Abstract Algebra 1 (MATH 3140)

Worksheet 1: Sets, Relations, Functions, and the Natural Numbers

1. Let ρ be a relation on a set A. Show that

- (a) ρ is symmetric if and only if $\rho^{-1} \subseteq \rho$, and
- (b) ρ is transitive if and only if $\rho \circ \rho \subseteq \rho$.

2. We define a relation ρ on the set of points in \mathbb{R}^2 as follows: for any two points $A = (a_1, a_2)$ and $B = (b_1, b_2)$ we let

$$A \rho B \iff a_1^2 + a_2^2 = b_1^2 + b_2^2.$$

- (a) Show that ρ is an equivalence relation.
- (b) Find the partition corresponding to ρ , and describe it geometrically.

- **3.** Prove that for any function $f: A \to B$ the following conditions are equivalent:
 - (i) $f: A \to B$ is surjective;
 - (ii) for arbitrary set C and functions $g, h: B \to C$, if $g \circ f = h \circ f$ then g = h.

4. Use the definition of + for natural numbers and the Induction Theorem¹ to verify the associative law for +:

(‡) k + (m+n) = (k+m) + n for arbitrary natural numbers k, m, n.

Hint: Use induction on n. Start by defining the set S to which you want to apply the Induction Theorem.

¹See the handout "The Natural Numbers and Induction".