1. Since f is surjective and the assumption $g \circ f$ is injective' implies that f is injective, we get that f is bijective. Hence, f has an inverse function $f^{-1} \colon B \to A$, which is also bijective. This implies that $g = g \circ (f \circ f^{-1}) = (g \circ f) \circ f^{-1}$ is injective (as both $g \circ f$ and f^{-1} are).

2. Call the given statement S(n). S(0) holds, because if A and $m \in \mathbb{N}$ are such that there exist (i) an injective $f: A \to 0 = \emptyset$ and (ii) a bijective $g: A \to m$, then $A = \emptyset$ from (i) and hence $m = \emptyset = 0$ from (ii), so $m = 0 \leq 0 = n$. Assume now that S(n) holds. To prove S(n'), consider any A and $m \in \mathbb{N}$, and injective $f: A \to n'$ and bijective $g: A \to m$. If $A = \emptyset$, then m = 0 as before, and $m = 0 \leq n'$. Assume $A \neq \emptyset$, and fix $a \in A$. Hence $m \neq 0$, and therefore m = k' for some $k \in \mathbb{N}$. By HW2,Pr1, we may assume (by replacing f by \overline{f} and g by \overline{g}) that $f(a) = n (\in n')$ and $g(a) = k (\in k')$. Applying the induction hypothesis to the restrictions of the functions f and g to $A \setminus \{a\}$, we get that $k \leq n$. Hence, $k' \leq n'$.

3. Let $d = p_1^{m_1} p_2^{m_2} \dots p_r^{m_r}$. Clearly, $d \mid a$, because a = dq for $q = p_1^{k_1 - m_1} p_2^{k_2 - m_2} \dots p_r^{k_r - m_r}$ where $q \in \mathbb{Z}$ (as all $k_i - m_i \in \mathbb{N}$). Similarly, $d \mid b$. Assume now that $c \mid a, b$ ($c \in \mathbb{Z}$). Then $c \neq 0$ and $-c \mid a, b$, so we may assume $c \in \mathbb{N} \setminus \{0\}$. Thus, c has a prime factorization $c = p_1^{u_1} p_2^{u_2} \dots p_r^{u_r} q_1^{v_1} \dots q_s^{v_s}$ where q_1, \dots, q_s are distinct primes different from p_1, \dots, p_r , and all $u_i, v_i \in \mathbb{N}$. Since $c \mid a$, we have $a = c\tilde{q}$ for some $\tilde{q} \in \mathbb{N} \setminus \{0\}$. Replacing c and \tilde{q} by their prime factorizations, we get a new prime factorization for a, which may differ from the original one only in the order of its factors. Thus, $v_1 = \dots = v_s = 0$ and $u_i \leq k_i$ for all i $(1 \leq i \leq r)$. The same argument for b yields also that $u_i \leq \ell_i$ for all i $(1 \leq i \leq r)$, and hence $u_i \leq m_i$ for all i $(1 \leq i \leq r)$. Thus, $c \mid cp_1^{m_1 - u_1} p_2^{m_2 - u_2} \dots p_r^{m_r - u_r} = d$. **4.** (a) Since o(a) = 1932, $\langle a^{294} \rangle = \langle a^{\gcd(294, 1932)} \rangle = \langle a^{42} \rangle$, and similarly, $\langle a^{189} \rangle = \langle a^{\gcd(189, 1932)} \rangle =$

4. (a) Since o(a) = 1932, $\langle a^{294} \rangle = \langle a^{\text{gcd}(294,1932)} \rangle = \langle a^{42} \rangle$, and similarly, $\langle a^{189} \rangle = \langle a^{\text{gcd}(189,1932)} \rangle = \langle a^{21} \rangle$. Now $a^{42} = (a^{21})^2 \in \langle a^{21} \rangle$ implies $a^{42} \in \langle a^{21} \rangle$, and hence $\langle a^{294} \rangle = \langle a^{42} \rangle \subseteq \langle a^{21} \rangle = \langle a^{189} \rangle$. Note: It follows also that $o(a^{189}) = o(a^{21}) = \frac{1932}{21} = 92$.

(b) $a^{294} = (a^{189})^k$ $(k \in \mathbb{Z})$ iff 1932 | 189k - 294 iff 189k + 1932(-q) = 294 for some $q \in \mathbb{Z}$. Since 21|189, 1932, 294, this equation is equivalent to 9k + 92(-q) = 14. Using the Euclidean algorithm, one can find $s, t \in \mathbb{Z}$ satisfying $9s + 92t = \gcd(9, 92) = 1$: say, s = 41, t = -4. Hence $k = 14 \cdot 41 = 574$ and q = -14(-4) = 56 satisfy 9k + 92(-q) = 14. Thus, k = 574 works, but so does any integer $\equiv 574 \pmod{92}$ (where $92 = o(a^{189})$), say k = 22.

5. (a) $(ab)^2 = a^2b^2 \Leftrightarrow abab = aabb \stackrel{!}{\Leftrightarrow} ba = ab$ where \Rightarrow is obtained in $\stackrel{!}{\Leftrightarrow}$ by multiplying both sides by a^{-1} on the left and b^{-1} on the right, while \Leftarrow is obtained in $\stackrel{!}{\Leftrightarrow}$ by multiplying both sides by a on the left and b on the right.

(b) If $g^2 = e$ for all $g \in G$, then for any $a, b \in G$ we have $(ab)^2 = e = ee = a^2b^2$, and hence ab = ba (by part (a)). Thus, G is abelian.

6. Let $\pi = \gamma_1 \gamma_2 \dots \gamma_m$ be the cycle decomposition of π . Since $\gamma_1, \gamma_2, \dots, \gamma_m$ are disjoint cycles, they commute, and hence for every integer $k, \pi^k = \gamma_1^k \gamma_2^k \dots \gamma_m^k$. We saw in Pr3,Wsh2 that $o(\gamma_i)$ is the length ℓ_i of the cycle γ_i for every i, so $\gamma_i^{\ell_i} = \text{id}$ and $\gamma_i^k = \text{id}$ whenever $\ell_i \mid k$; however, if $\ell_i \nmid k$, then γ_i^k fixes none of the elements that occur in γ_i . Therefore, $\pi^k = \text{id}$ iff $\ell_i \mid k$ for all i iff lcm $(\ell_1, \ell_2, \dots, \ell_m) \mid k$. Hence, $o(\pi) = \text{lcm}(\ell_1, \ell_2, \dots, \ell_m)$.

7. (a) No such example exists. If a surjective, non-injective function $g: A \to A$ existed for a finite set A, then by assigning to each $a \in A$ a $b \in A$ such that g(b) = a, we would get an injective, non-surjective function $A \to A$, contradicting Cor.1.5(6) in Lec.Notes 02/03.

(b) No such a, b exist. See Pr2,HW3 if $a, b \neq 0$. If $0 \in \{a, b\}$, say a = 0, then 0 = lcm(a, b). (c) Example: {id, $(1 \ 2)(3 \ 4), (1 \ 3)(2 \ 4), (1 \ 4)(2 \ 3)$ }.

(d) Example 1: $\pi = \sigma = (1 \ 2), \ \pi \sigma = \text{id.}$ Example 2: $\pi = (1 \ 2 \ 3 \ 4), \ \sigma = (1 \ 3 \ 2), \ \pi \sigma = (1 \ 4).$

(e) No such $G = \langle a \rangle$ exists, because $a^k a^\ell = a^{k+\ell} = a^\ell a^k$ for all $a^k, a^\ell \in \langle a \rangle$.

(f) No such $\pi \in S_n$ exists. Indeed, if σ is odd, i.e., it is a product of an odd number of transpositions, say m, then for every $k \in \mathbb{Z}$, σ^k is a product of mk transpositions. Hence, σ^k is odd if k is odd. Since id is even, $\sigma^k \neq \text{id if } k$ is odd.