
Abstract Algebra 1 (MATH 3140)

Sets, Relations, and Functions
(Review)

Sets, relations and functions will play an important role in this course, therefore we will
briefly review the definitions and theorems we will need (most of which you have seen in
earlier courses, like MATH 2001 or MATH 2002). Along with reviewing the basics of sets,
relations, and functions, we introduce notation that will be used throughout this course.

∗ ∗ ∗
1. Sets. We start with defining the relation ⊆ for sets and the familiar set operations. When
we define set operations we use a fundamental assumptions about sets (the Extensionality
Axiom), namely that two sets are equal if and only if they have the same elements. Therefore,
a set is determined if we specify what its elements are.

Definitions 1.1. Let A,B be arbitrary sets, and let S be a set of sets.

1. A is a subset of B, in symbols: A ⊆ B, if every element of A is an element of B.
A is a proper subset of B, in symbols: A ⊂ B or A ( B, if A ⊆ B but A 6= B.

2. The power set of A, denoted P(A), is the set of all subsets of A; we may also write
this as follows:

P(A) := {X : X ⊆ A},
where the symbol := means “the left hand side of := is defined to be equal to the
right hand side”.

3. The empty set, denoted ∅, is the set with no elements.1

4. The union of A and B, denoted A ∪B, is the set {x : x ∈ A or x ∈ B}; briefly,

A ∪B := {x : x ∈ A or x ∈ B}.
More generally, the union

⋃
S of all members of S is the set⋃

S := {u : u ∈ X for at least one X ∈ S}.

5. The intersection of A and B, denoted A ∩B, is the set

A ∩B := {x : x ∈ A and x ∈ B},
and if S 6= ∅, the intersection

⋂
S of all members of S is the set⋂

S := {u : u ∈ X for all X ∈ S}.

6. The difference, A \B, of A and B is the set

A \B := {x ∈ A : x /∈ B}.
7. We say that A and B are disjoint if A ∩B = ∅.

1By the Extensionality Axiom, there is only one empty set.
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The theorem below lists some of the familiar laws of computation for these operations and
for the relation ⊆. All these laws can be proved directly from the definitions above and the
Extensionality Axiom.

Theorem 1.2. The following hold for arbitrary sets A,B,C and for any set S of sets:

(1) A = B if and only if A ⊆ B and B ⊆ A.
(2) ∅ ⊆ A, A ⊆ A; moreover, if A ⊆ B and B ⊆ C, then A ⊆ C.
(3) A ∩B = A if and only if A ⊆ B if and only if A ∪B = B.
(4)

A ∩ A = A, A ∪ A = A,

A ∩B = B ∩ A, A ∪B = B ∪ A, (commutative laws)

(A ∩B) ∩ C = A ∩ (B ∩ C), (A ∪B) ∪ C = A ∪ (B ∪ C), (associative laws)

(A ∪B) ∩ A = A, (A ∩B) ∪ A = A,

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C), (A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C), (distributive laws)

C \ (A ∩B) = (C \ A) ∪ (C \B), C \ (A ∪B) = (C \ A) ∩ (C \B). (De Morgan laws)

(5) (
⋃
S) ∩ C =

⋃
{X ∩ C : X ∈ S}, (

⋂
S) ∪ C =

⋂
{X ∪ C : X ∈ S}.

(general distributive laws)

To be able to define relations and functions we need the concept of an ‘ordered’ pair.

Definition 1.3. The ordered pair (x, y) is defined to be the set {{x}, {x, y}}.

Theorem 1.4. For arbitrary ordered pairs (x, y) and (u, v) we have that

(x, y) = (u, v) if and only if x = u and y = v.

Definition 1.5. The Cartesian product, A×B, of two sets A and B is defined by

A×B := {(a, b) : a ∈ A and b ∈ B}.

2. Relations and Functions.

Definition 2.1. Let A, B, and C be sets.

1. The subsets of A×B are called relations from A to B or assignments from A to B.
A relation from A to A is called a relation on A. If ρ is a relation on A, then we may
write a ρ b to indicate that (a, b) ∈ ρ.

2. If ρ is a relation from A to B and σ is a relation from B to C, then
• the inverse of ρ is the relation ρ−1 := {(b, a) ∈ B ×A : (a, b) ∈ ρ} from B to A,

and
• the composition of ρ and σ is the relation

σ◦ρ := {(a, c) ∈ A×C : there exists b ∈ B such that (a, b) ∈ ρ and (b, c) ∈ σ}

from A to C.
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Definitions 2.2. Let A,B be sets, and let f be a relation (or assignment) from A to B. We
say that f is a function mapping A to B (or a mapping of A to B), in symbols: f : A→ B,
if for every a ∈ A there exists exactly one b ∈ B such that (a, b) ∈ f . For each a ∈ A the
unique b ∈ B with (a, b) ∈ f is denoted by f(a) and is called the image of a under f . Instead

of (a, b) ∈ f we usually write b = f(a), but we may also write a
f7→ b.

The set of all functions from A to B is denoted by BA.

Definitions 2.3. Let A,B be sets and let f : A→ B. We say that

1. f is one-to-one (or injective or an injection) if for all distinct elements a1, a2 ∈ A we
have that f(a1) 6= f(a2);

2. f is onto (or surjective or a surjection) if for all b ∈ B there exists a ∈ A such that
b = f(a);

2. f is bijective (or a bijection) if f is both injective and surjective.

Examples 2.4.

(1) For any set A the equality relation {(a, a) ∈ A × A : a ∈ A} on A is a function:
idA : A → A, a 7→ a, called the identity function on A. Clearly, idA is a bijection
A→ A.

(2) For any set A, the function A→ P(A), a 7→ {a} is injective, but not surjective.
(3) For any nonempty sets A,B, the function A × B → A, (a, b) 7→ a is surjective; it is

injective if and only if B = {b} for some b.

Theorem 2.5. Let f : A→ B, g : B → C, and h : C → D. Then

(1) g ◦ f is a function A→ C; namely, g ◦ f : A→ C, a 7→ g(f(a)).
(2) h ◦ (g ◦ f) = (h ◦ g) ◦ f ; both are the function A→ D, a 7→ h(g(f(a))).
(3) f ◦ idA = idB ◦ f = f .
(4) If f, g are both injective, then so is g ◦ f .

If f, g are both surjective, then so is g ◦ f .
If f, g are both bijective, then so is g ◦ f .

(5) If g ◦ f is injective, then so is f .
If g ◦ f is surjective, then so is g.
If g ◦ f is bijective, then f is injective and g is surjective.

(6) The relation f−1 from B to A is a function B → A if and only if f is a bijection.
(7) If f is a bijection, then

• f−1 is also a bijection, and f = (f−1)−1;
• f−1 is the unique function ϕ : B → A satisfying the two equalities ϕ ◦ f = idA

and f ◦ ϕ = idB.
(8) If f, g are both bijections, then for the bijection g ◦ f (see item (4)) we have that

(g ◦ f)−1 = f−1 ◦ g−1.

Definition 2.6. If f : A→ B is a bijection, then f−1 : B → A is called the inverse function
(or just the inverse) of f .

Definitions 2.7. Let A be a set, let ρ a relation on A, and let Π ⊆ P(A). We say that

1. ρ is reflexive (on A) if for all a ∈ A we have (a, a) ∈ ρ;
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2. ρ is symmetric if for all (a, b) ∈ ρ we have (b, a) ∈ ρ;
3. ρ is antisymmetric if for all (a, b) ∈ ρ with a 6= b we have (b, a) /∈ ρ;
4. ρ is transitive if for all (a, b), (b, c) ∈ ρ we have (a, c) ∈ ρ;
5. ρ obeys the dichotomy law if for all a, b ∈ A we have (a, b) ∈ ρ or (b, a) ∈ ρ (or both).
6. ρ is an equivalence relation on A if ρ is reflexive (on A), symmetric, and transitive;
7. ρ is a partial order on A if ρ is reflexive (on A), antisymmetric, and transitive;
8. ρ is a linear order on A (or total order on A) if ρ is a partial order on A that obeys

the dichotomy law;
9. Π is a partition of A if

• every member of Π is nonempty,
• any two distinct members of Π are disjoint, and
•
⋃

Π = A.

Examples 2.8.

(1) For any set A the equality relation εA := {(a, a) : a ∈ A} on A is an equivalence
relation as well as a partial order on A.

(2) For any set A, the relation ⊆ is a partial order on P(A).
(3) For any function f : A→ B the relation ker(f) := {(a1, a2) ∈ A×A : f(a1) = f(a2)}

is an equivalence relation on A.

Definition 2.9. The equivalence relation ker(f) is called the kernel of f .

Theorem 2.10. Let A be a set. The following function is a bijection between the set Eq(A)
of all equivalence relations on A and the set Part(A) of all partitions of A:

Eq(A)→ Part(A), ρ 7→ A/ρ

where A/ρ := {[a]ρ : a ∈ A} and [a]ρ := {b ∈ A : a ρ b} is the ρ-equivalence class of a for all
a ∈ A. The inverse of this function is

Part(A)→ Eq(A), Π 7→ ρΠ

where ρΠ := {(a, b) ∈ A× A : a, b ∈ C for some C ∈ Π}.


