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Definitions and construction

Let L be a lattice and C a complete lattice with L isomorphic to a
sublattice of C. Then C is a completion of L and

@ ( is a dense completion if any element of C can be expressed as
both a meet of joins and join of meets of elements of L,

@ C is a compact completion if for any filter F, and ideal /, of L if
AF <\ I then FN I #0.

If C is both a dense and compact completion of L it is called a canonical

extension of L.

Result: Every lattice L has a canonical extension, and this is unique up
to an isomorphism which fixes L.

(Gehrke and Harding, 2001)
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Definitions and construction

History of canonical extensions:

1951 Joénsson & Tarski: canonical extensions for Boolean algebras with
operators

1994 Gehrke & Jénsson: bounded distributive lattices with operators

2000 Gehrke & Jénsson: bounded distributive lattices with monotone
operations

2001 Gehrke & Harding: bounded lattice expansions
2004 Gehrke & Jénsson: distributive lattices with arbitrary operations

2005 Dunn, Gehrke, Palmigiano: partially ordered sets

2009 Moshier & Jipsen: topological duality theorem for bounded lattices
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Definitions and construction

Construction of the canonical extension
Using the filters, (L), and ideals, Z(L), of L, form F(L) UZ(L). This is
the intermediate structure, ordered by:

o <R < FLCH

o h<*bh < LCh

@ F<* I <= FNI#D

0 /<*F <= xel,yeF=x<y

Then take the MacNeille completion of the intermediate structure.

L% is the canonical extension. L° C p(]—'(L) UI(L)).
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Definitions and construction

Filter and ideal elements of L’

p=AF, where F € F(L), is a filter element

u=\1I, where I € Z(L), is an ideal element

F(L%) : filter elements of L’

I(L?) : ideal elements of L°

F(L%) is order isomorphic to (F(L),2 ), and /(L?) is order isomorphic to
(Z(L),<).

a:F(L)— C, Fr— /\ e[F]
B:I(L) — C, I+ \/e[l]

This gives (.F(L) UZ(L),<* ) order isomorphic to (F(L‘s) UI(L%), < )
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Topologies on canonical extensions

The /-topology on L°

st=[{tp:peF(L}]
St=[{lu:uel(l’}]
§=0"vét=[{[p.u] : peF(L%),ucl(L)}]

(Gehrke and Jénsson, 2004)
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Topologies on canonical extensions

The 0 topology is used to look at the extension of maps.

§=6"ét = [{[p,u] : pe F(L°),ueci(L}]
Suppose f : L — M and e: L — C. For x € C:

F(x) = \/ { Aflp.ulnL) : peF(LP),uel(L’),p<x< u}
Fr0) = A\ { \/ f(lp.ulNL) : peF(L%),ucl(L®),p<x< u}

Both 2 and f™ extend f, and f% < fT”.
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Topologies on canonical extensions

@)
Lemma: For e : L — C the following are equivalent:

(i) for all F € F(L),1 € Z(L), Ne[F]< Ve[ll] = Fnl#0,

(i) B:Z(L) — C is (o, 8")-continuous, o : F(L) — C is
(09, 6*)-continuous.

(Vosmaer, 2009)
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Topologies on canonical extensions

Theorem:

Let e: L < C be a completion of L. Then (e, C) a canonical extension
iff:

(i) B:Z(L) — C is (o,6")-continuous, a : F(L) — C is
(09, 6+)-continuous,

(ii) 67 and &t are both To.

(Vosmaer, 2009)
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Subspace topologies

Hierarchy of completions (Gehrke & Priestley 2008)

(L) ———=I(F(L) - - -

L Lo \)
) A{ \ s !

F(Ll) ————— = F(Z(L)) - - -

Theorem: The embedding & : L° — Z(F(L)) is a (6", o)-homeomorphic
embedding.

(Vosmaer, 2009)
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Subspace topologies

Alternative statement: the topology 6+ on L% is the subspace topology
from the Scott topology on Z(F(L)).

Andrew Craig Mathematical Institute, Oxford University Canonical extensions of lattices



Subspace topologies

Alternative statement: the topology 6+ on L% is the subspace topology
from the Scott topology on Z(F(L)).

(F(L);: <, D) (F(L); 2, A)
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Subspace topologies

What about the §*-topology?
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Subspace topologies

What about the §*-topology?

(Z(F(L)),D)
(L%, 64)
(.F(L),_,a) (.F(L),D,Ua)
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Subspace topologies

Restriction of the J-topology

Let D be a distributive lattice and (]—',,(D), C ) the prime filters ordered
by inclusion. Consider (F,(D),C ) as a subset of D° under the
embedding:

Fr— N\F.

Result: Let 5}-‘, be the &+-topology restricted to F,(D). Then 6¢R =1,
the Stone topology on F,(L).

(Gehrke, unpublished)

Now for L an arbitrary lattice, consider (F(L),C ) with the same
embedding into L%,

Result: The topology d% on (F(L),C ) is the Scott topology.
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Subspace topologies
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