Canonical extensions of lattices

Andrew Craig
Mathematical Institute, Oxford University

BLAST 2010 Boulder, Colorado 2 June 2010

Let L be a lattice and C a complete lattice with L isomorphic to a sublattice of C. Then C is a completion of L and

- C is a dense completion if any element of C can be expressed as both a meet of joins and join of meets of elements of L,
- C is a compact completion if for any filter F, and ideal I, of L if $\bigwedge F \leqslant \bigvee I$ then $F \cap I \neq \emptyset$.

If C is both a dense and compact completion of L it is called a canonical extension of L.

Result: Every lattice L has a canonical extension, and this is unique up to an isomorphism which fixes L.

(Gehrke and Harding, 2001)

History of canonical extensions:

1951 Jónsson & Tarski: canonical extensions for Boolean algebras with operators

1994 Gehrke & Jónsson: bounded distributive lattices with operators

2000 Gehrke & Jónsson: bounded distributive lattices with monotone operations

2001 Gehrke & Harding: bounded lattice expansions

2004 Gehrke & Jónsson: distributive lattices with arbitrary operations

2005 Dunn, Gehrke, Palmigiano: partially ordered sets

2009 Moshier & Jipsen: topological duality theorem for bounded lattices

Construction of the canonical extension

Using the filters, $\mathcal{F}(L)$, and ideals, $\mathcal{I}(L)$, of L, form $\mathcal{F}(L) \cup \mathcal{I}(L)$. This is the *intermediate structure*, ordered by:

- $F_1 \leqslant^* F_2 \iff F_2 \subseteq F_1$
- $I_1 \leqslant^* I_2 \iff I_1 \subseteq I_2$
- $F \leq^* I \iff F \cap I \neq \emptyset$
- $I \leqslant^* F \iff x \in I, y \in F \Longrightarrow x \leqslant y$

Then take the MacNeille completion of the intermediate structure.

 L^{δ} is the canonical extension. $L^{\delta} \subseteq \mathcal{O} \Big(\mathcal{F}(L) \cup \mathcal{I}(L) \Big)$.

Filter and ideal elements of L^{δ}

 $p = \bigwedge F$, where $F \in \mathcal{F}(L)$, is a *filter* element $u = \bigvee I$, where $I \in \mathcal{I}(L)$, is an *ideal* element

 $F(L^\delta)$: filter elements of L^δ

 $I(L^\delta)$: ideal elements of L^δ

 $F(L^{\delta})$ is order isomorphic to $(\mathcal{F}(L),\supseteq)$, and $I(L^{\delta})$ is order isomorphic to $(\mathcal{I}(L),\subseteq)$.

$$\alpha: \mathcal{F}(L) \longrightarrow \mathcal{C}, \ F \longmapsto \bigwedge e[F]$$

$$\beta: \mathcal{I}(L) \longrightarrow C, \ I \longmapsto \bigvee e[I]$$

This gives $(\mathcal{F}(L) \cup \mathcal{I}(L), \leqslant^*)$ order isomorphic to $(F(L^{\delta}) \cup I(L^{\delta}), \leqslant)$.

The δ -topology on L^{δ}

$$\delta^{\uparrow} = \left[\left\{ \uparrow p : p \in F(L^{\delta}) \right\} \right]$$

$$\delta^{\downarrow} = \left[\left\{ \downarrow u : u \in I(L^{\delta}) \right\} \right]$$

$$\delta = \delta^{\uparrow} \lor \delta^{\downarrow} = \left[\left\{ \left[p, u \right] : p \in F(L^{\delta}), u \in I(L^{\delta}) \right\} \right]$$
(Gehrke and Jónsson, 2004)

The δ topology is used to look at the extension of maps.

$$\delta = \delta^{\uparrow} \lor \delta^{\downarrow} = \left[\left\{ \left[p, u \right] \ : \ p \in F(L^{\delta}), u \in I(L^{\delta}) \right\} \right]$$

Suppose $f: L \longrightarrow M$ and $e: L \hookrightarrow C$. For $x \in C$:

$$f^{\sigma}(x) = \bigvee \Big\{ \bigwedge f([p,u] \cap L) : p \in F(L^{\delta}), u \in I(L^{\delta}), p \leqslant x \leqslant u \Big\}$$

$$f^{\pi}(x) = \bigwedge \left\{ \bigvee f([p, u] \cap L) : p \in F(L^{\delta}), u \in I(L^{\delta}), p \leqslant x \leqslant u \right\}$$

Both f^{σ} and f^{π} extend f, and $f^{\sigma} \leqslant f^{\pi}$.

Lemma: For $e: L \hookrightarrow C$ the following are equivalent:

- (i) for all $F \in \mathcal{F}(L)$, $I \in \mathcal{I}(L)$, $\bigwedge e[F] \leqslant \bigvee e[I] \implies F \cap I \neq \emptyset$,
- (ii) $\beta: \mathcal{I}(L) \longrightarrow \mathcal{C}$ is $(\sigma, \delta^{\uparrow})$ -continuous, $\alpha: \mathcal{F}(L) \longrightarrow \mathcal{C}$ is $(\sigma^{\partial}, \delta^{\downarrow})$ -continuous.

(Vosmaer, 2009)

Theorem:

Let $e: L \hookrightarrow C$ be a completion of L. Then (e, C) a canonical extension iff:

- (i) $\beta: \mathcal{I}(L) \longrightarrow \mathcal{C}$ is $(\sigma, \delta^{\uparrow})$ -continuous, $\alpha: \mathcal{F}(L) \longrightarrow \mathcal{C}$ is $(\sigma^{\partial}, \delta^{\downarrow})$ -continuous,
- (ii) δ^{\uparrow} and δ^{\downarrow} are both T_0 .

(Vosmaer, 2009)

Hierarchy of completions (Gehrke & Priestley 2008)

Theorem: The embedding $\hat{e}: L^{\delta} \hookrightarrow \mathcal{I}(\mathcal{F}(L))$ is a $(\delta^{\uparrow}, \sigma)$ -homeomorphic embedding.

(Vosmaer, 2009)

Alternative statement: the topology δ^{\downarrow} on L^{δ} is the subspace topology from the Scott topology on $\mathcal{I}(\mathcal{F}(L))$.

Alternative statement: the topology δ^{\downarrow} on L^{δ} is the subspace topology from the Scott topology on $\mathcal{I}(\mathcal{F}(L))$.

What about the δ^{\downarrow} -topology?

What about the δ^{\downarrow} -topology?

Restriction of the δ -topology

Let D be a distributive lattice and $(\mathcal{F}_p(D),\subseteq)$, the prime filters ordered by inclusion. Consider $(\mathcal{F}_p(D),\subseteq)$ as a subset of D^δ under the embedding:

$$F \longmapsto \bigwedge F$$
.

Result: Let δ_R^{\downarrow} be the δ^{\downarrow} -topology restricted to $\mathcal{F}_p(D)$. Then $\delta_R^{\downarrow} = \gamma$, the Stone topology on $\mathcal{F}_p(L)$.

(Gehrke, unpublished)

Now for L an arbitrary lattice, consider $(\mathcal{F}(L),\subseteq)$ with the same embedding into L^{δ} .

Result: The topology δ_R^{\downarrow} on $(\mathcal{F}(L), \subseteq)$ is the Scott topology.

Acknowledgements

Funding for BLAST 2010:

BLAST 2010 organizing committee Mathematical Institute, Oxford St John's College, Oxford

Supervisor:

Hilary Priestley

DPhil funding:

Rhodes Trust