Abstract Algebra 1 (MATH 3140)

Worksheet 6: Groups of small order: Orders 8 and 12

1. Let G be a nonabelian group of order 12. Let P denote a Sylow 2-subgroup of G and Q a Sylow 3-subgroup of G.
(a) Use Sylow's 3rd theorem to show that $\left(n_{2}, n_{3}\right)=(1,4),(3,1)$, or $(3,4) .{ }^{1}$
(b) Argue that if $n_{3}=4$, then G has $4 \cdot 2=8$ elements of order 3 , therefore it must be that $n_{2}=1$.

Note: (a)-(b) imply that $\left(n_{2}, n_{3}\right)=(1,4)$ or $(3,1)$, i.e., either $P \unlhd G$ or $Q \unlhd G$.
(c) Now assume that $P \unlhd G$.
(i) Verify that G is a semidirect product of $P \unlhd G$ and $Q \leq G$.
(ii) Consider the homomorphism $\varphi: Q \rightarrow \operatorname{Aut}(P), b \mapsto c_{b}$, where c_{b} is conjugation by b on P; that is, for every $b \in Q, c_{b}: P \rightarrow P, a \mapsto b a b^{-1}$. Use the assumption that G is nonabelian to conclude that P cannot be cyclic, so it must be that $P \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

By continuing this analysis it can be shown that

- if $P \unlhd G$, then $G \cong A_{4}$;
- if $Q \triangleleft G$ and P is not cyclic, then $G \cong D_{6}$; and
- if $Q \triangleleft G$ and P is cyclic, then G is isomorphic to a third group $\left(\not \neq A_{4}\right.$ or $\left.D_{6}\right)$.

[^0]2. Let G be a nonabelian group of order 8. Clearly, G has no element of order 8. Also, is not the case that every nonidentity element of G has order 2 (see Lec $3 / 3, \operatorname{Pr} 5$). Thus,
$\diamond G$ has a cyclic subgroup $P=\langle x\rangle$ of order 4 , and every element $g \in G \backslash P$ has order 2 or 4 . Since $[G: P]=2$, we know that $P \unlhd G$ (see Wsh 3, Pr 3).
By the same argument that we used in class to prove that every nonabelian group of order $2 p$ ($p>2$ prime) is isomorphic to D_{p}, one can show the following:
\diamond if P is the only cyclic subgroup of G of order 4 (i.e., $Q=\langle g\rangle$ is a cyclic group of order 2 for each $g \in G \backslash P)$, then $G \cong D_{4}$.
(*) Assume now that G has at least two different cyclic subgroups of order 4: $P=\langle x\rangle$ above and $R=\langle y\rangle$.
(a) Show that $G=P \cup P y, x^{2}=y^{2}$, and every element of G can be written uniquely in the form $x^{k} y^{u}$ with $0 \leq k \leq 3,0 \leq u \leq 1$.
(b) Consider the homomorphism $\psi: Q \rightarrow \operatorname{Aut}(P), b \mapsto c_{b}$, where c_{b} is conjugation by b on P; that is, for every $b \in Q, c_{b}: P \rightarrow P, a \mapsto b a b^{-1}$.
Use the assumption that G is nonabelian to conclude that $\psi\left(c_{y}\right)$ is inversion in $P=\langle x\rangle$, that is, $y x^{k} y^{-1}=x^{-k}$ for all $k \in \mathbb{Z}$.
(c) Show that the operations of G are uniquely determined by assumption $(*)$, and therefore there is at most one nonabelian group G, up to isomorphism, which satisfies (*).

In fact, there is a nonabelian group G satisfying assumption $(*)$, the quaternion group Q_{8} with elements $1,-1, i,-i, j,-j, k,-k$ and multiplication defined (using the convention $-(-a)=a$) by

- $1 a=a, a 1=a,(-1) a=-a, a(-1)=-a$ for all $a \in\{1,-1, i,-i, j,-j, k,-k\}$, - $i^{2}=-1, j^{2}=-1, k^{2}=-1, i j=k, j i=-k, j k=i, k j=-i, k i=j, i k=-j$,
- $(-a) b=-a b, a(-b)=-a b,(-a)(-b)=a b$ for all $a, b \in\{i, j, k\}$.

Hence, every nonabelian group of order 8 is isomorphic to D_{4} or Q_{8}.

[^0]: ${ }^{1}$ Recall that for any finite group G and any prime p dividing $|G|, n_{p}$ denotes the number of Sylow p subgroups of G.

