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Motivation

Frame quotients are relatively easy to compute in many cases for two
reasons.

Each equivalence class (�ber of the quotient map) has a greatest
element.

The frame law asserts that the meet operation preserves all joins, and
therefore has an adjoint map, which is the Heyting arrow. Although
this operation is not part of the formal frame apparatus, it provides a
simple technique for extending a generating relation to a frame
congruence.

We will extend the second point to κ-quantales, substituting the monoid
multiplication for the meet operation. And we will use the �rst point on
suitable extensions to give information about quotients of κ-quantales.
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κ-sets

The symbols λ and κ will represent in�nite regular cardinals, or the symbol
0, or the symbol ∞. The order is

0 � λ � κ � ∞

De�nition
A κ-set is a set of cardinality strictly less that κ. There are no 0-sets, an
ω-set is a �nite set, an ω1-set is a countable set, and an ∞-set is just a
set. A κ-subset is a subset A � B which is a κ-set; we write A �κ B.
Likewise for κ-union, κ-join, etc.
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κ-quantales

For the purposes of this talk,

De�nition
A κ-quantale is a commutative monoid and a κ-complete lattice such that
the identity element of the monoid is the top element of the lattice, and
the monoid multiplication distributes across κ-joins. κ-morphisms preserve
all relevant structure. The category is κQnt. 0-quantales have no order,
and are therefore simply commutative monoids. We write 0Qnt as CMon.
We refer to ∞-quantales as simply quantales, and write ∞Qnt as Qnt.

By distributivity, x � y is monotone in both variables.
xy � x , y , since 1 is the top, and x � 0 = 0 since x � 0 � 1 � 0 = 0.
xy = x ^ y i¤ the monoid is idempotent, since in that case z � x , y
implies z = z � z � x � y .
The ideals of a commutative ring with unit form a quantale.
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The �rst tool: quantale quotients

Let R be a binary relation on a quantale L.

De�nition
An element s 2 S is said to be R-saturated, or simply saturated, if

8a, b, c aRb =) (ac � s i¤ bc � s).

The set of all saturated elements will be denoted by L/R.

The distributivity a �W bi = W
(a � bi ) in L can be interpreted as saying that

the mappings (x 7! a � x) : L! L preserve all suprema, and hence they
are left Galois adjoints. This gives rise to an operation ! on L such that

ab � c i¤ a � b ! c .
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R-saturated elements

De�nition
An element s 2 S is said to be R-saturated if

8a, b, c aRb =) (ac � s i¤ bc � s).

Observation
The meet of an arbitrary set of saturated elements is saturated.

If s is saturated then so is x ! s for any x.

Proof.
Suppose aRb. Then

ac � x ! s () acx � s () bcx � s () bc � x ! s
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The quotient map

De�nition
De�ne a mapping µR � (x 7!

V
x�s2L/R

s) : L �! L/R.

Lemma
1 x � µ(x), µ is monotone, and µµ(x) = µ(x),
2 µ(xy) = µ(µ(x)µ(y)).

Theorem
L/R is a complete lattice, and if it is endowed with the multiplication
x � y = µ(xy) it becomes a quantale and µR becomes a quantale
morphism L! L/R.
If aRb then µR (a) = µR (b), and for every κ-morphism h : L! M such
that aRb ) h(a) = h(b) there is a unique quantale morphism
h : L/R ! M such that hµR = h. Moreover, h(a) = h(a) for all a 2 L/R.
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The second tool: the free κ�quantale over a λ-quantale

The forgetful functor κQnt! λQnt has a left adjoint, which we label Fκ
λ.

We begin by describing F0κS , the free κ-quantale over a commutative
monoid S . Fix κ > 0.

De�nition
A pre-ideal in a commutative monoid S is a subset U � S such that

u 2 U & s 2 S =) us 2 U.

The pre-ideal generated by an arbitrary subset A � S is

[A] � fas : a 2 A, s 2 Sg =
[
A

[a] .

The smallest pre-ideal containing an element a 2 S is the principal
pre-ideal

[a] = fas : s 2 Sg .
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Properties of pre-ideals

Though a pre-ideal need not be a downset, a downset is a pre-ideal in any
quantale,

and the pre-ideals of a meet-semilattice are exactly the
downsets. In that case [a] = #a.

Lemma
Let S be a commutative monoid.

1 If Ui , i 2 I , are pre-ideals then so is
S
I Ui .

2 If U and V are pre-ideals then U � V = fuv : u 2 U, v 2 V g is a
pre-ideal. This operation is associative and commutative. If the
monoid is idempotent, i.e., a meet semilattice, then U � U = U.

3 U � S = U.
4 U � (SI Vi ) = S

I (U � Vi ).
5 [a] � [b] = [ab], and [1] = S.

The content of this lemma is that the family of pre-ideals on S forms a
quantale in the inclusion order. Note: order from no order.
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The free κ-quantale over a commutative monoid

De�nition
For a commutative monoid S let

F0κS � f[A] : A �κ Sg .,

De�ne the mapping

ρ0κS : S ! F0κS � (a 7�! [a], a 2 S) .

Abbreviate ρ0∞S to ρ0S .
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The free κ-quantale over a commutative monoid

Theorem
ρ0κS : S ! F0κS is the free κ-quantale over the commutative monoid S.
That is, for every κ-quantale L and monoid homomorphism h : S ! L
there is precisely one κ-morphism f : F0κS ! L such that the diagram

F0κS L

S

-

�
�
���6

ρ0κS

f

h

commutes.
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The free κ-quantale over a λ-quantale, λ > 0

We can expect to construct this object by

�rst forgetting the order on L, i.e., applying the forgetful functor to
CMon,
then passing to F0κL, the free κ-quantale over the monoid L,
and then factoring F0κL by the relation R which forces the insertion of
L into F0κL to respect κ-joins.

De�nition
A λ-ideal in a λ-quantale L is a downset U � L such that WA 2 U for all
A �λ U. Denote the smallest λ-ideal containing A � L by

hAiλ � #
n_

B : B �λ A
o

Let
Fλ

κL = fhAiλ : A �k Lg ,
and let ρλ

κL (a) : L! Fλ
κL � (a 7�! #a, a 2 L). Abbreviate ρλ

∞L to ρλ
L .
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The κ-free quantale over a λ-quantale, λ > 0

Theorem

Let L be a λ-quantale. Then Fλ
κL is a quantale with respect to the

operations

U � V = #fuv : u 2 U, v 2 V g ,_
I

Vi = #
(_

A : A �λ

[
I

Vi

)

In fact, ρλ
κL (a) : L! Fλ

L is the free κ-quantale over L.
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λ-coherent κ-quantales

It is a surprising fact that those κ-quantales L which are free over some
λ-quantale M can be intrinsically characterized. Even more surprisingly, M
can be recovered from L.

De�nition
Let L be a κ-quantale. An element a 2 L is called a λ-element if for all
A �κ L such that

W
A � a there is some A0 �λ A such that

W
A0 � a.

The set of λ-elements of L is designated Eκ
λL. This set is evidently closed

under λ-joins, and we call L λ-coherent if Eκ
λL forms a generating

sub-λ-frame of L. More explicitly, L is λ-coherent if

every element of L is a supremum of a κ-set of λ-elements,
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λ-coherent κ-quantales

Theorem
A κ-quantale is λ-free i¤ it is λ-coherent.

More precisely, we have the
following.

1 For any λ-quantale L, Fλ
κL is λ-coherent and

Eκ
λF

λ
κL = f#a : a 2 Lg .

2 For any λ-coherent κ-frame L, the inclusion Eκ
λL! L lifts to an

isomorphism Fλ
κE

κ
λL! L.

This result directly generalizes to κ-quantales Madden�s corresponding
result for κ-frames.
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κ-quantale quotients

We can now handle quotients of κ-quantales by a simple application of the
functor Fκ.Given a binary relation R on a κ-quantale L,

�rst pass to FκL, the free quantale over L,

factor FκL by the relation eR � f(#a, #b) : aRbg, getting quotient
map µ : FκL! FκL/eR,
and the desired quotient map is the range restriction of
µρκ

L : L! FκL/eR.
De�nition
A κ-ideal U on L is R-saturated i¤

8 a, b, c 2 L (aRb =) (ac 2 U () bc 2 U)) .

We denote by hAiR the smallest R-saturated κ-ideal containing a subset
A � L.
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κ-quantale quotients

Theorem
Let L be a κ-quantale, κ > 0, and let R be a binary relation on L. Then
the R-saturated κ-ideals form a quantale in the order inherited from FκL,
and the map

(a 7�! haiR ) : L! fhaiR : a 2 Lg
is a κQnt-quotient of L by the smallest κ-congruence containing R.
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Colimits

Let D = (Li , φij )I be a diagram in κQnt. Consider the colimit
(δi : Li ! S)I in CMon, embed S in F0κS via ρ0κS , and then factor F

0
κS by

the smallest congruence which forces the ρ0κδi�s to respect κ-joins.

De�nition
A pre-ideal U � S is saturated i¤ it satis�es the following conditions.

1 For all i 2 I and all a � b in Li , and for all s 2 S , if δi (b) s 2 U then
δi (a) s 2 U.

2 For all i 2 I and A �κ Li with b =
W
A, and for all s 2 S , if

δi (a) s 2 U for all a 2 A then δi (b) s 2 U.
Let [A]R designate the smallest R-saturated pre-ideal containing a subset
A � S . Let eL � f[A]R : A �κ Lg ,

and let γi : Li ! eL � (a 7�! [a]R , a 2 A).
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A � S .

Let eL � f[A]R : A �κ Lg ,

and let γi : Li ! eL � (a 7�! [a]R , a 2 A).
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Colimits

Theorem�
γi : Li ! eL� is a κQnt colimit of the diagram D = (Li , φij )I .

This directly generalizes to κ-quantales Johnstone�s construction of the
frame colimit.
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Coproducts

This description of the colimit specializes to coproducts.

The
simpli�cation occurs because the underlying CMon coproduct S is
transparent. The resulting κQnt coproduct construction is intuitive and
explicit; and lends itself to a characterization in general terms.

Theorem
Let κ > 0. A family (υi : Li ! L)J of κ-morphisms is a κQnt coproduct of
the family (Li )J i¤ it has these properties.

1
S
J υi [Li ] generates L.

2 For any I0 �ω J and I1 �κ J, and for any choice of ai 2 Li , i 2 I0,
and bj 2 Lj , j 2 I1,

u
I0

υi (ai ) �
_
I1

υj (bj ) =) 9 i 2 I0 \ I1 (ai � bi ) .
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Free κ-quantales (over sets)

This description of coproducts specializes to free κ-quantales.

This is the
generalization to κQnt of Whitman�s condition for distributive lattices.

Theorem
Let L be a κ-quantale, κ > 0, generated by a subset X . Then L is freely
generated by X i¤ for any X0 �ω X and Y �κ X, and for any choice of
integers nx ,my 2 Z+, x 2 X0, y 2 Y ,

u
X0
xnx �

_
Y

ymy =) 9 x 2 X0 \ Y (nx � my ) .
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