Abstract Algebra 1 (MATH 3140)

Practice Problems on Groups

Problem 1.

Let S be a nonempty set with an associative operation \cdot such that

- (i) there exists an identity element e in S for \cdot ,
- (ii) for every element $a \in S$, left multiplication by a is a bijection $L_a: S \to S, x \mapsto ax$, and

(iii) for every element $a \in S$, right multiplication by a is a bijection $R_a \colon S \to S, x \mapsto xa$. Show that

- (a) S with \cdot is a group;
- (b) in fact, even if we only assume that conditions (i)–(ii) hold, it follows that S with \cdot is a group.¹
- (c) Give an example of a non-associative operation \cdot on a 5-element set S such that conditions (i)–(iii) hold.

Problem 2. Let G be a group, let S be a subset of G, and let $a, b \in G$.

- (a) Prove that $C_G(S) = \{g \in G : sg = gs \text{ for all } s \in S\}$ is a subgroup of G. $(C_G(S) \text{ is called the centralizer of } S \text{ in } G.)$
- (b) Use the result in part (a) to verify that if ab = ba, then $a^m b^n = b^n a^m$ holds for all integers m, n.
- (c) Prove that if ab = ba, then $(ab)^n = a^n b^n$ for all integers n.

Problem 3. Find the order of the subgroup of S_{20} generated by the ten transpositions (1 2), (3 4), ..., (19 20).

Problem 4. Let $G = \langle a \rangle$ be a cyclic group of order $4095 = 3^2 \cdot 5 \cdot 7 \cdot 13$, and consider the subgroups $H = \langle a^{231} \rangle$ and $K = \langle a^{182} \rangle$ of G. Find a generator a^d for the subgroup $H \cap K$ of G such that $d \mid 4095$, and express a^d as a power of a^{231} and as a power of a^{182} .

Hint: First, find generators a^{d_H} for H and a^{d_K} for K such that $d_H, d_K \mid 4095$, and determine which powers of a are in $H \cap K$.

¹This part of the problem is harder than the rest.