1. Since f is surjective and the assumption ' $g \circ f$ is injective' implies that f is injective, we get that f is bijective. Hence, f has an inverse function $f^{-1}: B \rightarrow A$, which is also bijective. This implies that $g=g \circ\left(f \circ f^{-1}\right)=(g \circ f) \circ f^{-1}$ is injective (as both $g \circ f$ and f^{-1} are).
2. Call the given statement $\mathcal{S}(n)$. $\mathcal{S}(0)$ holds, because if A and $m \in \mathbb{N}$ are such that there exist (i) an injective $f: A \rightarrow 0=\emptyset$ and (ii) a bijective $g: A \rightarrow m$, then $A=\emptyset$ from (i) and hence $m=\emptyset=0$ from (ii), so $m=0 \leq 0=n$. Assume now that $\mathcal{S}(n)$ holds. To prove $\mathcal{S}\left(n^{\prime}\right)$, consider any A and $m \in \mathbb{N}$, and injective $f: A \rightarrow n^{\prime}$ and bijective $g: A \rightarrow m$. If $A=\emptyset$, then $m=0$ as before, and $m=0 \leq n^{\prime}$. Assume $A \neq \emptyset$, and fix $a \in A$. Hence $m \neq 0$, and therefore $m=k^{\prime}$ for some $k \in \mathbb{N}$. By HW2,Pr1, we may assume (by replacing f by \bar{f} and g by $\bar{g})$ that $f(a)=n\left(\in n^{\prime}\right)$ and $g(a)=k\left(\in k^{\prime}\right)$. Applying the induction hypothesis to the restrictions of the functions f and g to $A \backslash\{a\}$, we get that $k \leq n$. Hence, $k^{\prime} \leq n^{\prime}$.
3. Let $d=p_{1}^{m_{1}} p_{2}^{m_{2}} \ldots p_{r}^{m_{r}}$. Clearly, $d \mid a$, because $a=d q$ for $q=p_{1}^{k_{1}-m_{1}} p_{2}^{k_{2}-m_{2}} \ldots p_{r}^{k_{r}-m_{r}}$ where $q \in \mathbb{Z}$ (as all $\left.k_{i}-m_{i} \in \mathbb{N}\right)$. Similarly, $d \mid b$. Assume now that $c \mid a, b(c \in \mathbb{Z})$. Then $c \neq 0$ and $-c \mid a, b$, so we may assume $c \in \mathbb{N} \backslash\{0\}$. Thus, c has a prime factorization $c=p_{1}^{u_{1}} p_{2}^{u_{2}} \ldots p_{r}^{u_{r}} q_{1}^{v_{1}} \ldots q_{s}^{v_{s}}$ where q_{1}, \ldots, q_{s} are distinct primes different from p_{1}, \ldots, p_{r}, and all $u_{i}, v_{i} \in \mathbb{N}$. Since $c \mid a$, we have $a=c \tilde{q}$ for some $\tilde{q} \in \mathbb{N} \backslash\{0\}$. Replacing c and \tilde{q} by their prime factorizations, we get a new prime factorization for a, which may differ from the original one only in the order of its factors. Thus, $v_{1}=\cdots=v_{s}=0$ and $u_{i} \leq k_{i}$ for all i $(1 \leq i \leq r)$. The same argument for b yields also that $u_{i} \leq \ell_{i}$ for all $i(1 \leq i \leq r)$, and hence $u_{i} \leq m_{i}$ for all $i(1 \leq i \leq r)$. Thus, $c \mid c p_{1}^{m_{1}-u_{1}} p_{2}^{m_{2}-u_{2}} \ldots p_{r}^{m_{r}-u_{r}}=d$.
4. (a) Since $o(a)=1932,\left\langle a^{294}\right\rangle=\left\langle a^{\operatorname{gcd}(294,1932)}\right\rangle=\left\langle a^{42}\right\rangle$, and similarly, $\left\langle a^{189}\right\rangle=\left\langle a^{\operatorname{gcd}(189,1932)}\right\rangle=$ $\left\langle a^{21}\right\rangle$. Now $a^{42}=\left(a^{21}\right)^{2} \in\left\langle a^{21}\right\rangle$ implies $a^{42} \in\left\langle a^{21}\right\rangle$, and hence $\left\langle a^{294}\right\rangle=\left\langle a^{42}\right\rangle \subseteq\left\langle a^{21}\right\rangle=\left\langle a^{189}\right\rangle$. Note: It follows also that $o\left(a^{189}\right)=o\left(a^{21}\right)=\frac{1932}{21}=92$.
(b) $a^{294}=\left(a^{189}\right)^{k}(k \in \mathbb{Z})$ iff $1932 \mid 189 k-294$ iff $189 k+1932(-q)=294$ for some $q \in \mathbb{Z}$. Since $21 \mid 189,1932,294$, this equation is equivalent to $9 k+92(-q)=14$. Using the Euclidean algorithm, one can find $s, t \in \mathbb{Z}$ satisfying $9 s+92 t=\operatorname{gcd}(9,92)=1$: say, $s=41, t=-4$. Hence $k=14 \cdot 41=574$ and $q=-14(-4)=56$ satisfy $9 k+92(-q)=14$. Thus, $k=574$ works, but so does any integer $\equiv 574(\bmod 92)\left(\right.$ where $\left.92=o\left(a^{189}\right)\right)$, say $k=22$.
5. (a) $(a b)^{2}=a^{2} b^{2} \Leftrightarrow a b a b=a a b b \stackrel{!}{\Leftrightarrow} b a=a b$ where \Rightarrow is obtained in $\stackrel{!}{\Leftrightarrow}$ by multiplying both sides by a^{-1} on the left and b^{-1} on the right, while \Leftarrow is obtained in $\stackrel{\prime}{\Leftrightarrow}$ by multiplying both sides by a on the left and b on the right.
(b) If $g^{2}=e$ for all $g \in G$, then for any $a, b \in G$ we have $(a b)^{2}=e=e e=a^{2} b^{2}$, and hence $a b=b a$ (by part (a)). Thus, G is abelian.
6. Let $\pi=\gamma_{1} \gamma_{2} \ldots \gamma_{m}$ be the cycle decomposition of π. Since $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}$ are disjoint cycles, they commute, and hence for every integer $k, \pi^{k}=\gamma_{1}^{k} \gamma_{2}^{k} \ldots \gamma_{m}^{k}$. We saw in Pr3,Wsh2 that $o\left(\gamma_{i}\right)$ is the length ℓ_{i} of the cycle γ_{i} for every i, so $\gamma_{i}^{\ell_{i}}=\mathrm{id}$ and $\gamma_{i}^{k}=\mathrm{id}$ whenever $\ell_{i} \mid k$; however, if $\ell_{i} \nmid k$, then γ_{i}^{k} fixes none of the elements that occur in γ_{i}. Therefore, $\pi^{k}=\mathrm{id}$ iff $\ell_{i} \mid k$ for all i iff $\operatorname{lcm}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right) \mid k$. Hence, $o(\pi)=\operatorname{lcm}\left(\ell_{1}, \ell_{2}, \ldots, \ell_{m}\right)$.
7. (a) No such example exists. If a surjective, non-injective function $g: A \rightarrow A$ existed for a finite set A, then by assigning to each $a \in A$ a $b \in A$ such that $g(b)=a$, we would get an injective, non-surjective function $A \rightarrow A$, contradicting Cor.1.5(6) in Lec.Notes 02/03.
(b) No such a, b exist. See Pr2,HW3 if $a, b \neq 0$. If $0 \in\{a, b\}$, say $a=0$, then $0=\operatorname{lcm}(a, b)$.
(c) Example: $\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$.
(d) Example 1: $\pi=\sigma=\left(\begin{array}{ll}1 & 2\end{array}\right), \pi \sigma=$ id. Example 2: $\pi=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right), \sigma=\left(\begin{array}{ll}1 & 3\end{array}\right), \pi \sigma=\left(\begin{array}{ll}1\end{array}\right)$.
(e) No such $G=\langle a\rangle$ exists, because $a^{k} a^{\ell}=a^{k+\ell}=a^{\ell} a^{k}$ for all $a^{k}, a^{\ell} \in\langle a\rangle$.
(f) No such $\pi \in S_{n}$ exists. Indeed, if σ is odd, i.e., it is a product of an odd number of transpositions, say m, then for every $k \in \mathbb{Z}, \sigma^{k}$ is a product of $m k$ transpositions. Hence, σ^{k} is odd if k is odd. Since id is even, $\sigma^{k} \neq \mathrm{id}$ if k is odd.
