Abstract Algebra 1 (MATH 3140)

Worksheet 3: Normal Subgroups as

1. Use Lagrange's Theorem to verify the has no other subgroups than those in inclusion diagram here.

2. (a) Find all conjugacy classes of S_3 .

(b) Use the result in part (a) to find all normal subgroups of S_3 .

3. Let H be a subgroup of a group G. Show that if [G:H] = 2, then H is a normal subgroup of G. *Hint:* Argue that aH = Ha for all $a \in G$. Distinguish two cases: $a \in H$ and $a \notin H$.

nd Co	njugatio	n. Lagra	nge's The	orem		
at S_3 the	((12))	(13))	(23) {vdj	Asi	_ =≺(123)> 	

4. Recall that the alternating group A_4 is the subgroup of S_4 consisting of all even permutations in S_4 .

(a) Show that A_4 is a normal subgroup of S_4 , and $|A_4| = 12$.

(b) List the elements of A_4 , and find all conjugacy classes of A_4 .

(c) Use the results of part (b) and of Problem 3 to prove that A_4 has no subgroup of order $6.^1$

(d) Find all subgroups of A_4 , and draw their inclusion diagram. Which subgroups of A_4 are normal?

¹**Remark:** Let G be a finite group. By Lagrange's theorem, if G has a subgroup of order d, then d | |G|. The result of this exercise shows that the converse of this statement is not true: for $G = A_4$ and d = 6 we have d | |G|, but G does not have a subgroup of order d.