Abstract Algebra 1 (MATH 3140)

Practice Problems on Groups

Problem 1.

Let S be a nonempty set with an associative operation • such that
(i) there exists an identity element e in S for •,
(ii) for every element $a \in S$, left multiplication by a is a bijection $L_{a}: S \rightarrow S, x \mapsto a x$, and
(iii) for every element $a \in S$, right multiplication by a is a bijection $R_{a}: S \rightarrow S, x \mapsto x a$.

Show that
(a) S with • is a group;
(b) in fact, even if we only assume that conditions (i)-(ii) hold, it follows that S with . is a group. ${ }^{1}$
(c) Give an example of a non-associative operation - on a 5 -element set S such that conditions (i)-(iii) hold.

Problem 2. Let G be a group, let S be a subset of G, and let $a, b \in G$.
(a) Prove that $C_{G}(S)=\{g \in G: s g=g s$ for all $s \in S\}$ is a subgroup of G. ($C_{G}(S)$ is called the centralizer of S in G.)
(b) Use the result in part (a) to verify that if $a b=b a$, then $a^{m} b^{n}=b^{n} a^{m}$ holds for all integers m, n.
(c) Prove that if $a b=b a$, then $(a b)^{n}=a^{n} b^{n}$ for all integers n.

Problem 3. Find the order of the subgroup of S_{20} generated by the ten transpositions (12), (3 4), ..., (19 20).

Problem 4. Let $G=\langle a\rangle$ be a cyclic group of order $4095=3^{2} \cdot 5 \cdot 7 \cdot 13$, and consider the subgroups $H=\left\langle a^{231}\right\rangle$ and $K=\left\langle a^{182}\right\rangle$ of G. Find a generator a^{d} for the subgroup $H \cap K$ of G such that $d \mid 4095$, and express a^{d} as a power of a^{231} and as a power of a^{182}.
Hint: First, find generators $a^{d_{H}}$ for H and $a^{d_{K}}$ for K such that $d_{H}, d_{K} \mid 4095$, and determine which powers of a are in $H \cap K$.

[^0]
[^0]: ${ }^{1}$ This part of the problem is harder than the rest.

