A Game on towers

David Chodounský Charles University in Prague

June 5, 2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

A filter \mathcal{F} on ω is *p*-filter if for each $D \in [\mathcal{F}]^{\omega}$ there exists $p \in \mathcal{F}$ such that $p \subseteq^* d$ for each $d \in D$. The set *p* is called *pseudointersection* of *D*. An ideal \mathcal{I} , for which the dual filter \mathcal{I}^* is an *p*-filter, is *p*-ideal.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma (M. Talagrand)

For a filter \mathcal{F} in $P(\omega)$ the following are equivalent:

- 1. \mathcal{F} is non-meager subset of $P(\omega)$.
- 2. \mathcal{F} is unbounded (i.e. enumerating functions of sets in \mathcal{F} are unbounded subset of (${}^{\omega}\omega, <^*$).)
- 3. For each decomposition of $\omega = \bigcup I_n$ into intervals there is a set $F \in \mathcal{F}$ such that $F \cap I_n = \emptyset$ for infinitely many intervals.

(日) (日) (日) (日) (日) (日) (日)

4. fin $\not\leq_{RB} \mathcal{F}^*$

Lemma (M. Talagrand)

For a filter \mathcal{F} in $P(\omega)$ the following are equivalent:

- 1. \mathcal{F} is non-meager subset of $P(\omega)$.
- 2. \mathcal{F} is unbounded (i.e. enumerating functions of sets in \mathcal{F} are unbounded subset of (${}^{\omega}\omega, <^*$).)
- 3. For each decomposition of $\omega = \bigcup I_n$ into intervals there is a set $F \in \mathcal{F}$ such that $F \cap I_n = \emptyset$ for infinitely many intervals.
- **4**. fin $\not\leq_{RB} \mathcal{F}^*$

Definition and Lemma (A. Miller ?)

For a filter \mathcal{F} in $P(\omega)$ the following are equivalent:

- 1. \mathcal{F} is rapid.
- 2. Enumerating functions of sets in \mathcal{F} are dominating family.
- 3. For every sequence $\{t_i : t_i \in [\omega]^{<\omega}, i \in \omega\}$ there is $F \in \mathcal{F}$ such that $|F \cap t_i| < i$ for each $i \in \omega$.

Definition Forcing *P* is ${}^{\omega}\omega$ bounding if for every *P*-generic filter *G* and each $f \in {}^{\omega}\omega \cap V[G]$ there is $g \in {}^{\omega}\omega \cap V$ such that f < g.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Forcing *P* is ${}^{\omega}\omega$ bounding if for every *P*-generic filter *G* and each $f \in {}^{\omega}\omega \cap V[G]$ there is $g \in {}^{\omega}\omega \cap V$ such that f < g.

Definition

Forcing *P* has *Sacks property* if for every *P*-generic filter *G* and each $f \in {}^{\omega}\omega \cap V[G]$ there is a sequence $\{H_i \in [\omega]^i : i \in \omega\} \in V$ such that $f \in \prod H_i$.

$$G(\mathcal{F}) = (\{p : I \rightarrow 2; I \in \mathcal{F}^*\}, \supset).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The forcing notion $G(\mathcal{F})$ is called *Grigorieff's forcing*.

$$G(\mathcal{F}) = (\{p : I \rightarrow 2; I \in \mathcal{F}^*\}, \supset).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The forcing notion $G(\mathcal{F})$ is called *Grigorieff's forcing*.

Lemma

Let \mathcal{F} be a non-meager p-filter on ω . Then the Grigorieff's forcing $G(\mathcal{F})$ is proper and ${}^{\omega}\omega$ bounding.

$$G(\mathcal{F}) = (\{p : I \rightarrow 2; I \in \mathcal{F}^*\}, \supset).$$

The forcing notion $G(\mathcal{F})$ is called *Grigorieff's forcing*.

Definition

Let Φ be an automorphism of $P(\omega)/fin$. Φ is *trivial* on $A \subset \omega$ if there is $A' =^* A$ and a 1-to-1 function $f : A' \to \omega$ such that $\Phi([B]) = [f[B]]$ for every $B \subset A$. $triv(\Phi) = \{A : \Phi \text{ is trivial on } A\}$.

Definition (Grigorieff's forcing)

Let \mathcal{F} be a filter on ω . Put

$$G(\mathcal{F}) = (\{ p : I \rightarrow 2; I \in \mathcal{F}^* \}, \supset).$$

The forcing notion $G(\mathcal{F})$ is called *Grigorieff's forcing*.

Definition

Let Φ be an automorphism of $P(\omega)/fin$. Φ is *trivial* on $A \subset \omega$ if there is $A' =^* A$ and a 1-to-1 function $f : A' \to \omega$ such that $\Phi([B]) = [f[B]]$ for every $B \subset A$. $triv(\Phi) = \{A : \Phi \text{ is trivial on } A\}.$

Theorem

Let Φ be an automorphism of $P(\omega)/\text{fin.}$ If \mathcal{F} is a non-meager *p*-filter such that $triv(\Phi) \cap \mathcal{F} = \emptyset$ and if G is $G(\mathcal{F})$ -generic, then the family

$$\{\Phi(p^{-1}(1)),\omega\setminus\Phi(p^{-1}(0)):p\in G\}$$

is an unfilled gap (in V[G]).

$$G(\mathcal{F}) = (\{p : I \rightarrow 2; I \in \mathcal{F}^*\}, \supset).$$

The forcing notion $G(\mathcal{F})$ is called *Grigorieff's forcing*.

Definition (Guided Grigorieff's forcing)

Let $\mathcal{T} = \{T_{\alpha} : T_{\alpha} \in [\omega]^{\omega}, \alpha \in \kappa\}$ be a strictly increasing tower, i.e. $T_{\alpha} \subset^* T_{\beta}$ and $|T_{\beta} \setminus T_{\alpha}| = \omega$ for $\alpha < \beta < \kappa$. Denote $\mathcal{A} = \{A_{\alpha} = T_{\alpha+1} \setminus T_{\alpha}, \alpha \in \kappa\}$. For $F = \{f_{\alpha} : A_{\alpha} \to 2\}$ the forcing notion $P(\mathcal{T}, F)$ consists of pairs (g, β) where $\beta \in \kappa$ and g is a function with domain $D(g) =_* T_{\beta}$ to 2. Moreover $(g, \beta) \in P(\mathcal{T}, F)$ iff $g \upharpoonright A_{\alpha} =_* f_{\alpha}$ for each $\alpha < \beta$. The ordering is reversed inclusion, $(g, \beta) \leq (h, \gamma)$ iff $h \subseteq g$.

Definition (Guided Grigorieff's forcing)

Let $\mathcal{T} = \{T_{\alpha} : T_{\alpha} \in [\omega]^{\omega}, \alpha \in \kappa\}$ be a strictly increasing tower, i.e. $T_{\alpha} \subset^* T_{\beta}$ and $|T_{\beta} \setminus T_{\alpha}| = \omega$ for $\alpha < \beta < \kappa$. Denote $\mathcal{A} = \{A_{\alpha} = T_{\alpha+1} \setminus T_{\alpha}, \alpha \in \kappa\}$. For $F = \{f_{\alpha} : A_{\alpha} \to 2\}$ the forcing notion $P(\mathcal{T}, F)$ consists of pairs (g, β) where $\beta \in \kappa$ and g is a function with domain $D(g) =_* T_{\beta}$ to 2. Moreover $(g, \beta) \in P(\mathcal{T}, F)$ iff $g \upharpoonright A_{\alpha} =_* f_{\alpha}$ for each $\alpha < \beta$.

Lemma

Let \mathcal{T} be a strictly increasing tower which generates a non-meager ideal. Then $P(\mathcal{T}, F)$ is a proper ${}^{\omega}\omega$ bounding forcing notion for each choice of F.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Definition (Guided Grigorieff's forcing)

Let $\mathcal{T} = \{T_{\alpha} : T_{\alpha} \in [\omega]^{\omega}, \alpha \in \kappa\}$ be a strictly increasing tower, i.e. $T_{\alpha} \subset^* T_{\beta}$ and $|T_{\beta} \setminus T_{\alpha}| = \omega$ for $\alpha < \beta < \kappa$. Denote $\mathcal{A} = \{A_{\alpha} = T_{\alpha+1} \setminus T_{\alpha}, \alpha \in \kappa\}$. For $F = \{f_{\alpha} : A_{\alpha} \to 2\}$ the forcing notion $P(\mathcal{T}, F)$ consists of pairs (g, β) where $\beta \in \kappa$ and g is a function with domain $D(g) =_* T_{\beta}$ to 2. Moreover $(g, \beta) \in P(\mathcal{T}, F)$ iff $g \upharpoonright A_{\alpha} =_* f_{\alpha}$ for each $\alpha < \beta$.

Lemma

Let \mathcal{T} be a strictly increasing tower which generates a non-meager ideal. Then $P(\mathcal{T}, F)$ is a proper ${}^{\omega}\omega$ bounding forcing notion for each choice of F.

This forcing is useful for introducing strong-Q-sequence while keeping ϑ small.

Let \mathcal{F} be a rapid p-filter on ω . Then the Grigorieff's forcing $G(\mathcal{F})$ has Sacks property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Let \mathcal{F} be a rapid p-filter on ω . Then the Grigorieff's forcing $G(\mathcal{F})$ has Sacks property.

What about Sacks property for Guided Grigorieff's forcing $P(\mathcal{T}, F)$? What is the condition for \mathcal{T} ?

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition (*p*-filter game $FG(\mathcal{F})$)

Let \mathcal{F} be a filter in $P(\omega)$ containing no finite sets. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $B_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{B_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

Definition (*p*-filter game $FG(\mathcal{F})$)

Let \mathcal{F} be a filter in $P(\omega)$ containing no finite sets. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $B_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{B_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

Lemma (Laflamme)

 \mathcal{F} is non-meager p-filter in $P(\omega)$ if and only if player I has no winning strategy in game $FG(\mathcal{F})$.

(日) (日) (日) (日) (日) (日) (日)

Definition (*p*-filter game $FG(\mathcal{F})$)

Let \mathcal{F} be a filter in $P(\omega)$ containing no finite sets. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $B_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{B_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

Lemma (Laflamme)

 \mathcal{F} is non-meager p-filter in $P(\omega)$ if and only if player I has no winning strategy in game $FG(\mathcal{F})$.

Lemma

Let \mathcal{F} be a rapid p-filter. For each strategy of player I for the p-filter game $FG(\mathcal{F})$ there exists some sequence $\{B_n : |B_n| < n, n \in \omega\}$ of moves of player II which beats this strategy.

Definition (p-filter game)

Let \mathcal{F} be filter in $P(\omega)$ containing no finite sets. The following game is called *p*-filter game $G_{\mathcal{F}}$. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $B_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{B_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

Suppose \mathcal{F}^* is generated by an increasing tower $\mathcal{T} = \{T_\alpha : \alpha \in \kappa\}.$

Definition (p-filter game)

Let \mathcal{F} be filter in $P(\omega)$ containing no finite sets. The following game is called *p*-filter game $G_{\mathcal{F}}$. In *n*-th move player I plays a filter set $F_n \in \mathcal{F}$ and player II responds with its finite subset $B_n \in [F_n]^{<\omega}$. After ω many moves player II wins if $\bigcup \{B_n : n \in \omega\} \in \mathcal{F}$ and player I wins otherwise.

Suppose \mathcal{F}^* is generated by an increasing tower $\mathcal{T} = \{T_\alpha : \alpha \in \kappa\}.$

Definition (*p*-filter game for tower)

In *n*-th move player I plays an ordinal $\alpha_n < \kappa$ and a finite set $A_n \in [\omega]^{<\omega}$. Player II responds with a finite set B_n , $B_n \cap (T_{\alpha_n} \cup A_n) = \emptyset$. After ω many moves player II wins if there is some $\alpha < \kappa$ such that $\bigcup \{B_n : n \in \omega\} \cup T_\alpha =^* \omega$ and player I wins otherwise.

Definition (*p*-filter game for tower)

Let $\mathcal{T} = \{T_{\alpha} : \alpha \in \kappa\}$ be an increasing tower. In *n*-th move player I plays an ordinal $\alpha_n < \kappa$ and a finite set $A_n \in [\omega]^{<\omega}$. Player II responds with a finite set B_n , $B_n \cap (T_{\alpha_n} \cup A_n) = \emptyset$. After ω many moves player II wins if there is some $\alpha < \kappa$ such that $\bigcup \{B_n : n \in \omega\} \cup T_{\alpha} =^* \omega$ and player I wins otherwise.

Definition (Tower game TG(T))

Let $\mathcal{T} = \{T_{\alpha} : \alpha \in \kappa\}$ be an increasing tower. In *n*-th move player I plays an ordinal $\alpha_n, \beta_{n-1} < \alpha_n < \kappa$ (where $\beta_{-1} = -1$) and a finite set $A_n \in [\omega]^{<\omega}$. Player II responds with an ordinal $\beta_n < \kappa$ and a finite set $B_n, B_n \cap (T_{\alpha_n} \cup A_n) = \emptyset$. After ω many moves player II wins if $\bigcup \{B_n : n \in \omega\} \cup T_{\alpha} =^* \omega$ for $\alpha = \sup \{\alpha_n : n \in \omega\}$ and player I wins otherwise.

Tower T is called *d*-tower if Player I has no winning strategy in the game TG(T).

Tower T is called *d*-tower if Player I has no winning strategy in the game TG(T).

Definition

Tower \mathcal{T} is called *rapid d-tower* if each strategy of player I for the game $TG(\mathcal{F})$ there exists some sequence $\{(\beta_n, B_n) : |B_n| < n, n \in \omega\}$ of moves of player II which beats this strategy.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Tower T is called *d*-tower if Player I has no winning strategy in the game TG(T).

Definition

Tower \mathcal{T} is called *rapid d-tower* if each strategy of player I for the game $TG(\mathcal{F})$ there exists some sequence $\{(\beta_n, B_n) : |B_n| < n, n \in \omega\}$ of moves of player II which beats this strategy.

Fact

Every d-tower generates non-meager p-ideal.

Fact

If \mathcal{T} is rapid d-tower then filter dual to ideal generated by \mathcal{T} is rapid p-filter.

(ロ) (同) (三) (三) (三) (○) (○)

Let T be a rapid d-tower. Then the guided Grigorieff forcing P(T, F) has Sacks property for each choice of F.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Let T be a rapid d-tower. Then the guided Grigorieff forcing P(T, F) has Sacks property for each choice of F.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Are there any (rapid) d-towers?

Let T be a rapid d-tower. Then the guided Grigorieff forcing P(T, F) has Sacks property for each choice of F.

Are there any (rapid) d-towers?

Lemma

 $\diamond \Rightarrow$ there is a rapid d-tower.