
Abstract Algebra 1 (MATH 3140)

Background on Finite Sets and Infinite Sets

1. FINITE SETS

Now that we have introduced natural numbers, let’s return to the question

What does it mean that a set A is finite?

Answer(s):

Example 1.1. Let
A =

{
{∅},P({∅}), {{∅}}

}
.
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The theorem below can be proved by induction on n (i.e., by using the Induction Theorem).

Theorem 1.2. Let A be a set, and let n ∈ N. The following hold for every injective function
f : A→ n.

(1) For some m ∈ N,

(∗) there exists a bijection A→ m.

(2) For every m satisfying (∗) we have m ≤ n.
(3) Moreover, if f is not surjective, then for every m satisfying (∗), we have m < n.

Corollary 1.3. Let A be a set, and let m,n ∈ N.

(1) If m > n, then there is no injective function m→ n.
(2) If there exist bijections A→ m and A→ n, then m = n.
(3) Every injective function n→ n is surjective.
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Now we are ready to define what it means that ‘a set is finite’ and ‘has n elements’.

Definition 1.4. A set A is called finite if there exists a bijection A → n for some natural
number n. The unique such n (see Corollary 1.3(2)) is called the number of elements (or the
cardinality) of A, and is denoted by |A|. A set that is not finite is called infinite.

So, writing |A| = n, where n is a natural number, means that A is a finite set which has
n elements.

Corollary 1.5.

(1) For every n ∈ N we have that n (as a set) is finite, and |n| = n.
(2) Every subset of a finite set is finite.

Moreover, for arbitrary finite sets A and B:

(3) |A| = |B| if and only if there exists a bijection A→ B.
(4) If A ⊆ B, then |A| ≤ |B|.
(5) If A ⊆ B and |A| = |B|, then A = B.
(6) If |A| = |B| and fis an injective function A→ B, then fis surjective (hence bijective).
(7) If A 6= ∅, then the following conditions are equivalent:

(i) |A| ≤ |B|;
(ii) there exists an injective function A→ B;

(iii) there exists a surjective function B → A.
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Finally, the theorem below relates set operations on finite set to the arithmetic operations
on the natural numbers.

Theorem 1.6. Let A and B be finite sets.

(1) If A ∩B = ∅ (i.e., if A,B are disjoint), then |A ∪B| = |A|+ |B|.
(2) |A×B| = |A| · |B|.
(3) |AB| = |A||B|.
(4) |P(A)| = 2|A|.

Idea of Proof. Statements (1)–(3) can be proved by induction on n := |B|, using the
definitions of the operations on N (see Definition 3.1 in the lecture notes “Background on
the Natural Numbers and Induction”), Corollary 1.5(3) above (possibly combined with earlier
items in Theorem 1.6), and some elementary facts about the set operations involved. For
example, for (3) it is useful to observe that for any element b ∈ B the following map is a
bijection:

AB → AB\{b} × A{b}, f 7→ (f |B\{b}, f |{b}).
In more detail, this map assigns to every f : B → A the pair of functions f |B\{b} : B\{b} → A
and f |{b} : {b} → A obtained by restricting f to the sets B \ {b} and {b}, respectively. Note

also that |A∅| = 1, because there is exactly one function ∅ → A, namely ∅.

Statement (4) follows from Theorem 1.6(3) by recalling1 that the function

P(A)→ 2A (= {0, 1}A), B → χB

is a bijection; here χB : A→ 2 is the characteristic function of B defined for each a ∈ A by
χB(a) = 1 if a ∈ B and χB(a) = 0 if a /∈ B.

1If you have not seen this fact in an earlier course, take some time to prove it for yourself.
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2. INFINITE SETS

Recall from Definition 1.4 that a set A is infinite if it is not finite, that is, if no bijection
A→ n exists for any natural number n.

It is intuitively clear that the set N of natural numbers is infinite. This fact can be deduced
from Corollary 1.3(1).

Corollary 2.1 [to Corollary 1.3(1)]. The set N of natural numbers is infinite.

It follows from Corollary 1.5(2) that if for a set A there exists an injection N→ A, then A is
also infinite. Using the Axiom of Choice, one can prove that the converse of this statement
is also true. Hence we get the next theorem.

Theorem 2.2 [Requires the Axiom of Choice]. The following conditions on a set A are
equivalent.

(i) A is infinite;
(ii) there exists an injective function N→ A;

(iii) there exists an injective function A→ A which is not surjective.

The negations of conditions (i)–(iii) are also equivalent. Thus (i)⇔ (iii) yields the following
characterization of finite sets (assuming the Axiom of Choice):

A is finite if and only if every injective function A→ A is surjective.

(The forward implication here is the special case A = B of Corollary 1.5(6).)
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In modern set theory2 — assuming the Axiom of Choice — the notion of natural numbers
is extended to include ‘infinite numbers’ (special sets), called cardinal numbers or cardinals,
such that

• there is a cardinal associated to every set A, called its cardinality, and denoted by
|A|, so that
• for any two sets A and B, we have |A| = |B| if and only if there exists a bijection
A→ B;
• a ≤ relation can be defined for cardinals so that |A| ≤ |B| if and only if there exists

an injective function A→ B;
• if both |A| ≤ |B| and |B| ≤ |A| hold, then |A| = |B|;
• for any two sets A and B we have |A| ≤ |B| or |B| ≤ |A|;
• addition, multiplication, and exponention of natural numbers can be extended to

cardinal numbers so that Theorem 1.6 remains valid for all sets.

By Theorem 2.2, |N| is the least infinite cardinal, so the following is an initial segment of
the list of cardinals in increasing order:

0 < 1 < 2 < · · · < n < n+ 1 < · · · < |N| < . . . .

Sets of cardinality |N| are called countably infinite. Other examples of countably infinite
sets are the set 2N of even natural numbers, the set Z of integers, and the set Q if rational
numbers.

Sets of cardinality > |N| (where > means: ≥ and 6=) are called uncountable.

Cantor’s Theorem. |P(A)| > |A| holds for every set A.

In particular, for the set R of real numbers we have |R| = |P(N)| > |N|, so R is uncount-
able.

Another important consequence of Cantor’s theorem is that there is no largest cardinal
number.

2Founded by Georg Cantor (1845–1918).


