¢(x), and find what we are looking for. Once we know (), we can
calculate many other properties, and essentially know ‘everything’ there is to know
about the system.

Physically, the wave function tells us something about the probability of finding
the particle in different locations of space. We know that the particle must be located
somewhere in space, and this can be represented in the following way:
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This equation states that by taking the absolute value of the wave function, squar-
ing it, and summing that quantity over all space (or in this case, over an infinitely



long one-dimensional line), we should find that quantity to be exactly equal to 1. In
other words, because the square of the wave function tells us the probability of finding
a particle within a given region of space, if we look for the particle in the entirety of
space, our probability of finding it is 100%. On the face of it, this equation might
not seem to tell us much. However, this property is frequently exploited in quantum
mechanics. Since we can never know the position of a particle with 100% accuracy, we
are forced to use this relationship and say that the particle will certainly be located
somewhere in a select region of space.

Basics of Tunneling

In studying quantum tunneling, we can solve the Schrédinger equation for the energy
barrier shown in Figure 1. We know the energy of the barrier throughout all space
(V(x)), we can pick an energy (E) for the particle, and we can assume that the
particle has some mass that is known (m). With all of this, we can solve for ¢(x) in
each of the three regions.

For Region I and III, V(x) = 0, while in Region II, V(z) is a constant value (we
will call it V5). Mathematically, this is written:
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At this point, we need to know the energy of the electron (F). There are really
three choices for the energy that we care about: the case of E > Vj, the case of
E =1V}, and the case of E < V;,.! The case of E = 0 is one that the tutorial does not
cover, so we do not consider it here.

In the case of both £ > Vj and E < V), we first solve for ¢(z) in each of the three
regions separately. The Schrodinger equation is a second-order equation, so every
time we solve it, we will have 2 unknown quantities. We have to solve this equation
for three different regions in space, so we should expect to have 6 unknown quantities,
for which, we will need boundary conditions to pin down. We can start figuring out
the boundary conditions by think about two constraints on the wave function. The
first of these is: ¥(z = 0)g; = ¥(x = 0)ge and Y(x = L)ge = ¢(x = L)g3, meaning
that the wave function must be continuous across the two boundaries (so that there
can be no discontinuities in ¢ (x). The second constraint is that the slope of the wave
function across these boundaries must also be the same: ¥(x = 0)g; = ¥(x = 0)go

LAlso note that E can never be less than 0, since in such a case, there is no solution to the
Schrédinger equation. We assume that E > 0 for this problem.



and ¢/(z = L)pes = ¢'(x = L)g3.? These two conditions provide ‘boundary conditions’
for solving the Schrodinger equation given in (1).

In the case of both £ > Vj and E < Vj, the solutions for ¢(x) take the same form
in Region I and Region III. We skip over the details of solving this, and simply write
them here:
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where k = /2mFE/h?, and we give different amplitudes (A, B, F and G) for
the two regions to indicate that the amplitudes may be different across the different
regions. Note that these solutions are just sine waves, with one sine wave (the +ikx
term) traveling towards positive x and the other (the —ikx term) traveling towards
negative x. A sum of sine waves simply adds to another sine wave, so the wave
function in both Region I and Region III looks like a sinusoidal wave.

If we consider the case of E > Vf, the solution to the Schrodinger equation in
Region 1T takes the same form as (4), but the constant k is slightly different. We can
write this solution as:

Yrale) = Cese 4 De-har (6)

where ky = /2m(E — V;)/h2. The difference between ky and k is important,
because it tells us something about how the wavelengths in Region I and IIT compare
to the wavelength in region II. Recall that & = 27 /A, where \ is the wavelength of
the sine wave. Because ks < k, we should expect that Ay > A. Therefore the wave
function has a larger wavelength in Region II, so the solution looks slightly different.

In the case of E < Vj, the solution to the Schrodinger equation in Region II no
longer looks like a sine wave. The reason for this is that because Vj is larger than F,
the only acceptable solution in that region takes the form of real exponentials. Thus,
we can write the solution in Region II for £ < Vj as:

Ypro(x) = Ce™ + De™"* (7)

where k = \/2m(Vy — E)/h?. Here, we have a term with exponential decay in =
added to a term with exponential increase in x.

At this point, we have solved the solutions to Schrodinger’s equation in all of the
three regions for the case of £ > Vj and the case of £ < V}. Here, we summarize our
solutions:

2These two constraints are postulates of quantum mechanics; there is really no other way to
explain why we use this.



For E > Vj:
Ae** 1 Be=#*  for x < 0
lx) = { Ceao + Deor for0<a < L (®)
Fe** 4 Ge™™**  forx > L

For E < Vjy:
Aett  Be=** - for x < 0
Y(z) =< Ce® + De ™, for0<ax<L (9)
Fe** 4 Ge=™**  for x > L

As is the process with solving any differential equation, after solving for the general
solutions (as we have now done), we must plug in boundary conditions to solve for
the unknown quantities. In our situation, we now have 6 unknown quantities (A,
B, C, D, F, and G) for both cases of E.> So far, we have discussed four boundary
conditions: the condition that ¢ (z) must be continuous at both z = 0 and = = L
(this gives us two), and the fact that ¢’(x) must be continuous at both = 0 and
x = L. However, we have 6 unknown quantities, so it seems we need 2 more boundary
conditions.

To determine the remaining boundary conditions, we must refer to the physical
situation that we are dealing with. We are interested in a particle approaching the
barrier from either the left side (Region I, moving in the direction of +x) or a particle
approaching from the right side (Region I1I, moving in the direction of -x).

In the first case, we can consider what happens to the particle as it approaches
the energy barrier. Starting with the change in V(x) at x = 0, we can have some
transmission of the wave function, as well as some reflection of the wave function.
Recall that the top equation in (8) and (9) describes the sum of a right-going wave
(corresponding to the coefficient A) and a left-going wave (corresponding to B). By
saying that the wave is coming from Region I, we are essentially saying that at
r — —o0, we are setting the amplitude of A at some constant value. On the other
hand, if we were talking about case 2 (the left-going wave), we would be saying that
at distance r — +o00, we are fixing GG to be a constant value. Therefore, by giving
information about where the particle is coming from, we have provided ourselves one
more boundary condition, and know everything there is to know about A or G.*

If we continue to consider the first case of the wave approaching from Region I,
the barrier at x = 0 can allow for some reflection of the wave, and some transmission

3Note that by unknowns, we are not referring to the energy (E), mass (m), or potential (V(z)),
nor anything that depends on those quantities (such as k, ks, or k). We assume that those quantities
are chosen for our given physical situation, and that we now want to watch what happens.

4Tt may seem strange to say that A or G is now known, when we haven’t set A or G equal to
some quantity. But remember that A and G are just constants; we could arbitrarily rename them
something else, but it won’t make a difference in our calculation at this point.



of the wave. The transmitted wave can then continue to the barrier at x = L, and
some of it can be transmitted and some can be reflected back.> For the wave that
is transmitted to Region III, we can now follow the wave along its path towards
x — +o0o. This wave never encounters a barrier, and because of this, we can say that
there is no reflected wave in this region. Since there is no reflected wave, we know
that G in (8) must be 0 (remember that x and k are non-zero, so the only way to
get rid of this term altogether is to eliminate G). If we were looking at the case of
the wave approaching from the right, we could apply the exact same reasoning and
decide that A — 0, since the left-going wave in Region I never encounters a barrier
to reflect off of.

Let us now summarize what the wave function should look like for these different
cases:

For E >V}, assume the wave is traveling towards the right. In Region I, we have
a sine wave that will be both reflected and transmitted. In Region II, we have another
sine wave (this time with a larger wavelength), which will be both transmitted and
reflected. In Region III, we have another sine wave with the same wavelength as in
Region I, but with no reflection.

For £ < V4, again assume the wave travels towards the right. Region I looks
qualitatively the same as it did for the case of £ > V. In Region II, the solution
becomes a sum of real exponentials, which is dominated by the exponential decay
term. Therefore, the wave function is “dying off” in Region II. This means that in
Region III, though the wave function again appears sinusoidal, the amplitude in this
region is smaller than in Region I.

Also note that this solution to the wave function is not physically real, since it
is not normalized. That is to say that we can not integrage the probability density
over all space and come up with a value that is anything but infinite. (Imagine trying
to integrate a sin®(x) function over all space. The area under the curve is infinite.)
To make this physically real, we would have to use many different solutions to this
problem (i.e. many energy values) so that we could sum those different solutions
into a wave ‘packet’, which can be normalized. The reason we use this non-physical
situation is because it is simpler and still gives a great deal physical intition into the
nature of tunneling.

5Tt is common to worry about the reflected wave in Region II going back and transmitting back
into Region I, and even worse, some of it bouncing back and forth inside the barrier until it decides
to leave at some random time. It might seem like we can’t say exactly where the reflected and
transmitted waves are going to go for all times. Fortunately, we don’t have to worry about this,
since the four boundary conditions mentioned earlier take care of this automatically by forcing v (z)
and v’ (z) to be continuous at x = 0 and L.
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