

Relational Tame Congruence Theory

Mike Behrisch

Boulder, CO, 6 June 2010

Outline

- 2 "Relational TCT" as a localisation theory
- 3 Examples of irreducible algebras / neighbourhoods

Outline

Preliminaries and notations

2 "Relational TCT" as a localisation theory

3 Examples of irreducible algebras / neighbourhoods

Polymorphisms and invariant relations

Let A be a set, $n \in \mathbb{N}$ and $m \in \mathbb{N}_+$.

$$O_{A}^{(n)} := A^{A^{n}} \qquad \qquad \mathsf{R}_{A}^{(m)} := \mathcal{P}(A^{m})$$
$$O_{A} := \bigcup_{n \in \mathbb{N}} O_{A}^{(n)} \qquad \qquad \mathsf{R}_{A} := \bigcup_{m \in \mathbb{N}_{+}} \mathsf{R}_{A}^{(m)}$$

For $f \in O_A^{(n)}$ and $S \subseteq A^m$ (i.e. $S \in \mathsf{R}_A^{(m)}$): $f \rhd S :\iff S \in \mathsf{Sub}(\langle A; f \rangle^m)$

Polymorphisms and invariant relations

Let A be a set, $n \in \mathbb{N}$ and $m \in \mathbb{N}_+$.

$$O_{A}^{(n)} := A^{A^{n}} \qquad \qquad \mathsf{R}_{A}^{(m)} := \mathcal{P}(A^{m})$$
$$O_{A} := \bigcup_{n \in \mathbb{N}} O_{A}^{(n)} \qquad \qquad \mathsf{R}_{A} := \bigcup_{m \in \mathbb{N}_{+}} \mathsf{R}_{A}^{(m)}$$

For $f \in O_A^{(n)}$ and $S \subseteq A^m$ (i.e. $S \in \mathsf{R}_A^{(m)}$): $f \rhd S :\iff S \in \mathsf{Sub}(\langle A; f \rangle^m)$ $\iff f \in \mathsf{Hom}(\langle A; S \rangle^n; \langle A; S \rangle)$

Polymorphisms and invariant relations

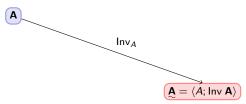
For $F \subset O_A$ and $Q \subset R_A$: $\operatorname{Inv} \langle A; F \rangle := \operatorname{Inv}_A F := \{ S \in \mathsf{R}_A \mid \forall f \in F : f \triangleright S \}$ = \bigcup Sub $(\langle A; F \rangle^m)$ $m \in \mathbb{N}_+$ $\mathsf{Pol}\,\langle A; Q \rangle := \mathsf{Pol}_A\,Q := \{f \in \mathsf{O}_A \mid \forall S \in Q : f \rhd S\}$ = \bigcup Hom ($\langle A; Q \rangle^n$; $\langle A; Q \rangle$) $n \in \mathbb{N}$ $Clo(\mathbf{A}) := Pol Inv \mathbf{A} = T(\mathbf{A})$ (term operations).

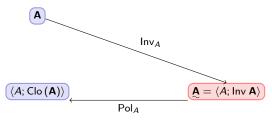
Outline

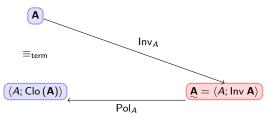
2 "Relational TCT" as a localisation theory

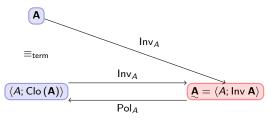
3 Examples of irreducible algebras / neighbourhoods

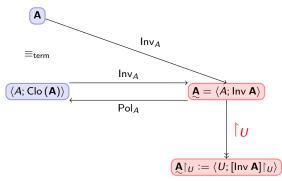
A

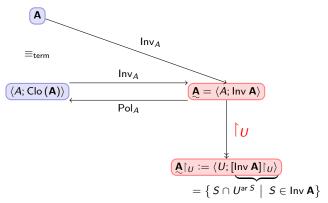


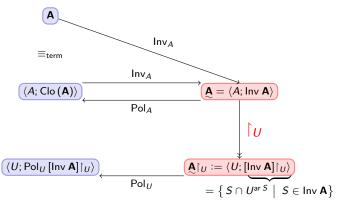


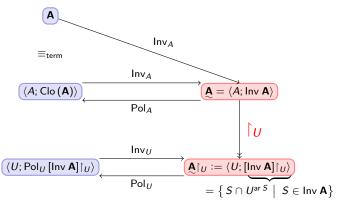


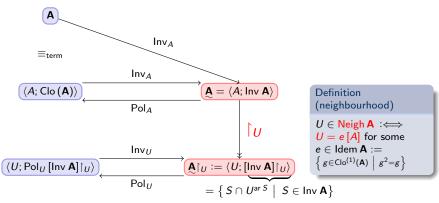


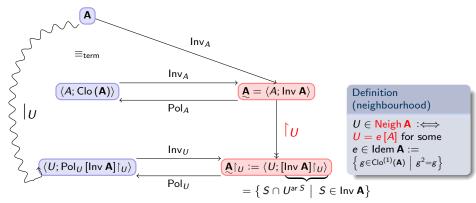


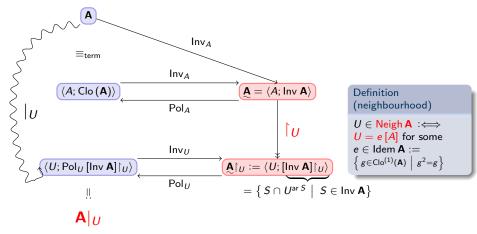


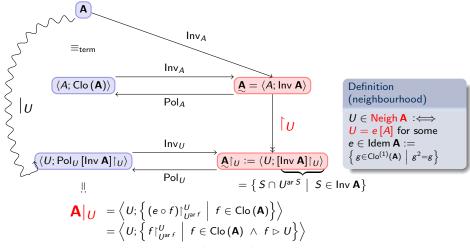






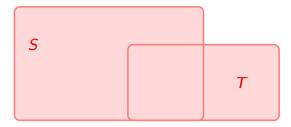


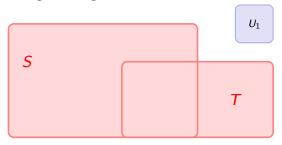


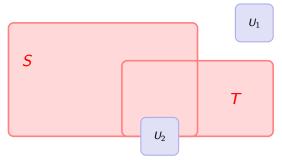


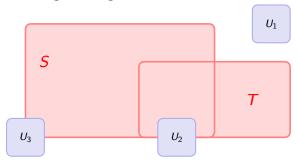
TU Dresden

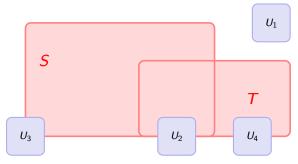
Generalised TCT

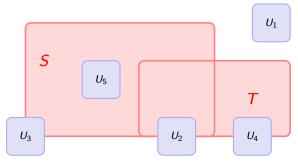


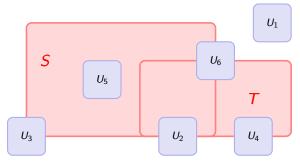


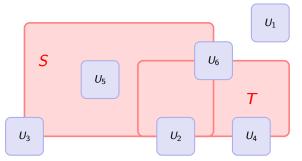












Definition (cover)

 $\mathcal{U} \subseteq \text{Neigh } \mathbf{A} \text{ cover of } \mathbf{A} \text{ iff for all } m \in \mathbb{N}_+ \text{ and } S, T \in \text{Inv}^{(m)} \mathbf{A} \text{ holds} \\ S \neq T \implies \exists U \in \mathcal{U} : S \upharpoonright_U \neq T \upharpoonright_U.$

Theorem (Kearnes, A. Szendrei, 2001)

For an algebra **A** and a collection $\mathcal{U} \subseteq$ Neigh **A** of neighbourhoods of **A** (where each $U \in \mathcal{U}$ satisfies $U = e_U[A]$ for some fixed $e_U \in$ Idem **A**) t.f.a.e.:

 $\textcircled{1} \mathcal{U} \text{ is a cover of } \mathbf{A}.$

Theorem (Kearnes, A. Szendrei, 2001)

For an algebra **A** and a collection $\mathcal{U} \subseteq$ Neigh **A** of neighbourhoods of **A** (where each $U \in \mathcal{U}$ satisfies $U = e_U[A]$ for some fixed $e_U \in$ Idem **A**) t.f.a.e.:

- U is a cover of A.
- 2 There is some $q \in \mathbb{N}_+$, tuples $(U_1, \ldots, U_q) \in \mathcal{U}^q$ and $(f_1, \ldots, f_q) \in (\operatorname{Clo}^{(1)}(\mathbf{A}))^q$ and a term operation $\lambda \in \operatorname{Clo}^{(q)}(\mathbf{A})$ such that for all $x \in A$ holds

$$\lambda\left(e_{U_1}\circ f_1(x),\ldots,e_{U_q}\circ f_q(x)\right)=x.$$

Theorem (Kearnes, A. Szendrei, 2001)

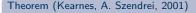
For an algebra **A** and a collection $\mathcal{U} \subseteq$ Neigh **A** of neighbourhoods of **A** (where each $U \in \mathcal{U}$ satisfies $U = e_U[A]$ for some fixed $e_U \in$ Idem **A**) t.f.a.e.:

U is a cover of A.

There is some *q* ∈ ℕ₊, tuples $(U_1, \ldots, U_q) ∈ U^q$ and $(f_1, \ldots, f_q) ∈ (Clo⁽¹⁾ (A))^q$ and a term operation $\lambda ∈ Clo^(q) (A)$ such that for all *x* ∈ *A* holds

$$\lambda\left(e_{U_1}\circ f_1(x),\ldots,e_{U_q}\circ f_q(x)\right)=x.$$

3 There is some $q \in \mathbb{N}_+$ and a tuple $(U_1, \ldots, U_q) \in \mathcal{U}^q$ such that \bigotimes_{q} is a retract of $\bigotimes_{q} [v_1 \times \cdots \times \bigotimes_{q} [v_q]]$



For an algebra **A** and a collection $\mathcal{U} \subseteq$ Neigh **A** of neighbourhoods of **A** (where each $U \in \mathcal{U}$ satisfies $U = e_U[A]$ for some fixed $e_U \in$ Idem **A**) t.f.a.e.:

U is a cover of A.

There is some *q* ∈ ℕ₊, tuples $(U_1, \ldots, U_q) ∈ U^q$ and $(f_1, \ldots, f_q) ∈ (Clo⁽¹⁾ (A))^q$ and a term operation $\lambda ∈ Clo^(q) (A)$ such that for all *x* ∈ *A* holds

$$\lambda\left(e_{U_1}\circ f_1(x),\ldots,e_{U_q}\circ f_q(x)\right)=x.$$

3 There is some $q \in \mathbb{N}_+$ and a tuple $(U_1, \ldots, U_q) \in \mathcal{U}^q$ such that \bigotimes_{q} is a retract of $\bigotimes_{q} [u_1 \times \cdots \times \bigotimes_{q} [u_q]$, i.e. there are relational morphisms such that

When localisation is useless

Definition (Irreducibility)

An algebra **A** is called irreducible, iff every cover $U \subseteq \text{Neigh } \mathbf{A}$ necessarily contains the neighbourhood $A \in U$.

When localisation is useless

Definition (Irreducibility)

An algebra **A** is called irreducible, iff every cover $U \subseteq$ Neigh **A** necessarily contains the neighbourhood $A \in U$.

Definition (Irreducible neighbourhood)

 $U \in \text{Neigh } \mathbf{A} \text{ irreducible } : \iff \mathbf{A}|_U$ irreducible.

When localisation is useless

Definition (Irreducibility)

An algebra **A** is called irreducible, iff every cover $U \subseteq$ Neigh **A** necessarily contains the neighbourhood $A \in U$.

Definition (Irreducible neighbourhood)

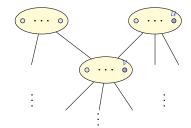
 $U \in \text{Neigh } \mathbf{A} \text{ irreducible } : \iff \mathbf{A}|_U$ irreducible.

Theorem (Kearnes, A. Szendrei, 2001)

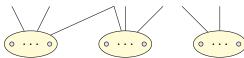
A finite algebra **A** is irreducible iff the set of all unary non-bijective term operations is an invariant relation,

i.e. $\operatorname{Clo}^{(1)}(\mathbf{A}) \setminus \operatorname{Sym} A \in \operatorname{Sub}(\mathbf{A}^{A}).$

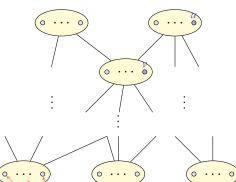
$\mathcal{V} \leq_{\mathrm{ref}} \mathcal{U}$ quasiorder idea: smaller neighbourhoods



 $\mathcal{V} \leq_{\mathrm{ref}} \mathcal{U}$ quasiorder idea: smaller neighbourhoods

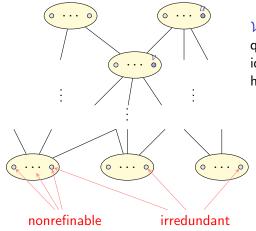


nonrefinable



 $\mathcal{V} \leq_{\mathrm{ref}} \mathcal{U}$

quasiorder idea: smaller neighbourhoods



 $\mathcal{V} \leq_{\text{ref}} \mathcal{U}$ quasiorder idea: smaller neighbourhoods

Existence and uniqueness of covers

Theorem (Kearnes, A. Szendrei, 2001)

Every finite algebra **A** has got exactly one nonrefinable, irredundant cover \mathcal{U} up to isomorphism. All neighbourhoods in \mathcal{U} are irreducible.

Existence and uniqueness of covers

Theorem (Kearnes, A. Szendrei, 2001)

Every finite algebra **A** has got exactly one nonrefinable, irredundant cover \mathcal{U} up to isomorphism. All neighbourhoods in \mathcal{U} are irreducible.

Consequence:

cover Decomposition of algebras in small parts (up to term equivalence)

uniqueness exactly one distinguished cover up to isomorphism consisting of irreducible neighbourhoods

irreducible algebras = basic building blocks of finite algebras

check by
$$\mathsf{Clo}^{(1)}\left(\mathbf{A}
ight)\setminus\mathsf{Sym}\,A\in\mathsf{Sub}\left(\mathbf{A}^{A}
ight)$$

Outline

2 "Relational TCT" as a localisation theory

3 Examples of irreducible algebras / neighbourhoods

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras
 - $\ \, {\small \textcircled{\textbf{s}}} \ \, {\small \textbf{essentially unary algebras}} \ \, {\small \textbf{Clo}}\left({\textbf{A}} \right) = \left\langle {\small \textbf{Clo}}^{\left(1 \right)}\left({\textbf{A}} \right) \right\rangle _{\textit{O}_{A}}$

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras
 - essentially unary algebras $Clo(\mathbf{A}) = \left\langle Clo^{(1)}(\mathbf{A}) \right\rangle_{O_A}$
 - all idempotent algebras $(f(x,...,x) \approx x)$

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras
 - **③** essentially unary algebras $Clo(\mathbf{A}) = \left\langle Clo^{(1)}(\mathbf{A}) \right\rangle_{O_A}$
 - all idempotent algebras (f(x,...,x) ≈ x) especially all semilattices, lattices, Boolean algebras

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras
 - **③** essentially unary algebras $Clo(\mathbf{A}) = \left\langle Clo^{(1)}(\mathbf{A}) \right\rangle_{O_A}$
 - all idempotent algebras $(f(x,...,x) \approx x)$ especially all semilattices, lattices, Boolean algebras
 - **(**partially) bounded lattices, or semilattices resp. (|A| > 1)

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras
 - **③** essentially unary algebras $Clo(\mathbf{A}) = \left\langle Clo^{(1)}(\mathbf{A}) \right\rangle_{\Omega_{\mathbf{A}}}$
 - all idempotent algebras (f(x,...,x) ≈ x) especially all semilattices, lattices, Boolean algebras
 - **(**partially) bounded lattices, or semilattices resp. (|A| > 1)
 - orthocomplemented lattices, Boolean algebras (|A| > 1)

- i.e. all member are irreducible algebras
 - **(**) |A| = 1: one-element algebras without nullary constants
 - 2 |A| = 2: all two-element algebras
 - **③** essentially unary algebras $Clo(\mathbf{A}) = \left\langle Clo^{(1)}(\mathbf{A}) \right\rangle_{\Omega_{\mathbf{A}}}$
 - all idempotent algebras (f(x,...,x) ≈ x) especially all semilattices, lattices, Boolean algebras
 - **(**partially) bounded lattices, or semilattices resp. (|A| > 1)
 - orthocomplemented lattices, Boolean algebras (|A| > 1)
 - vector spaces $\neq \{0\}$ over finite fields

Result

Let $\mathbf{G} = \langle G; \cdot, e \rangle$ be a finite group and $\exp \mathbf{G} = \operatorname{lcm} \{ \operatorname{ord} x \mid x \in G \} = \prod_{i=1}^{k} p_i^{k_i}$.

 $:=q_i$

Result

Let $\mathbf{G} = \langle G; \cdot, -1, e \rangle$ be a finite group and $\exp \mathbf{G} = \operatorname{lcm} \{ \operatorname{ord} x \mid x \in G \} = \prod_{i=1}^{k} \underbrace{p_i^{k_i}}_{:=q_i}$.

Then

$$\begin{array}{cccc} \mathcal{I}: & \mathcal{P}\left(\{q_1, \dots, q_k\}\right) & \longrightarrow & \operatorname{Neigh} \mathbf{G} \\ & S & \longmapsto & \mathcal{U}(S) \mathrel{\mathop:}= \left\{x \in G \ \Big| \ x^{\prod S} = e\right\} \end{array}$$

is a lattice isomorphism.

Result

Let $\mathbf{G} = \langle G; \cdot, e \rangle$ be a finite group and $\exp \mathbf{G} = \operatorname{lcm} \{ \operatorname{ord} x \mid x \in G \} = \prod_{i=1}^{k} \underbrace{p_i^{k_i}}_{i=1}$.

Then

$$\begin{array}{cccc} \mathcal{I}: & \mathcal{P}\left(\{q_1, \dots, q_k\}\right) & \longrightarrow & \operatorname{Neigh} \mathbf{G} \\ & S & \longmapsto & \mathcal{U}(S) \mathrel{\mathop:}= \left\{x \in G \ \Big| \ x^{\prod S} = e\right\} \end{array}$$

is a lattice isomorphism. The irreducible neighbourhoods of ${\bf G}$ are exactly the atoms of this lattice, that is the neighbourhoods of the form

$$U_i = \{x \in G \mid x^{q_i} = e\} \quad (1 \le i \le k)$$

Result

Let $\mathbf{G} = \langle G; \cdot, e \rangle$ be a finite group and $\exp \mathbf{G} = \operatorname{lcm} \{ \operatorname{ord} x \mid x \in G \} = \prod_{i=1}^{k} \underbrace{p_i^{k_i}}_{i=1}$.

Then

$$\begin{array}{cccc} \mathcal{I}: & \mathcal{P}\left(\{q_1, \dots, q_k\}\right) & \longrightarrow & \operatorname{Neigh} \mathbf{G} \\ & S & \longmapsto & \mathcal{U}(S) \mathrel{\mathop:}= \left\{x \in G \ \Big| \ x^{\prod S} = e\right\} \end{array}$$

is a lattice isomorphism. The irreducible neighbourhoods of ${\bf G}$ are exactly the atoms of this lattice, that is the neighbourhoods of the form

$$\begin{split} U_i &= \{ x \in G \mid x^{q_i} = e \} \quad (1 \leq i \leq k) \\ &= \bigcup \operatorname{Syl}_{p_i} \mathbf{G}. \end{split}$$

Result (Waldhauser, 2009)

A finite semigroup $\mathbf{S} = \langle S; \cdot
angle$ is irreducible iff

• it is either not completely regular

Result (Waldhauser, 2009)

A finite semigroup $\mathbf{S} = \langle S; \cdot \rangle$ is irreducible iff

• it is either not completely regular

i.e. there is one $x \in S$ that is not contained in a subgroup

Result (Waldhauser, 2009)

- it is either not completely regular
- or it is a union of subgroups whose sizes are all powers of a common prime.

Result (Waldhauser, 2009)

- it is either not completely regular
- or it is a union of subgroups whose sizes are all powers of a common prime.
- $\mathbf{S}=\langle {\it S};\cdot\rangle$ has the following irreducible neighbourhoods:

Result (Waldhauser, 2009)

- it is either not completely regular
- or it is a union of subgroups whose sizes are all powers of a common prime.
- $\mathbf{S}=\langle \textit{S};\cdot\rangle$ has the following irreducible neighbourhoods:
 - S if it is not completely regular

Result (Waldhauser, 2009)

- it is either not completely regular
- or it is a union of subgroups whose sizes are all powers of a common prime.
- $\mathbf{S}=\langle \textbf{\textit{S}};\cdot\rangle$ has the following irreducible neighbourhoods:
 - S if it is not completely regular
 - set of idempotents $\left\{ x \in S \mid x^2 = x \right\}$

Result (Waldhauser, 2009)

A finite semigroup $\mathbf{S} = \langle S; \cdot
angle$ is irreducible iff

- it is either not completely regular
- or it is a union of subgroups whose sizes are all powers of a common prime.
- $\mathbf{S} = \langle S; \cdot
 angle$ has the following irreducible neighbourhoods:
 - S if it is not completely regular
 - set of idempotents $\{x \in S \mid x^2 = x\}$
 - for every prime divisor p of exp Gr $S := \operatorname{lcm} \{ \operatorname{ord} x \mid x \in \operatorname{Gr} S \}$ the set

$$\{x \in \operatorname{Gr} \mathbf{S} \mid \operatorname{ord} x \text{ is a power of } p\}.$$

TU Dresden

Generalised TCT

$${f A}$$
 subalgebra primal : $\Longleftrightarrow \exists \ Q \subseteq {\sf R}^{(1)}_A: \quad {\sf Clo}\,({f A}) = {\sf Pol}_A\,Q$

$$\begin{array}{lll} \textbf{A} \text{ subalgebra primal } :\Longleftrightarrow \ \exists \ Q \subseteq \mathsf{R}^{(1)}_{\mathcal{A}} : & \mathsf{Clo}\,(\textbf{A}) = \mathsf{Pol}_{\mathcal{A}}\,Q\\ & \Longleftrightarrow & \mathsf{Clo}\,(\textbf{A}) = \mathsf{Pol}_{\mathcal{A}}\,\mathsf{Inv}^{(1)}\textbf{A} \end{array}$$

$$\begin{array}{lll} \textbf{A} \text{ subalgebra primal } :\Longleftrightarrow \ \exists \ Q \subseteq \mathsf{R}_{\mathcal{A}}^{(1)} : & \mathsf{Clo}\left(\textbf{A}\right) = \mathsf{Pol}_{\mathcal{A}} \, Q \\ & \Longleftrightarrow & \mathsf{Clo}\left(\textbf{A}\right) = \mathsf{Pol}_{\mathcal{A}} \, \mathsf{Inv}^{(1)} \textbf{A} \end{array}$$

$$\implies$$
 unary relational structures $\mathbf{A} = \langle A; Q \rangle$, where $Q \subseteq \mathsf{R}^{(1)}_{\mathbf{A}}$.

$$\begin{array}{ll} \mathbf{A} \text{ subalgebra primal } :\iff \exists \ Q \subseteq \mathsf{R}_{A}^{(1)}: & \mathsf{Clo}\left(\mathbf{A}\right) = \mathsf{Pol}_{A} \ Q \\ & \Longleftrightarrow \ \mathsf{Clo}\left(\mathbf{A}\right) = \mathsf{Pol}_{A} \ \mathsf{Inv}^{(1)}\mathbf{A} \end{array}$$

 \implies unary relational structures $\mathbf{A} = \langle A; Q \rangle$, where $Q \subseteq \mathsf{R}^{(1)}_{\mathbf{A}}$.

 \bigotimes irreducible \iff **A** = $\langle A; \operatorname{Pol}_A Q \rangle$ is irreducible

$$\begin{array}{ll} \mathbf{A} \text{ subalgebra primal } :\iff \exists \ Q \subseteq \mathsf{R}_{A}^{(1)}: & \mathsf{Clo}\left(\mathbf{A}\right) = \mathsf{Pol}_{A} \ Q \\ & \Longleftrightarrow \ \mathsf{Clo}\left(\mathbf{A}\right) = \mathsf{Pol}_{A} \ \mathsf{Inv}^{(1)}\mathbf{A} \end{array}$$

 \implies unary relational structures $\mathbf{A} = \langle A; Q \rangle$, where $Q \subseteq \mathsf{R}^{(1)}_{\mathbf{A}}$.

$$\begin{array}{ll} {\color{black} \textbf{A}} \text{ irreducible } & \Longleftrightarrow & {\color{black} \textbf{A}} = \langle A; \operatorname{Pol}_A Q \rangle \text{ is irreducible} \\ & \Longleftrightarrow & {\color{black} \textbf{A}} \rightsquigarrow \text{ type } 1 \ / \ 2 \end{array}$$

Irreducible subalgebra primal algebras Let $\mathbf{A} = \langle A; Q \rangle$ be a unary relational structure where $Q \leq \langle \mathcal{P}(A), A, \cap \rangle$ as follows. $\implies \mathbf{A}$ irreducible.

Irreducible subalgebra primal algebras Let $\mathbf{A} = \langle A; Q \rangle$ be a unary relational structure where $Q \leq \langle \mathcal{P}(A), A, \cap \rangle$ as follows. $\Longrightarrow \mathbf{A}$ irreducible. $\{B, B \cup \{a\}\} \cup \{\{x\} \mid x \in A \setminus \{a\}\} \subseteq Q$

Irreducible subalgebra primal algebras Let $\mathbf{A} = \langle A; Q \rangle$ be a unary relational structure where $Q \leq \langle \mathcal{P}(A), A, \cap \rangle$ as follows. \implies **A** irreducible. $\{a,b\} \cup \{\{x\} \mid x \in A \setminus \{a,b\}\} \subseteq Q$ Generalised TCT

• Characterisation of irreducible neighbourhoods of certain finite algebras!!!

- Characterisation of irreducible neighbourhoods of certain finite algebras!!!
- Well-behaved algebras and difficult ones

- Characterisation of irreducible neighbourhoods of certain finite algebras!!!
- Well-behaved algebras and difficult ones
- Solution Considering polynomial clones (algebras A_A)

- Characterisation of irreducible neighbourhoods of certain finite algebras!!!
- Well-behaved algebras and difficult ones
- Solution Considering polynomial clones (algebras A_A)
- Structure of the clone lattice

- Characterisation of irreducible neighbourhoods of certain finite algebras!!!
- Well-behaved algebras and difficult ones
- **Solution** Considering polynomial clones (algebras A_A)
- Structure of the clone lattice
- Other structures, e.g. congruence primal algebras, quasi primal algebras...

- Characterisation of irreducible neighbourhoods of certain finite algebras!!!
- Well-behaved algebras and difficult ones
- **Solution** Considering polynomial clones (algebras A_A)
- Structure of the clone lattice
- Other structures, e.g. congruence primal algebras, quasi primal algebras...
- Your ideas . . .

References:

Keith A. Kearnes.

Tame Congruence Theory is a localization theory.

Lecture Notes from "A Course in Tame Congruence Theory" Workshop, Budapest, 2001, available at

http://www.math.u-szeged.hu/confer/algebra/2001/lec+ex1.ps, 2001.

Mike Behrisch.

Relational Tame Congruence Theory and subalgebra primal algebras. Master's thesis, TU Dresden [Dresden University of Technology], available at http://www.math.tu-dresden.de/~mbehri/documents/subalgebraPrimal_ links.pdf, September 2009.

Tamás Waldhauser. Irreducible semigroups. personal communication, 2009.