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Abstract

Being the crossroads between Algebra, Topology, Logic, Set Theory and
the Theory of Order; the class of Boolean algebras over partially ordered
sets were look at as one of the sources, providing over time, new insights
in Boolean algebras. Some constructions and their interconnections will
be discussed, motivating along the way a list of open problems.
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1 Introduction

A Boolean algebra is an algebraic structure (a collection of elements and opera-
tions on them obeying defining axioms) that captures essential properties of both
set operations and logic operations.

Examples:

1. Power set algebras: (℘(X),∪,∩,−, ∅, X)

2. From logic: The Lendenbaum-Tarski algebra

3. From analysis: The algebra of projections

4. From topology: The regular open algebra

Stone representation for Boolean algebras

Every BA, (A,+, .,−, 0, 1), is isomorphic to an algebra of sets: There is an
algebra-embedding s from A into the power set algebra of Ultra(A) given by:

s(a) = {U ∈ Ultra(A) : a ∈ U}

where Ultra(A) is the set of ultrafilters of A.

Countable Boolean algebras (Mostowski-Tarski (1939))

Any countable Boolean algebras is generated by a chain (C,<) (i.e., a linear
ordering ).
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2 Interval algebras

Let (L,<) be a linear ordering. For t ∈ L, set bt := [t,→). The subalgebra of
(℘(L),∪,∩,−, ∅, L) generated by ⟨bt : t ∈ L⟩ is call the interval algebra over
L and shall be denoted by Int(L). For technical reasons, we set L◦ = L ∪ {∞}
with ∞ /∈ L

1 Algebra

Each non zero element, x, of Int(L) has a unique decomposition under each of
the following form

x = ∪ni=0[ti, si[ for ti < si and si ∈ L◦ (1)

µ+(x) := |supp+(x)| := |{ti : i < n}| (2)

x = ∆n
i=0bti for ti ∈ L (3)

2 Topology

The Stone space of Int(L) is homomeorphic to the set of f initial segments I(L),
of (L,<), endowed with the topology inherited from 2L.

ϕ : Ultra(Int(L)) −→ I(L)

ϕ(U) = {t : bt ∈ U}

3 ( Posets/ lattices)

(Int(L), <) is a distributive complemented lattice, where< the canonical boolean
ordering on Int(L).

4 Combinatorics

1. Let the set of elements that are in x(̸= 0) be its positive support, µ+(x), in
Int(L), when it is written in its normal form. Then For any natural number
m ≥ 3 and x1, . . . , xm in int(L) pairwise disjoint we have:

µ+(
m∑
i=1

xi) =
∑

1≤i<j≤m

µ+(xi + xj)− (m− 2)
m∑
i=1

µ+(xi)

2. (M. Rubin) If B is a subalgebra, of Int(L), of size κ uncountable regular,
then B has a chain or an anti chain of size κ.
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5 Structure/generators

If Int(L) has a chain of size κ uncountable regular, then (L,<) has a chain ,
well ordered or anti-well ordered, of size κ.

6 Special properties

A Boolean algebra B is superatomic if every nontrivial homomorphic image
of B has an atom ( a ∈ B is an atom if 0 < a and there is no x ∈ B so that
0 < x < a).

The Cantor-Bendixon rank:

Let A be a Boolean algebra, denote by I(A) the ideal of A generated by the
atoms of A. For any ordinal α, we define a sequence Iα of A as follows:

Aα = A/Iα

the αth derivative of A, and let

πα : A −→ Aα

be canonical. Define I0 = {0}, Iα+1 = π−1
α [I(Aα)], and for λ a limit ordinal,

Iλ =
∪

α<λ Iα. Finally, put I∞ =
∪

α Iα.

If A is not trivial, the first α(A) so that Aα(A) is finite, is called the Cantor-
Bendixon rank of A.

(Bonnet-Rubin-Sikaddour) Every superatomic (subalgebra of)interval algebra is
generated by a well founded lattice.

Say that A satisfies the qf -property whenever every quotient of A is a factor
i.e., if π : A � B then there is Q so that A ≃ B ×Q. Set X := Ultra(Int(L)),
the Stone space of Int(L).

(Bekkali-Bonnet-Rubin) An interval algebra Int(L) satisfies the qf-property iff
X := Ultra(Int(L)) is homeomorphic to α+ 1 +

∑
i<n κi + 1 + λ⋆

i , where α is
any ordinal, n < ω, for every i < ω, κi, λi are uncountable regular cardinals so
that κi≥λi and if n > 0 then α ≥Max({κi : i < n}).ω
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7 Sub(Int(L))/Hereditary properties

For A,B ∈ Sub(Int(L)), define:

A ∨B := the algebra generated by (A ∪B), A ∧B := A ∩B.

(S. Todorcevic, M. Rubin)
For any B ⊆ Sub(Int(L)), Sub(B) is a complemented lattice.

(M. Rubin)
Every B in Sub(Int(L)) is a retractive algebra i.e., if π : B � Q there is
r : Q −→ B so that π ◦ r = idQ.

Recall that a pseudo-tree (T,<) is a partially ordered set so that ↓ t := {s ∈
T : s < t} is a chain.

(J. Nikiel, S. Purisch, L. Heindorf)
Every subalgebra of an interval algebra is isomorphic to a pseudo-treealgebra
B(T ), where (T,<) is a pseudo-tree and B(T ) := ⟨bt := {s ∈ T : s ≥ t}⟩

(Bekkali)
Every pseudo-tree algebra B(T ) embeds in very canonical way into an interval
algebra.

8 Relation with other classes

The algebra finite-cofinite FC(ℵ1) is not isomorphic to an interval algebra.

9 Cardinal functions

See Cardinal Invariants on BAs by JD Monk for different types of cardinal func-
tions on BAs and Cardinals functions in topology-ten years later by I. Juhász

Problem 1: Let, e.g., consider an interval algebra Int(L). Is there a finite
set of cardinal invariants that characterizes Int(L) up to isomorphism?

10 Set Theory

Problem 2: Is it consistent to assume the existence of an uncountable interval
algebra that is hereditary interval algebra?
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2 Pseudo-treealgebras

Results in these sections are in collaboration with D.Zhani.

Recall that a pseudo-tree (T,<) is a partially ordered set so that ↓ t := {s ∈
T : s < t} is a chain.

Let bt denotes the cone generated by t i.e., bt = {s ∈ T : t ≤ s}. The subalge-
bra of the ⟨℘(T ),∩,∪, 0, 1,′ ⟩ generated by ⟨bt : t ∈ T ⟩ is called the pseudo-tree
algebra generated by (T,<) and denoted by B(T ). The case of B(T ), where T
is a well founded tree, were studied by G. Brenner.

1. Each non zero element of a pseudo-treealgebra B(T ) has a unique decompo-
sition using the set of generators of cones ⟨bt : t ∈ T ⟩. Hence, one can define the
positive support, µ+, of a non zero element x, as in the case of interval algebra:

Let the set of elements of T that are in x(̸= 0) be its positive support, µ+(x), for
x ∈ B(T ), when it is written in its normal form. Then For any natural number
m ≥ 3 and x1, . . . , xm in int(L) pairwise disjoint we have:

µ+(
m∑
i=1

xi) =
∑

1≤i<j≤m

µ+(xi + xj)− (m− 2)
m∑
i=1

µ+(xi) (†)

Problem 3: Let (Q,<) be a poset and B(Q) be the subalgebra of ℘(Q) gener-
ated by ⟨bt : t ∈ Q⟩. Assume there is l defined on B(Q) satisfying (†). Is there
a pseudo tree (T,<) so that B(Q) ≃ B(T ) and l = µ+?

2. Let (T,<) be a pseudo-tree and set X = Ultra(B(T )). Recall that the set,
Ii(T ), of initial chains in (T,<) is a closed subspace of 2T . Assuming, wlog,
that (T,<) has a single root, we have:

Ultra(B(T )) ≃ Ii(T )

3. We say that a pseudo tree (T,<) is scattered whenever:
• η the order type of the chain of rational numbers does not embed in (T,<);
• The finite binary tree <ω2 does not embed in (T,<) as a subtree.
A pseuddo-treealgebra B(T ) is superatomic iff (T,<) is scattered
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Pseudo-treeagebras is an example of a hereditarily class of boolean algebras.
Looking closely one may refine this statement as follows:

Let (T,<) be a pseudo-tree and set X = Ultra(B(T ))(≃ Ii(T )). Denote by
cl(Z) the topological closure of Z in X. We say that b ∈ X is a bad point
whenever there are three disjoint sets A,B,C such that:

• Either at least A is discrete and uncountable so that cl(A) = A ∪ {x};

• Or, cl(A) ∩ cl(B) ∩ cl(C) = {x}, where A = {aα : α < κ}, B = {bβ : β < λ}
are two linear orderings of uncountable cofinalities/coinalities converging to x
and C is an infinite sequence so that cl(C) = C ∪ {x}. Denote by Bad(X) the
set of bad points in X.

If B(T ) is superatomic, then B(T ) is isomorphic to an interval algebra iff
Bad(X) = ∅

Problem 4: Is the previous statement true in more general setting?

Problem 5: (Faithfulness of pseudo-tree algebras)

Assume that there is a chain of type θ in the pseudo-treealgebra B(T ). Is there
a pseudo-tree T ◦, so that B(T ) ∼= B(T ◦), and T ◦ embeds either a chain of type
θ or θ⋆.

Problem 6: (n−hard pseudo-treealgebras)

Let B be a boolean algebra and denote by rpt(B) the least ordinal β so that
B(β) ≃ B(T ) for some pseudo-tree T ; B(β) being the βth Cantor derivative of B.

Next denote by PT the class of all pseudo-treealgebras and set rpt(B) :=
δ(B,PT ). For example, if B is a pseudo-treealgebra, we set δ(B,PT ) = 0 =
rpt(B), if B /∈ PT and B(1) ≃ B(T ) for some pseudo tree T ; we set δ(B,PT ) =
1, and we say that B is 1-hard pseudo-treealgebra.

Characterize, in the class of superatomic boolean algebras, n-hard pseudo-
treealgebras for n < ω.
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3 Free poset algebras

Let ⟨P, ≤⟩ be a poset. A free poset algebra over P is a BA A having P as a set
of generators such that:
(1) p ≤P q implies p ≤A q,
(2) For every BA B and every mapping f : P −→ B, if p ≤P q implies that
f(p) ≤ f(q), then there is a homomorphism g : A −→ B such that g � P = f .

Note that for P a poset consisting of isolated elements, that is with ≤ the iden-
tity, a free poset algebra over P is just a free BA over P . In particular, if P is
infinite, then this algebra is atomless.

Proposition 1. Let P be a poset, and let C be a boolean algebra freely gener-
ated by P . Let I be the ideal of C generated by {x ·−y : x, y ∈ P, and x ≤P y}.
Then C/I is a free poset algebra over P.

Proposition 2. For any BA A the following conditions are equivalent:
(i) A is isomorphic to a free poset algebra.
(ii) A has a set G of generators such that 0; 1 ∈ G, and if F ;K are finite subsets
of G and

∏
x∈F x ·

∏
x∈K −y = 0, then there exist x ∈ F and y ∈ Ksuch that

x · −y = 0
For any poset P , a final segment of P is a subset M of P such that if p ∈M

and p ≤ q, then also q ∈M . For any poset P , Fs(P ) is the collection of all final
segments of P . Note that ∅ is a final segment of P .

Proposition 3. Suppose that P is a poset. Then Fs(P) is a closed subspace
of P. Moreover, clop(Fs(P)) is a free poset algebra on P.

Proposition 4. Every free poset algebra is a semigroup algebra.

Let P be a poset. An antichain in P is a collection of pairwise incomparable
elements of P . Ant(P ) is the set of all finite antichains of P . Note that ∅ ∈
Ant(P ), and {p} ∈ Ant(P ) for all p ∈ P . We define a relation ≼ on Ant(P ) by:

σ ≼ τ ←→ ∀p ∈ σ∃q ∈ τ(q ≤ p)

Theorem 5. Let P be a poset. Then:
(i) ⟨Ant(P ), ≼⟩ is an upper semi lattice.
(ii) For each p ∈ P let f(p) = {p}. Then f is an order anti-isomorphism of P
into Ant(P )
(iii) B(⟨Ant(P ), ≼⟩)is isomorphic to a free poset algebra over P .
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4 Semi-group algebras

The following theorem gives a concrete construction of semi-group algebras. For
let (M,∧) be an idempotent semi-lattice with 0 and 1, and let A be the free
Boolean algebra with free generators xp for p ∈ M , and let I be the ideal gen-
erated by the set {(xp · xq)△xp∧q : p, q ∈M}.

Recall that a set H ⊆ B is a disjunctive set whenever:
i. 0 /∈ H;
ii. For all h, h1, . . . , hp ∈ H [h ≤ h1+ · · ·+hp −→ There is i so that h ≤ hi]

Recall that (S, ·) is called a semi-lattice whenever ” · ” is commutative, associa-
tive, and x2 = x for all x ∈ S.

Theorem The following statements are equivalent for any Boolean algebra B.
i. B is isomorphic to an upper semi-lattice algebra.
ii. B is generated by H ⊆ B so that: 0 /∈ H, H is disjunctive, containing 1 and
closed under multiplication.

Theorem(D. Monk) The following are equivalent.

i. A/I is a semi-group algebra;

ii. Every semi-group algebra is isomorphic to some A/I as above;

iii. The Stone space U lt(A/I) is homomorphic to F(S), where (S,∧) is a
unitary meet semi-lattice.

Corollary Every semi-group algebra is isomorphic to an upper semi-lattice al-
gebra.

Note: If (T,<) is a pseudo tree then H := {bt : t ∈ T} generates B(T ). Notice
that 0 /∈ H, 1 ∈ H, H is disjunctive ; but H is not closed under ”·”. Hence
one cannot draw the conclusion that B(T ) is a semigroup algebra and thus it
is an upper semi-lattice by the previous theorem. Actually, there are examples
where B(T ) is isomorphic to an upper semi-lattice algebra.

Problem 7: Characterize atomless B(T ), T is a pseudo tree, that is isomorphic
to an upper semi-lattice algebra.

Problem 7
′
: (n−almost pseudo-treealgebras)

Denote by Pt the the class of pseudo-treealgebras. Call a tail algebra B(T )(=
⟨bt : t ∈ T ⟩ an (n−almost pseudo-treealgebra ), whenever

bu.bv is a finite set of size n for all u, v incomparable in T.
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• For n finite or countable, characterize upper semi lattices T so that B(T )(=
⟨bt : t ∈ T ⟩ is an (n−almost pseudo-treealgebra ) isomorphic to a pseudo-
treealgebra.

• Are (n−almost pseudo-treealgebras ) retractive algebras? for n ∈ ω.
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5 Upper semi lattices algebras

Let (T,<) be a partially ordered set and consider the subalgebra B(T ) of the
power set of T , P(T ) generated by {bt : t ∈ T}, where bt := {x ∈ T : t ≤ x}.

Recall that an upper semi-lattice poset (T,≤) is so that l.u.b.{x, y} := x∨ y
exists in (T,≤) for all x, y ∈ T .

Next theorem characterizes Id(T ), for any upper semi-lattice (T,≤).

Theorem Let B be a Boolean algebra and set X = U lt(B) its Stone space. The
following statements are equivalent.

i. B is isomorphic to B(T ), where (T,≤) is an upper semi-lattice, with a
least element.

ii. X is homeomorphic to Id(T ), the set of ideals of an upper semi-lattice
T with a least element, endowed with Tychonoff’s topology inherited from
2T .

iii. X is homeomorphic to F(S), the set of filters over S, where S is a unitary
semi-lattice, endowed with Tychonoff’s topology inherited from 2S.

iv. There is a multiplication ” · ” on X so that (X, ·) is a unitary semi-lattice
and ” · ” is a continuous mapping on X × X ( i.e., (x, y) −→ x · y is
continuous).

Theorem For any poset (T,≤) the Stone space U lt(B(T )) of B(T ) is Id(T ) up
to a homeomorphism.

5.1 Set of initial sections of a poset

Let (P,≤) be a poset, with a least element. Denote by I(P ) the set of non
empty initial sections of P . I(P ) is a Boolean space.

In this section, we state conditions under which Id(T ), where (T,≤) is a poset,
can be represented by I(P ), up to a homeomorphism, for some poset P and
conversely.

Notice that, when P is a chain, we have I(P ) = Id(P ).

Definition

Let (T,≤) be an upper semi-lattice. An element a ∈ T is prime whenever for all
c, d ∈ T (a ≤ c ∨ d → a ≤ c or a ≤ d). Prim(T) shall denote the set of prime
elements of T.
Also, we say that Prim(T) is ∨-generating set for T, whenever for every t ∈ T
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there are t1, . . . , tn ∈ Prim(T ) so that t = t1 ∨ · · · ∨ tn.

Theorem For any poset (P,≤), with a least element, there exists an upper
semi-lattice T, with a least element, so that I(P ) ∼=homeo Id(T ) where Prim(T )
is a ∨-generating set of T.

Theorem For any upper semi-lattice T, with a least element, so that Prim(T)
is ∨-generating set of T, there is a poset P so that Id(T ) ∼=homeo I(P ).

Proof.
Let T be an upper semi-lattice, with a least element t0, so that Prim(T) is
∨-generating set of T, and set P := {↓ t : t ∈ Prim(T )}; then (P,⊆) is a
poset with a least element ↓ {t0} = {t0}. Define φ from Id(T ) into I(P ) by
φ(I) = (↓ I) ∩ P, where ↓ I :=def {J ∈ Id(T ) : J ⊆ I}. Again it easy to see
that Id(T ) ∼=homeo I(P ).

Let(T,≤) be a poset with a least element. Previous two theorems give indeed,
necessary and sufficient conditions on Id(T ) and I(P ) to be homeomorphic
spaces. We state these conditions in the following corollary.

Corollary For any (∨-f.g.)-poset (T,≤), with a least element, the following
statements are equivalent.

i. There is a poset (P,≤), with a least element, so that Id(T ) ∼=homeo I(P ).

ii. There is an upper semi-lattice T ′, with a least element, so that
Id(T ) ∼=homeo Id(T ′), where Prim(T ′) is a ∨-generating set of T ′.
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7 Convex algebras

2T shall be identified with the power set of T denoted by P(T ). 2T is a Boolean
space endowed with Tychonoff’s topology for which ⟨U(A,B) : A,B ∈ [T ]<ω⟩,
where U(A,B) := {F ∈ 2T : A ⊆ F and F ∩B = ∅}, is a basis for its topology.
Let (P,<) be a poset and set:

Convex(P ) := {X : is a convex set (P,<)}

Recall that X ⊆ P is convex whenever (x, y ∈ X) ∧ (x < t < y −→ t ∈ X).

Claim Convex(P ) is a closed subspace of {0, 1}P .

Definition
Let (P,<) be a poset. Clop(Convex(P )) is called the convex algebra over P
denoted by Convalg(P ).
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9 Open Problems

For a partially ordered set (poset) ⟨P,<⟩, set dim⟨P,<⟩ = κ to be the least λ
such that ⟨P,<⟩ embeds in λ product of linear orderings ⟨P,<⟩ ≼

∏
i<λ Li.

Problem 1.

Let Tn be a an upper semi lattice so that dimTn = n. Is there an upper semi
lattice Tn−1 so that dimTn−1 = n− 1 and B(Tn) ∼= B(Tn−1).

Problem 2.

How do sub-upper semi lattice algebras of an upper semi lattice algebras look
like? E.g., characterize upper semi-lattices T such that B(T ) ≤ B(ω1 × ω1).

Problem 3.

It is consistent that any Tail algebra B(P ), P is a poset, embeds in (canonical
way) an upper semi lattice algebra?

Problem 4.

Is it true that for any uncountable upper semi-lattice T , B(T ) has an uncount-
able chain or an uncountable anti-chain?

Problem 5.

It is consistent that for each n ∈ N, there is an upper semi lattice T∨ of dimen-
sion n so that: inc(B(T∨)) = ln(B(T∨)) = ℵ1.

Problem 6.

Let T be a poset so that each point, in Id(T ), has a countable local basis and
Id(T ) has no bad-points. Is B(T ) isomorphic to an interval algebra?

Problem 7.

Let B := Int(C) be an interval algebra over the chain C, and B0, B1 subalge-
bras of B := Int(C). Call B0, B1 relatively prime in B := Int(C) whenever:
B ≈ B0 ×B1; B0 ∧B1 = {0, 1}.
Is it true that if B0 and B1 are relatively prime in Int(C) they are complements
of each other in Sub(Int(C)) and vice versa?
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Problem 8.

Characterize Int(C) so that if D is a sub-chain of Int(C) then there is a boolean
algebra E such that: Int(C) ≃ ⟨D⟩ × E.

Problem 9.

Charecterize P so that B(P ) ≃ B(Id(P)).

Problem 10:

Is it consistent to assume the existence of an interval algebra |B| = ℵ1 =
inc(B) = d(B) so that each of its subalgebra is isomorphic to an interval alge-
bra.

Problem 11:

Is it consistent to assume the existence of an interval algebra B, |B| = κ+,
inc(B) = κ, d(B) ̸= ℵ0, κ; so that each of its subalgebra is isomorphic to an
interval algebra.

Problem 12:

Is there an uncountable upper semi lattice algebra B(T ) which is a hereditarily
upper semi-lattice algebra?

Problem 13:

Let (T,<) be a upper semi lattice so that dim(T ) = p < ω. Is every subalgebra
of B(T ) generated by an upper semi lattice T ∗ so that dim(T ∗) ≤ p+ 1?

Problem 14:

Characterize (T,<) so that B(T ) is a subalgebra of B(C1×C2× ....×Cn) where
C ′

is are chains.

Problem 15:

Do semi lattices (T,<) of dim(T ) = 3 are so that B(T ) is a subalgebra of an
interval algebra?

Problem 16:

Characterize T, K so that dim(T ) = dim(K) + 1 and B(T ) ≃ B(K).
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Problem 17:

Denote by Convalg(P ), B(T ), F (P ), Int(L), Bpt(T ) any convex boolean alge-
bra, algebra generated by upper semi lattice T , free algebra over P , an interval
algebra over L, and a pseutree-algebra over T respectively. Characterize:

Convalg (P ) ∼= F (Q)

Convalg (P ) ∼= B(T ))

Convalg (P ) ∼= Bpt(T )

Convalg (P ) ∼= Int(L)

Problem 18:

Let CPU(B) be the class of boolean algebras that are product of three pairwise
non isomorphic elements from the classes respectively of convex algebras C(B),
pseudotree-algebras P(B), upper semi-lattice algebras U(B), respectively.

Is CPU(B) a new class different from the previously defined ones?
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