Abstract Algebra 1 (MATH 3140)

Worksheet 5: Direct Product and Finite Abelian Groups

1. In how many ways can the 4 -element abelian group $V=\{\mathrm{id},(12)(34),(13)(24),(14)(23)\}$ be written as an internal direct product of two normal subgroups of order <4 ?
Hint: Count the possibilities by counting the unordered pairs of normal subgroups that yield an internal direct product decomposition of V.
2. How many nonisomorphic abelian groups G of order $2160=2^{4} 3^{3} 5$ have the property that $a^{180}=e$ for all $a \in G$?
3. Show that $\mathbb{Z}_{16} \neq H \times K$ for any groups H, K of order <16. (Do not use the Fundamental Theorem of Finite Abelian Groups.)
Hint: Assume that an isomorphism $\psi: H \times K \rightarrow \mathbb{Z}_{16}$ exists. Use the fact that $H \times K$ is the internal direct product of its normal subgroups $H \times\left\{e_{K}\right\}$ and $\left\{e_{H}\right\} \times K$ to derive a contradiction.
4. Let G, H be arbitrary groups, and let $M \unlhd G, N \unlhd H$. Use the Homomorphism Theorem to show that $M \times N \unlhd G \times H$, and $(G \times H) /(M \times N) \cong(G / M) \times(H / N)$.
Hint: Find a surjective homomorphism $G \times H \rightarrow(G / M) \times(H / N)$ with kernel $M \times N$.
5. Recall from the Chinese remainder theorem that if $n=a b$ for some nonzero natural numbers n, a, b such that $\operatorname{gcd}(a, b)=1$, then the map

$$
\varphi: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{a} \times \mathbb{Z}_{b}, \quad[x]_{n} \mapsto\left([x]_{a},[x]_{b}\right)
$$

is a ring isomorphism. Recall (see Lec.Notes $2 / 19$) that for any ring R which has a multiplicative identity element $1, R^{*}$ denotes the group of units of R, defined by $R^{*}=\{r \in R: r$ has a multiplicative inverse $\}$.
(a) Show that for every integer $x \in \mathbb{Z}$, we have $[x]_{n} \in \mathbb{Z}_{n}^{*}$ if and only if $\varphi\left([x]_{n}\right)=$ $\left([x]_{a},[x]_{b}\right) \in \mathbb{Z}_{a}^{*} \times \mathbb{Z}_{b}^{*}$.
(b) Deduce that $\mathbb{Z}_{n}^{*} \cong \mathbb{Z}_{a}^{*} \times \mathbb{Z}_{b}^{*}$.

