
Spatial variability in wildfire probability across
the western United States
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Abstract. Despite growing knowledge of fire–environment linkages in the western USA, obtaining reliable estimates of
relative wildfire likelihood remains a work in progress. The purpose of this study is to use updated fire observations during
a 25-year period and a wide array of environmental variables in a statistical framework to produce high-resolution

estimates of wildfire probability. Using theMaxEntmodelling technique, point-source fire observations that were sampled
from area burned during the 1984–2008 time period were related to explanatory variables representing ignitions,
flammable vegetation (i.e. fuels), climate and topography. Model results were used to produce spatially explicit

predictions of wildfire probability. To assess the effect of humans on the spatial patterns of wildfire likelihood, we built
an alternative model that excluded all variables having a strong anthropogenic imprint. Results showed that wildfire
probability in the westernUSA is far from uniform,with different areas responding to different environmental drivers. The
effect of anthropogenic factors on wildfire probability varied by region but, on the whole, humans appear to inhibit fire

activity in the western USA. Our results not only provide what appear to be robust predictions of wildfire likelihood, but
also enhance understanding of long-term controls on wildfire activity. In addition, our wildfire probability maps provide
better information for strategic planning of land-management activities, especially where fire regime knowledge is sparse.
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Introduction

Recent analyses of high-quality fire and environmental data

suggest that variability in the relative likelihood of wildfire
occurrence across the western USA is more extreme than pre-
viously thought (Littell et al. 2009; Parisien and Moritz 2009;

Finney et al. 2011). Not only does average fire frequency vary
among biomes, but it can also fluctuate enormously within
biomes, especially where rugged topography or concentrated

anthropogenic influence dominate the landscape (Schoennagel
et al. 2004). For example, in a span of a few kilometres, fire
frequency on one side of a mountain range can be orders
of magnitude greater than on the other side (Heyerdahl et al.

2001; Mermoz et al. 2005). Although disturbance dynamics of
specific sites or landscapes are well documented, wildfire

dynamics and probabilities are unknown formany areas (Collins
et al. 2010). For this reason, a regional to continent-wide
continuous depiction of wildfire likelihood is difficult to obtain

and, as a consequence, its spatial variability is often unknown or
assumed to be low. An unfortunate outcome of this knowledge
gap is that national land-management policies may be well

adapted to certain areas but not others (Schoennagel and
Nelson 2011).

Over the last decade, several investigators have begun
addressing the issue of spatial variability in fire activity across
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North America. For instance, fire frequency metrics – computed
for large ecological or administrative areas from spatial fire
atlases in the United States (Stephens 2005; Bartlein et al. 2008)

and Canada (Stocks et al. 2002; Parisien et al. 2006) – have
provided a coarse estimate of subcontinental fire variability.
There has also been an effort to classify fire regimes into a few

synthetic condition classes in order to evaluate the departure
from historical fire regimes (Hardy et al. 2001). Some investi-
gators have developed wildfire–climate relationships to map

monthly or annual predicted ignition probability (Balshi et al.
2009; Preisler et al. 2009), whereas others have linked long-term
climatology to decadal patterns in area burned (Skinner et al.
1999; Gedalof et al. 2005). By developing fire–climate models

for ecological zones in the western USA, Littell et al. (2009)
have implicitly accounted for the effect of dominant vegetation
type on annual area burned. Parisien and Moritz (2009) explic-

itly incorporated vegetation classes, in combination with
mapped climate normals, to map relative wildfire likelihood
across the USA. In contrast to these studies, which are statisti-

cally based, Finney et al. (2011) used a fire simulation model to
produce wildfire probability estimates for 134 landscapes that
were composited to cover the entire conterminous USA (Finney

et al. 2011).
Despite recent progress in understanding continent-wide

North American wildfire likelihood and wildfire–climate rela-
tionships, studies to date often ignore ignition sources and the

presence of sufficient biomass for combustion (‘fuel’).
Although three environmental factors must coincide for fire to
occur – available fuels, periods when weather conditions

support combustion and ignitions – they rarely act indepen-
dently of one another (Moritz et al. 2005). For instance, whereas
climate has a direct effect on fuel moisture and combustion,

these same conditions also affect fire indirectly by controlling
patterns in vegetation (Krawchuk et al. 2009; Bradstock 2010).
This dual influence of climate is best illustrated using the Sahara
desert: even though this area experiences some of the most

extreme fire weather in the world, its climates are completely
unsuitable for the presence of flammable vegetation.

Realistic wildfire likelihood estimates require that models

incorporate anthropogenic activities that shape our landscapes
and disturbance regimes, but these anthropogenic drivers are
seldom accounted for (but see Cardille et al. 2001; Syphard et al.

2008). Isolating the influence of people on fire regimes is not a
trivial task, as human activities often strongly covary with
changes in vegetation types or climatic factors (Girardin et al.

2009;Meyn et al. 2010). Nevertheless, every year humans ignite
most wildfires in North America (Stocks et al. 2002; Stephens
2005). Conversely, people may reduce wildfire activity through
fire suppression, but suppression effectiveness appears to be

highly variable among areas, ranging from a drastic reduction in
area burned in some areas to virtually no detectable long-term
effects in others (Stephens and Ruth 2005; Finney et al. 2009).

Perhaps more significantly, humans may have modified fire
regimes indirectly through land-use change. In fact, Marlon
et al. (2008) have reported a global decrease in fire activity

during the last century, attributing this trend to a general
reduction in fuel continuity in fire-prone areas as a result of
land-use change. Althoughmuch ofNorthAmerica (particularly
in the West) is viewed as largely undisturbed wildlands, this is

far from true, as all but the most remote areas have some trace
of human influence (Cardille and Lambois 2010). The study
of ‘natural’ fire regimes in areas – or time periods – of low

human influence is certainly pivotal to our understanding of
fire–climate–vegetation interactions, but accurate estimates of
current wildfire probability in North America require anthro-

pogenic activities to be taken into account. For example, even
though much of the Great Plains was once fire-dominated
(Brown et al. 2005), widespread agriculture has rendered this

area ill-suited for fire ignition and spread.
The purpose of this study is to build on previous investiga-

tions of subcontinental fire activity to spatially evaluate the
likelihood of wildfire in the 11 westernmost states of the

conterminous USA. This was achieved using a statistical frame-
work that linked high-resolution patterns of area burned from
1984 to 2008 to a set of variables chosen to represent the ignition

patterns and vegetation, as well as climate normals, extremes
and seasonality, that characterise this 25-year period. In addition
to producing high-resolution estimates of wildfire probability,

we examined the influence of environmental factors on its
spatial variability. In order to assess the anthropogenic imprint
on wildfire likelihood, we created a second model for which we

omitted all variables affected by human activities. Finally, we
examined whether the exclusion of small fires, which burn a
minute fraction of the total area, is a reasonable simplification in
this type of modelling.

Study area

The study area comprises the 11 westernmost states of the
conterminous USA (,3� 106 km2) (Fig. 1). It covers a broad
environmental spectrum that encompasses extreme variation in

geology, landform, climate, vegetation and land use (Barbour
and Billings 2000). The climate of the area is controlled by two
broad-scale gradients: a west–east ‘continentality’ gradient of
decreasing moisture and increased temperature seasonality and

a north–south gradient of decreasing moisture and increasing
temperature. Overall, most of the precipitation falls during the
winter months, except for some dry areas of the south-west. The

north-west, which experienceswarm summers andmildwinters,
receives themost precipitation, whereas the deserts of the south-
west are the most arid. The terrain also plays a large role on

climate, as temperature decreases and precipitation increases
with elevation. There is a strong rain shadow effect on the lee
side of largemountain ranges, notably the RockyMountains and

the Sierra Nevada, to the east of which lie the Great Basin and
the Great Plains respectively, which are areas typified by dry
continental climates.

The climatic and geological gradients of the study area are

reflected in the vegetation cover, as well as in the historical fire
regimes (Hardy et al. 2001). The north-west boasts lush temper-
ate rainforests that have infrequent wildfires. Southward, the

area ranging from the coast to the SierraNevadaMountains has a
mix of forest, grassland and shrubland vegetation that varies
considerably with respect to fire return interval and fire severity.

The chaparral areas of southern California experience some
of the highest fire frequencies of North America. To the east,
the Rocky Mountains are dominated by coniferous vegetation
that support a fire regime of frequent and fairly low-intensity
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wildfires at low elevations and periodic stand-renewing wild-
fires at high elevations. Between themore coastal Sierra Nevada

and Cascades Mountains and the more continental Rockies, the
vegetation is dominated by drought-adapted vegetation that
seldom burns; however, fires do occur within pockets with

fairly continuous biomass, including areas dominated by inva-
sive grasses (mainly Bromus tectorum). East of the Rocky
Mountains, the Great Plains, which were historically fire-prone
grasslands, represent a fairly dry area that has undergone

massive conversion to agriculture.

Methods

Wildfire probability models were built by relating data points
sampled in burned areas from 1984 to 2008 (dependent variable)

to a set of explanatory variables that characterised ignition
sources, flammable vegetation (i.e. fuels), climate and topog-
raphy (Table 1). These models were built using the MaxEnt

software (Phillips et al. 2006), previously shown to be effective
in spatial modelling of environmental constraints on fire activity

(Parisien and Moritz 2009). The climate variables were aver-
aged for the study’s time period and captured spatial patterns in
both climatic normals and extremes. The ignitions, vegetation

and topography variables were also averaged among years when
appropriate (e.g. lightning) but most often used a single repre-
sentative year if they did not vary significantly from year to year
(e.g. road density, topographic roughness). Because it has been

shown that the neighbourhood information of the ignitions,
vegetation and topography variables may be as important to area
burned as the observation at a given location (Parisien et al.

2011), four spatial scales of observation (1, 100, 1000 and
10 000 ha) were computed for each variable using a ‘moving-
window’ approach. We deemed it unnecessary to compute

moving-window variables for the climate variables, because
using the neighbourhood of climate variables does not sub-
stantially improve fire predictions (Parisien et al. 2011). All data
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Fig. 1. The study area showing the 11 western USA states, elevation, road density (computed using a 1000-ha circular window), mean annual precipitation,

mean annual temperature and land cover that was generalised from the National Gap Analysis.
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Table 1. Variables selected for analysis and their description

All climate variables were calculated on amonthly basis and annual averages were based onmean values of everymonth. Unless otherwise specified, all values

were computed for the 1984–2008 time period. All citations for the sources are provided in the text

Category Input name Source Description

Ignitions Pop_Dens1A Gridded population of the world,

version 3

Population density at the 1-ha scale (people km�2)

RdlsVol1A ESRI StreetMap Roadless volume metric (remoteness) at the 1-ha scale (km3 person�1)

RdlsVol10000A ESRI StreetMap Roadless volume metric (remoteness) at the 10 000-ha scale (km3 person�1)

Lgt_Dens10000 NASA Global Hydrology and

Climate Centre

Annual density of lightning strikes (1995–2005) at the 10 000-ha scale

(strikes km�2 year�1)

Climate MeanTempWettest PRISM Temperature of the wettest month (8C)

MeanTempDriest PRISM Temperature of the driest month (8C)

DiurTempRange PRISM Diurnal range in temperature (8C)

Isotherm PRISM Diurnal temperature range C temperature range (�100)

PcpColdest PRISM Precipitation of the coldest month (mm)

PcpSeas PRISM Precipitation seasonality (coefficient of variation)

WatDef_CV_Ann PRISM Coefficient of variation among annual water deficit values (%)

MaxSPI PRISM Maximum monthly standardised precipitation index

WindDriest99 NOAA 99th percentile wind speed of the driest month (m s�1)

Topography SurfArea_Ratio1 USGS/EROS Ratio of surface to area at the 1-ha scale

Vegetation GPP100 MODIS (MOD17A3) Gross primary productivity at the 100-ha scale (gC km�2 year�1)

Fuel_Pct100A USA GAP Analysis Land cover Percentage land cover of fuels at the 100-ha scale (%)

Fuel_Pct10000A USA GAP Analysis Land cover Percentage land cover of fuels at the 10 000-ha scale (%)

AVariables that were excluded from the Non-anthropogenic model.

Large fires in the western US
1984–2008

Large and small fires in subanalysis area
1999–2008

Canada

Mexico Mexico

Large fires
(�364 ha)

Analysis area

Pacific
Ocean

Pacific
Ocean

Canada

Small fires
(<900 ha)

Large fires
(�364 ha)

Analysis area

Fig. 2. Location of fires used in the main analysis (left panel; only fires$364 ha) and the Small-fires analysis (right panel; both large and small fires) within

their respective study areas. Note that the outlines of the fires were exaggerated for visualisation purposes.
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used an Albers NAD 1983 equal-area projection and were
converted to a 1-km resolution.

Two wildfire probability models were constructed in order

to assess the effects of modelling assumptions. The main
reference model, termed the ‘Full model’, was built for the
entire western USA and the entire span of fire data (1984–2008),

and used all of the selected exploratory variables. Because many
of the Full model’s ignitions and vegetation variables encom-
passed a high degree of anthropogenic influence, we sought to

examine the effect of these variables on wildfire probability by
excluding them in the ‘Non-anthropogenic model’. To ensure
consistency among areas, only large fires ($364 ha or 900 acres)
were used in the Full and Non-anthropogenic models, because

fires below this size threshold were not available for most of the
study area.

We tested whether excluding small fires in our model

building substantially affected wildfire probability by conduct-
ing an additional analysis, which was termed the ‘Small-fires
analysis.’ Small fires (,364 ha), which often suffer from

sporadic reporting in time and space, are assumed to have a
negligible effect wildfire probability (e.g. Parisien and Moritz
2009), but this claim has never been formally examined.

Although it is true that large wildfires are responsible for most
of the area burned in the western USA (Stephens 2005), small
fires are numerous and may burn in areas that rarely experience
large fires (Bartlein et al. 2008). Examining small fires also may

bridge the gap between wildfire probability as influenced by
people and wildfire probability that could occur in the absence
of fire suppression. The Small-fires analysis consisted of a

comparison of two types of wildfire probability models: one
createdwith only large fires and one createdwith small and large
fire observations. Small fires data were available for a shorter

time period than large fires (1999 to 2008) and for a smaller
study area (Landfire 1.1.0 Events Geodatabase, US Department
of Interior, Geological Survey, see http://www.landfire.gov,
accessed 10 June 2010) (Fig. 2), but these were sufficient for

our comparative purposes.

Data

The wildfire probability models’ dependent variable consisted
of ‘presence’ points that were randomly sampled within recent

fire perimeters (see Spatial modelling section). Two datasets of
mapped fire perimeters were used for this purpose: one for
the Full model and Non-anthropogenic model and one for

the two models of the Small-fires analysis. The Full and
Non-anthropogenic models used the recently compiled data
from the Monitoring Trends in Burn Severity (MTBS) project
(Eidenshink et al. 2007). These data span the 1984–2008 period

and cover the entire western USA. They also include prescribed
burns, but for the fires$364 ha these only consist of,7% of the
observations (and ,2% of the total area burned). The Small-

fires analysis combined the large fires from the MTBS for the
1999 to 2008 time period with the small fires (,364 ha) com-
piled for the Landfire project (http://www.landfire.gov).

Five variables were used to assess the role of ignitions on
wildfire probability (Table 1). The only natural ignition source
considered is lightning (Ltg_Dens) (Christian et al. 2003),
whereas four proxies of anthropogenic ignition location were

used: population density (Pop_Dens), road density (Rd_Dens),
roadless volume (RdlsVol), and distance to the wildland–urban
interface (WUI_Dist). Whereas the computation of Pop_Dens

(Center for International Earth Science Information Network
(CIESIN), Columbia University, and Centro Internacional de
Agricultura Tropical (CIAT), Gridded Population of the World

Version 3 (GPWv3): Population Density Grids, see http://sedac.
ciesin.columbia.edu/gpw, accessed 12 June 2010) and Rd_Dens
(ESRI 2008) is straightforward, RdlsVol is a transformation of

the distance to road that better characterises the degree of
isolation (Watts et al. 2007). WUI_Dist was obtained from a
database of exurban residential development (Theobald and
Romme 2007). Note that these variables capture both the

potential for human ignitions and a measure of fire suppression
effectiveness, as fires are better detected and more readily
accessed in areas of high population and road density respec-

tively (Syphard et al. 2007).
In this study, vegetation was used to represent the biomass

available for burning. It was therefore desirable to capture the

continuous nature of the biomass spectrum, rather than using
vegetation classes. Parisien and Moritz (2009) have shown that
using categorical vegetation variables can be problematic

because of overfitting and because each class is considered
equally similar. The first vegetation variable, the percentage
land cover fuels (Fuel_Pct), was derived from a simple reclassi-
fication of the US GAP Analysis Land Cover (US Geological

Survey 2010), where all cover types in which wildland fire
spread is unusual were termed ‘non-fuel’ and all others were
‘fuel.’ All urban and agricultural areas were non-fuel, as were

areas of sparse vegetation cover (e.g. deserts, alpine tundra) and
permanent wetlands. This fuel–non-fuel classification was
made continuous (i.e. percentage cover) by calculating the

moving-windows surfaces from its original 30-m resolution
grid. The other vegetation variable used was gross primary
productivity (GPP) (Zhao et al. 2005), which is the rate at which
plants store energy as biomass per unit time or, in other words,

the capacity of ecosystems to produce flammable biomass.
A major difference between Fuel_Pct and GPP is the degree
of anthropogenic influence: the former is strongly affected by

humans, whereas the latter is largely (but not entirely) a function
of climate.

Climate variables were chosen to represent both the effect of

climate on prevailing fuel moisture and its control on vegetation
patterns. Although climate exerts both a direct and an indirect
influence on fire, it is difficult (if not impossible) to distinguish

between these effects at the spatiotemporal frame of this study.
The climate variables consisted of metrics describing various
permutations of temperature and precipitation (Table 1)
(PRISM Group 2004). In addition to mean annual measures

(Temp and PcpAnn), the extremes of monthly means of temper-
ature and precipitation were computed. For example, the mean
temperature of the wettest month (MeanTempWettest) provides

an index of coincidence of a resource (moisture) and energy
(heat), whereas the minimum temperature of the coldest month
(MinTempColdest) quantifies stress to plants. Two variables

were also used to characterise the growing season: the length of
the season in days, as defined in McKenney et al. (2007),
and the cumulative sum of degrees (growing degree days,
GrowDegDays) $58C.
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Two water-balance metrics, annual evapotranspiration
(AET) andwater deficit (WatDef), were also used in themodels.
Considered together, these variables were shown to correlate

well with ecosystem types of the western USA (Stephenson
1990) and individual tree species (Lutz et al. 2010). Reference
evapotranspiration was calculated using the Penman–Monteith

model (Allen et al. 1998), which uses temperature, radiation,
precipitation and wind speed data. Water deficit was calculated
as the monthly sum of the difference between reference evapo-

transpiration and precipitation such that no single month could
have a water deficit less than zero. This technique generally
follows Stephenson (1990), except that it did not account for soil
water or carry-over from month to month. To assess fire spread

potential, the 90th, 95th and 99th percentile wind speed were
calculated for the mean driest (WindDriest) and warmest
(WindWarmest) months, from Kalnay et al. (1996). Finally,

extreme values of the monthly standardised precipitation index
(MinSPI and MaxSPI) measured the departure from mean
precipitation normals (McKee et al. 1993).

A single explanatory variable, the surface-area ratio
(cf. Stambaugh and Guyette 2008), was used to characterise
the effect of topographic roughness on wildfire probability. At

the spatial extent and resolution of the present study, the effect of
topography on fire activity is largely indirect: it exerts its effect
on fire mainly by influencing patterns in ignitions, vegetation
and weather. However, it can be used as a proxy for several

variables that may be missing from the model (Parisien et al.

2011). The surface-area ratio variable (SurfArea_Ratio) was
calculated from a digital elevation model (US Geological

Survey 2000). Because the calculation of this measure is
strongly scale-dependent, the moving-window approach was
used, as described for ignition and vegetation variables, whereby

topographic roughness is measured at four spatial scales: 1, 100,
1000 and 10 000 ha.

Many of the potential explanatory variables initially
considered for the modelling (Appendix 1) were similar and

thus highly correlated. To avoid incorporating a large number of
variables that have overlapping information, we selected a
relatively parsimonious subset of variables for model building.

This was achieved in a heuristic manner by first cross-
correlating the variables and identifying those that were
highly correlated (Spearman R. 0.6). Within each of these

groups, we retained the variable that performed the best in a
MaxEnt model that considered only that explanatory variable.
As such, a limited set of fairly uncorrelated yet complementary

environmental variables were included in the model. In the
Non-anthropogenic model, the Pop_Dens, RdlsVol, Fuel_Pct
variables were excluded from the Full model to examine the
anthropogenic influence onwildfire likelihood, whereas the two

models of the Small-fires analysis included the same variables
as the Full model.

Spatial modelling

Wildfire probability models were computed in MaxEnt 3.3.3e

(Phillips et al. 2006). MaxEnt is designed for presence-only
data. Presence-only models discern between the environment of
burned areas (‘fire presence’) from that of the entire study area
(‘background’), as opposed to discerning between burned and

unburned areas. Fire presences, which represent the dependent
variable, were point-based observations obtained by randomly
sampling point locations within fires perimeters. In a presence-

only framework, the lack of fire at a given location is not
interpreted as an ‘absence’ of fire by the model, as some of these
areas may in fact experience wildfire if they share environ-

mental characteristics with other wildfire-prone locations.
At each fire presence point, MaxEnt estimates wildfire

probability by fitting the probability distribution of maximum

entropy (the one that is most uniform) to the environmental
variables. The algorithm iteratively evaluates the contrasts
between the values of the fire presences and those of a back-
ground.MaxEnt also has the flexibility to fit non-linear relation-

ships between the response variable and explanatory variables,
so that resulting models have the ability to describe complex
relationships. However, environmental conditions that

exceeded the range of currently observed values were ‘clamped’
(i.e. held constant) at the maximum value of the range to avoid
unfounded extrapolations of wildfire probabilities.

The MaxEnt output represents an estimate of relative, rather
than absolute, wildfire probability. Because the models are
based on fire patterns and environmental data for a fairly long

time period (1984–2008), the mapped fire probabilities are not
designed to evaluate specific sets of conditions that lead to large
fires in a given year, but instead quantify the relative wildfire
likelihood over longer periods (Krawchuk et al. 2009; Parisien

and Moritz 2009). The probability is relative in that a temporal
scale (e.g. 1 year) is not implied. Rather, the probabilities among
pixels are relative to one another; that is, a pixel with a wildfire

probability of 0.3 is estimated to be three times as likely to
experience a fire as a pixel with a value of 0.1.

The entire pool of fire presences consisted of 10 000 points

that were randomly locatedwithin the burned areas from 1984 to
2008, whereas 50 000 random points were used to characterise
the background environment. The same presence points were
used for the Full model and Non-anthropogenic model; only the

input set of explanatory variables differed between the two
models. For the Small-fires analysis, 5000 and 20 000 points
were used as fire presences and background respectively.

The effect of spatial autocorrelation in the fire data and the
explanatory variables was minimised through the following
steps. Only a small random fraction of the total fire presences

was used to build individual wildfire probability models. This
was replicated for 25 bootstrap subsamples and the ensemble of
resulting models was ultimately averaged for analysis. We used

Ripley’s K function with different-sized subsets to estimate the
sampling fraction at which the fire observations were spatially
independent. Last, we determined that 500 points sufficiently
captured fire–environment relationships while being only faintly

clustered across the study area. The fraction of points unused for
model building was instead used to calculate the evaluation
metrics described below.

The predictive accuracy of the wildfire probability model
output was evaluated using several metrics that were computed
and averaged for each of the 25 model replicates. The estimated

fraction of the area suitable for fire (an approximation of the
false positive rate or 1 – specificity) and the omission (false
negative rate or 1 – sensitivity) were measured at the wildfire
probability threshold that minimises the sum of these error
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measurements (Liu et al. 2005). Interpreted together, these
measures give us the expected rate of false negatives for a given
predicted suitable area.

Amore comprehensive measure of model performance is the
area under the curve (AUC) of a plot of sensitivity (true
positives) v. 1 – specificity (false positives or 1 – true negatives).

In a presence–absence framework, the AUC computed with the
points unused formodel building (i.e. the ‘test’ AUC)may range
from 0.5, where prediction accuracy is no better than if samples

were randomly selected, to 1, which indicates perfect classifi-
cation accuracy. By contrast, in a presence-only framework, as
in this study, it is impossible to achieve unity in AUC because
absences (hence false positives) are unknown. In fact, the

maximum achievable AUC is equal to 1 – a/2, where a is
generally the fraction of the study area that the species (or
process) covers (i.e. the prevalence), a measure that is usually

unavailable. However, here, we considered a to be the percent-
age of pixels where fire was observed. This provides a fair, yet
underestimated, approximation of prevalence.

Finally, we computed the correlation between the wildfire
probability predictions and 1–0 (i.e. fire–no fire) observations,
which is known as the point-biserial correlation. Rather than

being based solely on rank, such as the AUC, the point-biserial
correlation uses the actual predictions to evaluate model perfor-
mance. To obtain this measure, the 50 000 random points used
for the background were assigned a 1 or a 0 whether they were

located in a fire pixel or a fire-free pixel respectively. These
values were then correlated with the predicted wildfire proba-
bility. Although the point-biserial correlation does not provide a

stand-alone interpretable value, it does provide a goodmetric for
the comparison of the predictive ability among models.

Data analysis

The relative contribution of the explanatory variables to wildfire
probability was assessed in MaxEnt by estimating the change in
model gain associated with each variable. The mean and stan-

dard deviation (s.d.) of the percentage contribution of each
variable were compiled from the 25-model ensemble and were
plotted for both the Full model and the Non-anthropogenic

model.
To evaluate the relationship between fire activity and

environmental factors, the estimated wildfire probability was

plotted as a function of a selected explanatory variable. These
plots were produced from MaxEnt models where a single
explanatory variable was used to predict wildfire probability.

This said, these response curves were built to visualise bivariate
relationships and were not those used in the wildfire probability
models, which are subject to complex interactions with other
variables. Twenty-five replicates of the bivariate models were

built and the mean and standard deviation of the 25 response
curves were plotted.

Wildfire probability maps were produced for the Full and

Non-Anthropogenic models, as well as for the models of the
Small-fires analysis. The Full and the Non-anthropogenic
models were compared on a pixel-wise basis in two ways: first,

through simple subtraction of the fire probabilities (absolute
change) and, second, by computing the relative change in
probability, expressed as percentage change (relative change).
The mapped outputs of both Small-fires analysis models (large

fires only and large and small fires) were qualitatively compared
to visualise the effect of adding small fires to the wildfire
probability map. In addition, the variable contributions (mean

and s.d.) of these models were plotted and compared, and the
rank-order correlation of the variable contributionswas assessed
(Spearman correlation).

Results

There were a wide range of responses of wildfire probability to

explanatory variables, as shown in six of the variables most
influential in computing wildfire probability (see below)
(Fig. 3). Although some responses were monotonic, notably that
of the top variable (Fuel_Pct100), this was not the norm. Many

of the variables appeared to be unimodal, whereby the fire
response is maximised across intermediate values of the
explanatory variable (e.g. MeanTempDriest, PcpColdest,

RdlsVol10000, GPP100). In general, weak variables had fire
responses that were highly complex and unintuitive (not shown).

Model evaluation metrics show that the Full model and

Non-anthropogenic model performed similarly well (Table 2).
Suitable area and omission error suggest that when approxi-
mately one-third of the study area was considered ‘suitable’ for

fire, approximately one-quarter of the points were predicted to
be false positives. The uncorrected AUCs computed from the
test portion of observations were 0.792 and 0.742 for the Full
and Non-anthropogenic models respectively. However, when

adjusted for wildfire prevalence (6.7% of the area), the AUCs
were 0.836 and 0.810. AUCs are therefore somewhat larger for
the Full model, which suggests that anthropogenic variables are

informative with respect to recent wildfire occurrence patterns.
The slight superiority of the Full model is also reflected in the
point-biserial correlation.

Patterns in modelled wildfire probability are highly hetero-
geneous throughout the study area (Fig. 4). Wildfire likelihood
is at least moderately high (.0.3) in most areas, with the
exception of the south-west deserts, parts of the coastal north-

west and in the expansive agricultural areas, most of which were
extensive grasslands in the past.

Explanatory variables from each of the four main

environmental factors, ignitions, climate, topography and
vegetation, appear to be important in predicting wildfire proba-
bility (Fig. 5). The Fuel_Pct100 variable explained nearly 25%

of variation in the Full model. However, several other variables
had important contributions (e.g. PcpColdest, RdlsVol10000,
MeanTempDriest and SurfArea_Ratio1), whereas a few

had negligible contributions (e.g. Isotherm, MaxSPI and
WindDriest99). Of the variables common to both models, those
important for the Full model also contributed substantially to the
Non-anthropogenic model, but some variables (SurfArea_

Ratio1, GPP100) were disproportionately more important in
the latter model.

Wildfire probability patterns between the Full model and the

Non-anthropogenic model are broadly similar across the study
area (Fig. 4a, b), but numerous differences are evident at local
scales. The absolute change (i.e. subtraction) in wildfire proba-

bility between the Full and Non-anthropogenic models shows
that over the majority of the landscape, the anthropogenic
variables included in the Full model served to reduce wildfire
probability, with increases in wildfire probability concentrated
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in large wilderness areas (Fig. 4c). Themap of relative change in

wildfire probability amongmodels shows that most decreases in
wildfire probability in the Non-anthropogenic model compared
with the Full model occur in developed and agricultural areas, as
expected (Fig. 4d ). In fact, the most drastic decreases (.500%)

almost always occur in and around urban areas. In contrast, only
minor relative increases in wildfire probability were observed
over much of the study area when anthropogenic variables were

removed.
The Small-fires analysis, which compared the wildfire prob-

ability of models built with only the large fires and with both

large and small fires, indicated strong similarities between
model outputs (Fig. 6). The spatial predictions were virtually
identical between models; differences were highly localised
and, even so, relatively minor (e.g. coastal Oregon). Likewise,

the variable contributions were extremely similar, as the rank-

order correlation between variable ranks was R¼ 0.95 (Spear-
man correlation).

Discussion

Fire–environment relationships in the western US

This study brings us one step closer to understanding the sub-

continental controls on long-term (i.e. multi-decadal) wildfire
likelihood in North America. The results provide further support
to the idea that large-scale assessments of wildfire likelihood are

best described using all of the necessary fire ingredients: an
ignition source, hot and dry weather, and sufficient biomass
for sustained combustion. Fire universally requires the spatio-
temporal coincidence of these same basic elements; however,

Table 2. Performance of MaxEnt models, including maximum test sensitivity plus specificity area

The AUC is the area under the curve of the sensitivity v. predicted area (1 – specificity) plot; the ‘adjusted AUC’ adjusts these

values according to geographic prevalence (seeMethods). The ‘suitable area’ represents the fraction of area predicted as suitable

and the ‘omission error’ is the fraction of presence points found in areas predicted to be unsuitable. The probability threshold is

minimised according to the sum of these values. The point-biserial correlation evaluates the correspondence between estimated

wildfire probability of presence points (ones) and non-presence points (zeros)

Western USA analysis Small-fire analysis

Full model Non-anthropogenic model Large fires Largeþ small fires

Suitable area (%) 30.5 32.9 30.0 29.7

Omission error (%) 23.3 25.7 24.2 26.1

AUC 0.792 0.742 0.806 0.795

Adjusted AUC 0.836 0.810 0.839 0.830

Point-biserial correlation 0.346 0.297 0.354 0.348
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understanding the specific effect of each of the variables chosen
is not straightforward. The degree to which elements limit fire
varies substantially across subcontinental extents, as shown in
Australia (Russell-Smith et al. 2007) and subequatorial Africa

(Archibald et al. 2009). Although evaluating region-specific
limits on fire activity was not the focus of the present study, our
results are strongly coherent with those of previous studies

that show that fire–environment relationships are far from
constant throughout the western US (McKenzie et al. 2004;
Littell et al. 2009).

It is not surprising that the strongest predictor of wildfire
likelihood in the western USA is the percentage cover of fuels.
However, this predictor only explains,25%ofmodel variation.

Our results suggest that gradients in topography, climate,
biomass (i.e. GPP) and ignitions also play important roles in
characterising wildfire likelihood across the study area. In fact,
when the percentage fuels variable was omitted from the model

(i.e. in the Non-anthropogenic model), only a slight decrease in
model performance was observed, suggesting that the percent-
age fuels information was reflected in a combination of other

variables. These results are thus coherent with those of Russell-
Smith et al. (2007) in Australia and Parisien and Moritz (2009)
in the conterminous USA, who found that, because they are

dependent on climate and human land use, measures of biomass
or flammable vegetation can be omitted from subcontinental
models of fire activity.
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in fire probability
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Fig. 4. Mean predicted wildfire probability (based on 25 model replicates) for the Full model (a); the Non-anthropogenic model (b); the absolute change (c);

and the relative change (d ) from the Full model to the Non-anthropogenicmodel, whereby green indicates an increase and blue represents a decrease inwildfire

probability as a result of human-influenced variables. The wildfire probability maps produced in Fig. 4 and their projection information are available as

supplementary material to this paper (see http://www.publish.csiro.au/?act=view_file&file_id=WF11044_AC.zip).
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Our results further underscore the complex relationship of
fire with climate. Despite including a vast array of climate
variables in our initial variable selection and retaining nine of

them for model building, no single climate variable provided a
‘universal’ or even dominant link to fire in the western USA.
This suggests that same set of variables does not operate in the

same manner across the entire domain. For instance, the climate
drivers in the Pacific Northwest are very different from those in
the Southwest. Synthetic variables such aswater balancemetrics

(AET and water deficit) that are strong predictors of the
geographical distribution of vegetation types (Stephenson
1998) and annual area burned in some parts of the US Interior
West (Littell and Gwozdz 2011), did not, for the most part,

graduate to our models of long-term wildfire likelihood.
These variables were accounted for by other variables
depicting the coincidence of moisture and energy (e.g. precipi-

tation of the coldest month). We surmise that this lack of
importance of water balance metrics is blurred by their some-
what bipolar relationshipwith fire. For example, although recent

warming has led to increases in fire activity in some areas,
notably through lengthening of drought periods and the fire
season (Westerling et al. 2006), they may also impose moisture

stress that will ultimately limit the continuity of fuels (Crimmin
et al. 2011).

In an area as topographically diverse as the westernUSA, it is
expected that relief would be a strong predictor of wildfire

likelihood. Our results are consistent with those of Stambaugh
and Guyette (2008) in the Missouri Ozarks and Dickson et al.

(2006) in Arizona, who both reported a significant positive

association between topographic roughness and wildfire likeli-
hood. In contrast, a negative fire–roughness association was
reported in boreal Canada (Parisien et al. 2011) and, though

weaker, in subequatorial Africa (Archibald et al. 2009). These
contradictory results suggest that, at the spatiotemporal scale of
the present study, topography does not exert a direct influence
on wildfire likelihood (i.e. through wind–slope interactions) but

rather acts as a proxy for other controls. Everything else being
constant, one would expect rugged topography to hinder the
spread of large fires. However, in the western USA, rough

topography is often associated with less anthropogenic modifi-
cation of fuel (i.e. fuel fragmentation as a result of land use) and
decreased access for fire suppression. Almost all agriculture

lands, which represent the most expansive anthropogenic influ-
ence in the western USA (Leu et al. 2008), occur on flat terrain.
In biomes that are largely unsuitable for agriculture, such as

boreal forest, flat areas are generally more prone to fire spread
than rugged ones, because they typically have amore continuous
cover of flammable vegetation.

Compared with climate and vegetation, ignitions generally

appeared to play a relatively minor role in predicting wildfire
probability in the western USA. Lightning contributed only
moderately to the models, but this was largely expected, as

there does not appear to be any evident associations in the
spatial patterns of area burned and lightning density across the
western USA (Christian et al. 2003). In fact, because it is

usually accompanied by rainfall, lightning density is largely
negatively correlated with fire occurrence. Although ‘dry’
lightning would provide a more meaningful metric of light-
ning ignition potential (Rorig and Ferguson 1999), these data

were not available for the spatiotemporal scale of the
current study.

In contrast to lightning, human ignition proxies contributed

significantly to wildfire probability. In general, our results are
consistent with those of Syphard et al. (2007), who showed that
the likelihood of fire has a non-linear relationship with human

influence in California, whereby peak fire activity is associated
with intermediate levels of human influence. Although the
measures of Syphard et al. (2007) are different (i.e. they used

population density and fire counts), the best-performing
measure of human ignitions used here, the roadless volume
(10 000-ha moving window), exhibits a similar inverse-
U-shaped relationship to fire. Unlike what was reported in the

Upper Midwest (Cardille et al. 2001; Sturtevant and Cleland
2007), increased remoteness was not always associated with
increased area burned in the western USA. This phenomenon is

the result of the low vegetation cover (deserts or high-elevation
areas) of some remote areas and perhaps to a limitation of
natural ignitions (lightning) in others.

The patterns of decreased wildfire probability as a result of
anthropogenic variables exhibit fairly strong spatial concor-
dance with the areas of highest human footprint intensity (Leu

et al. 2008). Decreases in wildfire probability as a result of
anthropogenic variables were, as expected, associated with
areas of urban development or expansive agriculture, this
phenomenon being particularly pronounced in and aroundmajor

cities. Although it is impossible to accurately measure the
overall effect of humans on area burned in an area as large
and complex as the western USA, our results seem to suggest

that, given the widespread land-use change, current human
activities may have an overall inhibiting effect on wildfire
likelihood, as reported in California (Stephens et al. 2007).

Guyette et al. (2002) have proposed a temporal framework to
describe the anthropogenic effects on fire regimes in the Mis-
souri Ozarks that may indeed apply tomuch of the westernUSA.
In brief, they suggest that many areas have experienced a

human-dominated surge in fire activity once they became
inhabited, but that this increase was eventually met with fuels
limitation as human density (and burning) increased, and, in the

later stages, decreased abruptly as a result of fuel fragmentation
and fire suppression.

Methodological aspects of wildfire probability modelling

Although the wildfire probability presented in this study was
deliberately presented as a relativemeasure ofwildfire likelihood,

it is possible to transform pixel-wise probabilities into expected
values of fire frequency or annual area burned (i.e. something
closer to an absolute value). For instance, a simple method of
obtaining an annual wildfire probability is through a linear

transformation in which the value of each pixel is multiplied by a
scalar obtained from the ratio of the mean annual fire frequency
calculated from historical data (say 1984–2008) to that of the

mean relative probability. This technique adjusts the relative
wildfire probability according to the historical area burned by
directlymanipulating the final predictions. Another way to obtain

an annual wildfire probability from the MaxEnt predictions is to
apply an adjustment factor to the logit of the prediction that results
in a mean output probability equal to that of the prevalence
(i.e. annual area burned) (Elith et al. 2011).Thismore complicated
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correction can accommodate non-linear changes, but its behaviour
relative to a simple scalar remains unexplored. Regardless, both
techniques are prone to the same uncertainties and assumptions

regarding prevalence – the ‘true’ distribution of fire – which is
unknown. For example, they both assume that the current or recent
burning rate calculated from fire data is reliable (typically not the

case) and stationary through time. As such, we prefer to use the
more conservative relative wildfire probability estimates.

Incorporating better and more comprehensive information

into fire–environment models is likely to improve estimates of
wildfire likelihood. However, the accuracy of wildfire likeli-
hood predictions is, as always, contingent onmodel assumptions
and data quality. The spatial predictions presented here should

be interpreted for the specific spatiotemporal frame of study and
should not necessarily be assumed to remain stable far into the
future. Nonetheless, the wildfire probability predictions do

appear to be fairly robust. Modelling explorations in which
different sampling point subsets and different variables were
included yielded strongly consistent patterns of fire probabilities

(results not shown), as long as key information (i.e. climate) was
not omitted. In fact, a comparison of the Full model’s spatial
predictions with those of the Small-fires analysis shows broadly

similar patterns, even if the latter only uses a fraction of the fire
observations (10 v. 25 years of data).

Importantly, the Small-fires analysis indicates that the current
standard of excluding small fires (,364 ha) when assessing

wildfire probability at subcontinental scales is a reasonable
modelling shortcut. Currently, data on small fires is limited in
availability and quality; thus, the time and expense of including

small fires inwildfire probabilitymodels is often cost-prohibitive.
Our Small-fires analysis results are coherent with the general
belief that small fires contribute a small proportionof the total area

burned in thewesternUSA (,4% of the area burned of the Small-
fires analysis study area), although this fraction is larger in the
coastal Northwest (Strauss et al. 1989), and that models with and
without the small fires yield virtually identical fire probabilities

and have similar environmental drivers.

Conclusion

The use of comprehensive and spatially precise wildfire data,
a wide array of variables characterising thewildfire environment,

and a distribution modelling technique that can capture complex
relationships (MaxEnt) should yield a gain in accuracy compared
with previous wildfire probability distributions of the study

area. The wildfire probability maps of this study indeed
represent some of the most spatially refined estimates of wildfire
likelihood for the study area to date. Reassuringly, the predicted
patterns of wildfire likelihood are coherent with our current

understanding of western USA fire regimes and the explanatory
variables generally support what other studies of wildfire–
environment relationships have found. Our results emphasise the

complexity in these relationships and support the idea that area-
specific fire–environment linkages in the western USA appear to
be as variable as the fire regimes themselves (Hardy et al. 2001;

Littell et al. 2009).
The wildfire probability estimates of this study are not those

of a ‘pristine’ system but that of the modern and human-
dominated area (Cardille and Lambois 2010). Although we

cannot claim to have elucidated the effect of anthropogenic
influence on western USA wildfire likelihood, adding informa-
tion pertaining to the human imprint significantly affected

wildfire probability patterns. In spite of the inherent difficulty
in assessing the fire-proneness of areas where fire has been
largely excluded, modelling can be used to at least partly fill in

the gap either across a landscape (Collins et al. 2010) or, as
shown in this study, at a subcontinental extent. Furthermore, the
wildfire probability computed in this study provides a likelihood

estimate that can be used in the strategic planning of fire or land-
management activities. For example, a reliable spatial assess-
ment of wildfire likelihood can help prioritise fuel treatment
placement. From a land-management perspective, mapped

wildfire probability is invaluable in the planning of urban areas,
roads, forestry operations and even ecological restoration. In
addition, with respect to the last item, wildfire likelihood

estimates can help predict whether fire is likely to have been
excluded from a naturally fire-prone area and should, therefore,
be part of a restoration plan.
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Appendix 1. List of all explanatory variables initially considered for modelling

A fraction of these variables graduated to the final models to avoid using variables that were highly correlated. All climate variables were calculated on a

monthly basis and annual averages were based onmean values of every month. Unless otherwise specified, all values were computed for the 1984 to 2008 time

period. All citations for the sources are provided in the text

Category Input name Source Description

IgnitionsA Lgt_Dens[S] NASA Global Hydrology

and Climate Centre

Annual density of lightning strikes (1995–2005) at the 1, 100, 1000

and 10 000-ha scales (strikes km�2 year�1)

Pop_Dens[S] Gridded population

of the world, version 3

Population density at the 1, 100, 1000 and 10 000-ha scales

(people km�2)

Rd_Dens[S] ESRI StreetMap Road density at the 1, 100, 1000 and 10 000-ha scales (people km�2)

RdlsVol[S] ESRI StreetMap Roadless volume metric (remoteness) at the 1, 100, 1000

and 10 000-ha scales (km3 person�1)

WUI_Dist[S] University of Colorado Distance to the nearest wildland–urban interface area at the 1, 100, 1000

and 10 000-ha scales (m)

Climate Temp PRISM Annual temperature (8C)

DiurTempRange PRISM Diurnal range in temperature (8C)

TempRange PRISM Annual range in mean monthly temperature (8C)

Isotherm PRISM DiurTempRange/TempRange (�100)

TempSeas PRISM Temperature seasonality (coefficient of variation)

MaxTempWarmest PRISM Maximum temperature of the warmest month (8C)

MinTempColdest PRISM Minimum temperature of the warmest month (8C)

MeanTempWettest PRISM Temperature of the wettest month (8C)

MeanTempDriest PRISM Temperature of the driest month (8C)

MeanTempWarmest PRISM Temperature of the warmest month (8C)

MeanTempColdest PRISM Temperature of the coldest month (8C)

GrowDegDays Natural Resources Canada Cumulative sum of degrees (or growing degree days) $58C

during the growing season (8C)

GrowDays Natural Resources Canada Growing season length (number of days)

PcpAnn PRISM Annual precipitation (mm)

PcpWettest PRISM Precipitation of the wettest month (mm)

PcpDriest PRISM Precipitation of the driest month (mm)

PcpSeas PRISM Precipitation seasonality (coefficient of variation)

PcpWarmest PRISM Precipitation of the warmest month (mm)

PcpColdest PRISM Precipitation of the coldest month (mm)

WatDef PRISM Annual water deficit (mm)

WatDef_CV_Mon PRISM Coefficient of variation among monthly means of water deficit values (%)

WatDef_CV_Ann PRISM Coefficient of variation among annual water deficit values (%)

AET PRISM Mean annual actual evapotranspiration (mm)

AET_CV_Mon PRISM Coefficient of variation among monthly means of actual

evapotranspiration values (%)

AET_CV_Ann PRISM Coefficient of variation among annual actual evapotranspiration values (%)

MinSPI PRISM Minimum monthly standardised precipitation index

MaxSPI PRISM Maximum monthly standardised precipitation index

WindWarmest90 NOAA 90th percentile wind speed of the warmest month (m s�1)

WindWarmest95 NOAA 95th percentile wind speed of the warmest month (m s�1)

WindWarmest99 NOAA 99th percentile wind speed of the warmest month (m s�1)

WindDriest90 NOAA 90th percentile wind speed of the driest month (m s�1)

WindDriest95 NOAA 95th percentile wind speed of the driest month (m s�1)

WindDriest99 NOAA 99th percentile wind speed of the driest month (m s�1)

TopographyA SurfArea_Ratio[S] USGS and EROS Ratio of surface to area at the 1, 100, 1000 and 10 000-ha scales

VegetationA GPP[S] MODIS (MOD17A3) Gross primary productivity at the 1, 100, 1000, and 10 000-ha

scales (g C km�2 year�1)

Fuel_Pct[S] USA GAP Analysis Land cover Percentage land cover of fuels at the 1, 100, 1000 and 10 000-ha scales (%)

ADenotes the ‘scale-dependent’ variable. Values of for these variables were calculated using a moving-window approach at four spatial scales ([S]): 1, 100,

1000 and 10 000 ha. In the text, the scale-dependent variables are written as Fuel_Pct1, Fuel_Pct100, Fuel_Pct1000, and Fuel_Pct10000.
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