Abstract Algebra 1 (MATH 3140)

Worksheet 1: Sets, Relations, Functions, and the Natural Numbers

1. Let ρ be a relation on a set A. Show that
(a) ρ is symmetric if and only if $\rho^{-1} \subseteq \rho$, and
(b) ρ is transitive if and only if $\rho \circ \rho \subseteq \rho$.
2. We define a relation ρ on the set of points in \mathbb{R}^{2} as follows: for any two points $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$ we let

$$
A \rho B \quad \Longleftrightarrow \quad a_{1}^{2}+a_{2}^{2}=b_{1}^{2}+b_{2}^{2} .
$$

(a) Show that ρ is an equivalence relation.
(b) Find the partition corresponding to ρ, and describe it geometrically.
3. Prove that for any function $f: A \rightarrow B$ the following conditions are equivalent:
(i) $f: A \rightarrow B$ is surjective;
(ii) for arbitrary set C and functions $g, h: B \rightarrow C$, if $g \circ f=h \circ f$ then $g=h$.
4. Use the definition of + for natural numbers and the Induction Theorem ${ }^{1}$ to verify the associative law for + :

$$
k+(m+n)=(k+m)+n \quad \text { for arbitrary natural numbers } k, m, n .
$$

Hint: Use induction on n. Start by defining the set S to which you want to apply the Induction Theorem.

[^0]
[^0]: ${ }^{1}$ See the handout "The Natural Numbers and Induction".

