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Polymorphisms and invariant relations

Let A be a set, n ∈ N and m ∈ N+.

O
(n)
A := AAn

R
(m)
A := P (Am)

OA :=
⋃
n∈N

O
(n)
A RA :=

⋃
m∈N+

R
(m)
A

For f ∈ O
(n)
A and S ⊆ Am (i.e. S ∈ R

(m)
A ):

f B S :⇐⇒ S ∈ Sub (〈A; f 〉m)

⇐⇒ f ∈ Hom (〈A;S〉n ; 〈A;S〉)
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Polymorphisms and invariant relations

For F ⊆ OA and Q ⊆ RA:

Inv 〈A;F 〉 := InvA F := {S ∈ RA | ∀f ∈ F : f B S}

=
⋃

m∈N+

Sub (〈A;F 〉m)

Pol 〈A;Q〉 := PolAQ := { f ∈ OA | ∀S ∈ Q : f B S}

=
⋃
n∈N

Hom (〈A;Q〉n ; 〈A;Q〉)

Clo (A) := Pol Inv A = T (A) (term operations).
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Restricting algebras to neighbourhoods
A

A
:

= 〈A; Inv A〉

InvA

〈A; Clo (A)〉
PolA

≡term

InvA

A
:
�U := 〈U; [Inv A]�U〉

�U

︸ ︷︷ ︸
=
{
S ∩ Uar S

∣∣ S ∈ Inv A
}〈U; PolU [Inv A]�U〉

PolU

InvU

Definition
(neighbourhood)

U ∈ NeighA :⇐⇒
U = e [A] for some
e ∈ IdemA :={
g∈Clo(1)(A)

∣∣∣ g2=g
}

|U

: =

A|U =
〈
U;
{

(e ◦ f )�U
Uar f

∣∣∣ f ∈ Clo (A)
}〉

=
〈
U;
{
f �U

Uar f

∣∣∣ f ∈ Clo (A) ∧ f B U
}〉
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Distinguishing invariant relations

S

T

U1

U2U3 U4

U5

U6

Definition (cover)

U ⊆ NeighA cover of A iff for all m ∈ N+ and S ,T ∈ Inv(m)A holds

S 6= T =⇒ ∃U ∈ U : S�U 6= T �U .
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Characterisation of covers A

Theorem (Kearnes, A. Szendrei, 2001)

For an algebra A and a collection U ⊆ NeighA of neighbourhoods of A (where each
U ∈ U satisfies U = eU [A] for some fixed eU ∈ IdemA) t.f.a.e.:

1 U is a cover of A.

2 There is some q ∈ N+, tuples (U1, . . . ,Uq) ∈ Uq and (f1, . . . , fq) ∈
(

Clo(1) (A)
)q

and a term operation λ ∈ Clo(q) (A) such that for all x ∈ A holds

λ
(
eU1
◦ f1(x), . . . , eUq ◦ fq(x)

)
= x .

3 There is some q ∈ N+ and a tuple (U1, . . . ,Uq) ∈ Uq such that A
:

is a retract of

A
:
�U1
× · · · × A

:
�Uq , i.e. there are relational morphisms such that

A
:

q∏
i=1

A
:
�Ui

A
:

M Λ

1A

commutes.
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When localisation is useless . . .

Definition (Irreducibility)

An algebra A is called irreducible, iff every cover U ⊆ NeighA
necessarily contains the neighbourhood A ∈ U .

Definition (Irreducible neighbourhood)

U ∈ NeighA irreducible :⇐⇒ A|U irreducible.

Theorem (Kearnes, A. Szendrei, 2001)

A finite algebra A is irreducible iff the set of all unary non-bijective
term operations is an invariant relation,

i.e. Clo(1) (A) \ SymA ∈ Sub
(
AA
)
.
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Refinement of covers

V ≤ref U
quasiorder
idea: smaller neighbour-
hoods

. . . . . . U

. . . V

...
...

...

. . . . . . . . .

nonrefinable irredundant
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Existence and uniqueness of covers

Theorem (Kearnes, A. Szendrei, 2001)

Every finite algebra A has got exactly one nonrefinable, irredundant
cover U up to isomorphism. All neighbourhoods in U are irreducible.

Consequence:

cover Decomposition of algebras in small parts (up to term
equivalence)

uniqueness exactly one distinguished cover up to isomorphism
consisting of irreducible neighbourhoods

irreducible algebras = basic building blocks of finite algebras

check by Clo(1) (A) \ SymA ∈ Sub
(
AA
)
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Outline

1 Preliminaries and notations

2 “Relational TCT” as a localisation theory

3 Examples of irreducible algebras / neighbourhoods
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Irreducible classes of algebras

i.e. all member are irreducible algebras

1 |A| = 1: one-element algebras without nullary constants

2 |A| = 2: all two-element algebras

3 essentially unary algebras Clo (A) =
〈

Clo(1) (A)
〉

OA

4 all idempotent algebras (f (x , . . . , x) ≈ x)
especially all semilattices, lattices, Boolean algebras

5 (partially) bounded lattices, or semilattices resp. (|A| > 1)

6 orthocomplemented lattices, Boolean algebras (|A| > 1)

7 vector spaces 6= {0} over finite fields
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Groups

Result

Let G =
〈
G ; ·, −1, e

〉
be a finite group and expG = lcm {ord x | x ∈ G} =

∏k
i=1 p

ki
i︸︷︷︸

:=qi

.

Then
U : P ({q1, . . . , qk}) −→ NeighG

S 7−→ U(S) :=
{
x ∈ G

∣∣∣ x∏ S = e
}

is a lattice isomorphism. The irreducible neighbourhoods of G are exactly the atoms of
this lattice, that is the neighbourhoods of the form

Ui = {x ∈ G | xqi = e } (1 ≤ i ≤ k)

=
⋃

Sylpi G.
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Semigroups

Result (Waldhauser, 2009)

A finite semigroup S = 〈S ; ·〉 is irreducible iff

it is either not completely regular

or it is a union of subgroups whose sizes are all powers of a
common prime.

S = 〈S ; ·〉 has the following irreducible neighbourhoods:

S if it is not completely regular

set of idempotents
{
x ∈ S | x2 = x

}
for every prime divisor p of exp GrS := lcm {ord x | x ∈ GrS}
the set

{x ∈ GrS | ord x is a power of p} .
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Semigroups

Result (Waldhauser, 2009)
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Subalgebra primal algebras

A subalgebra primal :⇐⇒ ∃ Q ⊆ R
(1)
A : Clo (A) = PolAQ

⇐⇒ Clo (A) = PolA Inv(1)A

=⇒ unary relational structures A
:

= 〈A;Q〉, where Q ⊆ R
(1)
A .

A
:

irreducible ⇐⇒ A = 〈A; PolAQ〉 is irreducible

⇐⇒ A
:
 type 1 / 2
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Irreducible subalgebra primal algebras

Let A
:

= 〈A;Q〉 be a unary relational structure where

Q ≤ 〈P (A) ,A,∩〉 as follows. =⇒ A
:

irreducible.

1 {B,B ∪ {a}} ∪ {{x} | x ∈ A \ {a}} ⊆ Q

a
B .

.
. .

.

..

.

A

2 {a, b} ∪ {{x} | x ∈ A \ {a, b}} ⊆ Q

a b
.

.
.

.
.

..

.

A
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Problems / remarks

1 Characterisation of irreducible neighbourhoods of certain finite
algebras!!!

2 Well-behaved algebras and difficult ones

3 Considering polynomial clones (algebras AA)

4 Structure of the clone lattice

5 Other structures, e.g. congruence primal algebras, quasi primal
algebras. . .

6 Your ideas . . .
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