
1. Since f is surjective and the assumption ‘g ◦ f is injective’ implies that f is injective, we
get that f is bijective. Hence, f has an inverse functionf−1 : B → A, which is also bijective.
This implies that g = g ◦ (f ◦ f−1) = (g ◦ f) ◦ f−1 is injective (as both g ◦ f and f−1 are).
2. Call the given statement S(n). S(0) holds, because if A and m ∈ N are such that there
exist (i) an injective f : A → 0 = ∅ and (ii) a bijective g : A → m, then A = ∅ from (i) and
hence m = ∅ = 0 from (ii), so m = 0 ≤ 0 = n. Assume now that S(n) holds. To prove S(n′),
consider any A and m ∈ N, and injective f : A → n′ and bijective g : A → m. If A = ∅,
then m = 0 as before, and m = 0 ≤ n′. Assume A 6= ∅, and fix a ∈ A. Hence m 6= 0, and
therefore m = k′ for some k ∈ N. By HW2,Pr1, we may assume (by replacing f by f̄ and
g by ḡ) that f(a) = n (∈ n′) and g(a) = k (∈ k′). Applying the induction hypothesis to the
restrictions of the functions f and g to A \ {a}, we get that k ≤ n. Hence, k′ ≤ n′.
3. Let d = pm1
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r . Clearly, d | a, because a = dq for q = pk1−m1
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where q ∈ Z (as all ki −mi ∈ N). Similarly, d | b. Assume now that c | a, b (c ∈ Z). Then
c 6= 0 and −c | a, b, so we may assume c ∈ N \ {0}. Thus, c has a prime factorization
c = pu1
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1 . . . qvss where q1, . . . , qs are distinct primes different from p1, . . . , pr, and

all ui, vi ∈ N. Since c | a, we have a = cq̃ for some q̃ ∈ N \ {0}. Replacing c and q̃ by
their prime factorizations, we get a new prime factorization for a, which may differ from the
original one only in the order of its factors. Thus, v1 = · · · = vs = 0 and ui ≤ ki for all i
(1 ≤ i ≤ r). The same argument for b yields also that ui ≤ `i for all i (1 ≤ i ≤ r), and hence
ui ≤ mi for all i (1 ≤ i ≤ r). Thus, c | cpm1−u1
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r = d.
4. (a) Since o(a) = 1932, 〈a294〉 = 〈agcd(294,1932)〉 = 〈a42〉, and similarly, 〈a189〉 = 〈agcd(189,1932)〉 =
〈a21〉. Now a42 = (a21)2 ∈ 〈a21〉 implies a42 ∈ 〈a21〉, and hence 〈a294〉 = 〈a42〉 ⊆ 〈a21〉 = 〈a189〉.
Note: It follows also that o(a189) = o(a21) = 1932

21
= 92.

(b) a294 = (a189)k (k ∈ Z) iff 1932 | 189k − 294 iff 189k + 1932(−q) = 294 for some q ∈ Z.
Since 21|189, 1932, 294, this equation is equivalent to 9k+92(−q) = 14. Using the Euclidean
algorithm, one can find s, t ∈ Z satisfying 9s + 92t = gcd(9, 92) = 1: say, s = 41, t = −4.
Hence k = 14 · 41 = 574 and q = −14(−4) = 56 satisfy 9k + 92(−q) = 14. Thus, k = 574
works, but so does any integer ≡ 574 (mod 92) (where 92 = o(a189)), say k = 22.

5. (a) (ab)2 = a2b2 ⇔ abab = aabb
!⇔ ba = ab where ⇒ is obtained in

!⇔ by multiplying

both sides by a−1 on the left and b−1 on the right, while ⇐ is obtained in
!⇔ by multiplying

both sides by a on the left and b on the right.
(b) If g2 = e for all g ∈ G, then for any a, b ∈ G we have (ab)2 = e = ee = a2b2, and hence
ab = ba (by part (a)). Thus, G is abelian.
6. Let π = γ1γ2 . . . γm be the cycle decomposition of π. Since γ1, γ2, . . . , γm are disjoint
cycles, they commute, and hence for every integer k, πk = γk1γ
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k
m. We saw in Pr3,Wsh2

that o(γi) is the length `i of the cycle γi for every i, so γ`ii = id and γki = id whenever `i | k;
however, if `i - k, then γki fixes none of the elements that occur in γi. Therefore, πk = id iff
`i | k for all i iff lcm(`1, `2, . . . , `m) | k. Hence, o(π) = lcm(`1, `2, . . . , `m).
7. (a) No such example exists. If a surjective, non-injective function g : A → A existed for
a finite set A, then by assigning to each a ∈ A a b ∈ A such that g(b) = a, we would get an
injective, non-surjective function A→ A, contradicting Cor.1.5(6) in Lec.Notes 02/03.
(b) No such a, b exist. See Pr2,HW3 if a, b 6= 0. If 0 ∈ {a, b}, say a = 0, then 0 = lcm(a, b).
(c) Example: {id, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.
(d) Example 1: π = σ = (1 2), πσ = id. Example 2: π = (1 2 3 4), σ = (1 3 2), πσ = (1 4).
(e) No such G = 〈a〉 exists, because aka` = ak+` = a`ak for all ak, a` ∈ 〈a〉.
(f) No such π ∈ Sn exists. Indeed, if σ is odd, i.e., it is a product of an odd number of
transpositions, say m, then for every k ∈ Z, σk is a product of mk transpositions. Hence,
σk is odd if k is odd. Since id is even, σk 6= id if k is odd.
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