The relation of rapid ultrafilters and *Q*-points to van der Waerden ideal

Jana Flašková

Department of Mathematics University of West Bohemia in Pilsen

BLAST 2010, Boulder, CO, USA 6. 6. 2010

Q-points and rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a Q-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) | U \cap Q_i | \leq 1$.

Q-points and rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a Q-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \leq 1$.

A free ultrafilter \mathcal{U} is called rapid if for every $\{Q_i: i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \leq i$.

Q-points and rapid ultrafilters

Definition.

A free ultrafilter \mathcal{U} is called a Q-point if for every $\{Q_i : i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \leq 1$.

A free ultrafilter \mathcal{U} is called rapid if for every $\{Q_i: i \in \omega\}$, a partition of ω into finite sets, there exists $U \in \mathcal{U}$ such that $(\forall i \in \omega) |U \cap Q_i| \leq i$.

Alternative definition of rapid ultrafilters:

A free ultrafilter \mathcal{U} is called rapid if the enumeration functions of its sets form a dominating family in $(\omega^{\omega}, \leq^*)$.

Every *Q*-point is rapid, but the converse is not true.

Every *Q*-point is rapid, but the converse is not true.

Theorem (Booth?). (CH) *Q*-points exist.

Every *Q*-point is rapid, but the converse is not true.

Theorem (Booth?).

(CH) Q-points exist.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

Every *Q*-point is rapid, but the converse is not true.

Theorem (Booth?).

(CH) Q-points exist.

Theorem (Miller).

In Laver's model there are no rapid ultrafilters.

In every model where *Q*-points are known not to exist, rapid ultrafilters do not exist either.

Generic existence

Definition (Canjar).

.0

We say that Q-points (respectively rapid ultrafilters) exist generically if every filter of character $< \mathfrak{d}$ is included in a Q-point (respectively rapid ultrafilter).

Generic existence

Definition (Canjar).

We say that Q-points (respectively rapid ultrafilters) exist generically if every filter of character $< \mathfrak{d}$ is included in a Q-point (respectively rapid ultrafilter).

Theorem (Canjar).

The following are equivalent:

- $cov(\mathcal{M}) = \mathfrak{d}$,
- Q-points exist generically,
- · Rapid ultrafilters exist generically.

Product of ultrafilters

Definition.

Let \mathcal{U} and \mathcal{V} , $n \in \omega$, be ultrafilters on ω .

The product of ultrafilters \mathcal{U} and \mathcal{V} , denoted by $\mathcal{U} \times \mathcal{V}$, is an ultrafilter on $\omega \times \omega$ defined by $A \in \mathcal{U} \times \mathcal{V}$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal{V}\} \in \mathcal{U}$.

Product of ultrafilters

Definition.

Let $\mathcal U$ and $\mathcal V$, $n \in \omega$, be ultrafilters on ω . The product of ultrafilters $\mathcal U$ and $\mathcal V$, denoted by $\mathcal U \times \mathcal V$, is an ultrafilter on $\omega \times \omega$ defined by $A \in \mathcal U \times \mathcal V$ if and only if $\{n: \{m: \langle n,m\rangle \in A\} \in \mathcal V\} \in \mathcal U$.

It is known that $\mathcal{U} \times \mathcal{V}$ is never a *Q*-point.

Product of ultrafilters

Definition.

Let \mathcal{U} and \mathcal{V} , $n \in \omega$, be ultrafilters on ω .

The product of ultrafilters $\mathcal U$ and $\mathcal V$, denoted by $\mathcal U \times \mathcal V$, is an ultrafilter on $\omega \times \omega$ defined by $A \in \mathcal U \times \mathcal V$ if and only if $\{n : \{m : \langle n, m \rangle \in A\} \in \mathcal V\} \in \mathcal U$.

It is known that $\mathcal{U} \times \mathcal{V}$ is never a *Q*-point.

Theorem (Miller).

 $\mathcal{U} \times \mathcal{V}$ is a rapid ultrafilter if and only if \mathcal{V} is rapid.

AP-sets and van der Waerden ideal

Definition.

A set $A\subseteq\omega$ is called an AP-set if it contains arbitrary long arithmetic progressions.

AP-sets and van der Waerden ideal

Definition.

A set $A \subseteq \omega$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Sets which are not AP-sets form a proper ideal on ω . It is van der Waerden ideal W.

AP-sets and van der Waerden ideal

Definition.

A set $A \subseteq \omega$ is called an AP-set if it contains arbitrary long arithmetic progressions.

Sets which are not AP-sets form a proper ideal on ω . It is van der Waerden ideal W.

The van der Waerden ideal W is F_{σ} -ideal, not a P-ideal.

Difference between *Q*-points and rapid ultrafilters

Lemma 1.

Every *Q*-point has a nonempty intersection with the ideal W.

Difference between Q-points and rapid ultrafilters

Lemma 1.

Every *Q*-point has a nonempty intersection with the ideal W.

Proof of Lemma 1.

- 1. Let $\omega = \bigcup_{n \in \omega} I_n$ where $I_n = [2^n, 2^{n+1})$.
- 2. $\exists U_0$ in the ultrafilter such that $|U_0 \cap I_n| \le 1$ for every n.
- 3. Either $U_1 = \bigcup_{n \text{ odd}} I_n$ or $U_2 = \bigcup_{n \text{ even}} I_n$ is in the ultrafilter.
- **4**. The set $U = U_0 \cap U_i$ is in \mathcal{W} .

Difference between Q-points and rapid ultrafilters

Lemma 1.

Every *Q*-point has a nonempty intersection with the ideal W.

Proof of Lemma 1.

- 1. Let $\omega = \bigcup_{n \in \omega} I_n$ where $I_n = [2^n, 2^{n+1})$.
- 2. $\exists U_0$ in the ultrafilter such that $|U_0 \cap I_n| \le 1$ for every n.
- 3. Either $U_1 = \bigcup_{n \text{ odd}} I_n$ or $U_2 = \bigcup_{n \text{ even}} I_n$ is in the ultrafilter.
- **4**. The set $U = U_0 \cap U_i$ is in \mathcal{W} .

Theorem 2.

(MA_{cthle}) There is a rapid ultrafilter \mathcal{U} such that $\mathcal{U} \cap \mathcal{W} = \emptyset$.

An alternative characterization of rapid ultrafilters

Definition.

For a function $g:\omega \to [0,\infty)$ with $\sum\limits_{n\in\omega}g(n)=\infty$ the family

$$\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}$$

is a summable ideal determined by function g.

An alternative characterization of rapid ultrafilters

Definition.

For a function $g:\omega \to [0,\infty)$ with $\sum\limits_{n\in\omega}g(n)=\infty$ the family

$$\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}$$

is a summable ideal determined by function g.

A summable ideal \mathcal{I}_g is tall if and only if $\lim_{n \to \infty} g(n) = 0$.

An alternative characterization of rapid ultrafilters

Definition.

For a function $g:\omega \to [0,\infty)$ with $\sum_{n\in\omega} g(n)=\infty$ the family

$$\mathcal{I}_g = \{ A \subseteq \omega : \sum_{a \in A} g(a) < +\infty \}$$

is a summable ideal determined by function g.

A summable ideal \mathcal{I}_g is tall if and only if $\lim_{n\to\infty}g(n)=0$.

Theorem (Vojtáš).

An ultrafilter $\mathcal{U} \in \omega^*$ is rapid if and only if $\mathcal{U} \cap \mathcal{I}_g \neq \emptyset$ for every tall summable ideal \mathcal{I}_g .

Outline of the construction

- 1. List all tall summable ideals as $\{\mathcal{I}_{g_{\alpha}}: \alpha < \mathfrak{c}\}.$
- 2. For $\alpha < \mathfrak{c}$ construct filter bases \mathcal{F}_{α} such that for every $\alpha < \mathfrak{c}$ the following hold:
 - (i) \mathcal{F}_0 is the Fréchet filter
 - (ii) $\mathcal{F}_{\alpha} \supseteq \mathcal{F}_{\beta}$ whenever $\alpha \geq \beta$
 - (iii) $\mathcal{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$ for γ limit
 - (iv) $(\forall \alpha) |\mathcal{F}_{\alpha}| \leq |\alpha + \mathbf{1}| \cdot \omega$
 - (v) $(\forall \alpha)$ $(\forall F \in \mathcal{F}_{\alpha})$ F is an AP-set
 - (vi) $(\forall \alpha)$ $(\exists F \in \mathcal{F}_{\alpha+1})$ $F \in \mathcal{I}_{a_{\alpha}}$

Outline of the construction

- 1. List all tall summable ideals as $\{\mathcal{I}_{g_{\alpha}}: \alpha < \mathfrak{c}\}.$
- 2. For $\alpha < \mathfrak{c}$ construct filter bases \mathcal{F}_{α} such that for every $\alpha < \mathfrak{c}$ the following hold:
 - (i) \mathcal{F}_0 is the Fréchet filter
 - (ii) $\mathcal{F}_{\alpha} \supseteq \mathcal{F}_{\beta}$ whenever $\alpha \geq \beta$
 - (iii) $\mathcal{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$ for γ limit
 - (iv) $(\forall \alpha) |\mathcal{F}_{\alpha}| \leq |\alpha + 1| \cdot \omega$
 - (v) $(\forall \alpha)$ $(\forall F \in \mathcal{F}_{\alpha})$ F is an AP-set
 - (vi) $(\forall \alpha) (\exists F \in \mathcal{F}_{\alpha+1}) F \in \mathcal{I}_{g_{\alpha}}$
- 3. At successor stage use the following lemma:

Succesor stage

Lemma 2a.

(MA_{ctble}) Assume \mathcal{I}_g is a tall summable ideal, \mathcal{F} is a filter base on ω with $|\mathcal{F}| < \mathfrak{c}$ and $\mathcal{F} \cap \mathcal{W} = \emptyset$.

Then there exists $G \in [\omega]^{\omega}$ such that $G \in \mathcal{I}_g$ and $G \cap F$ is an AP-set for every $F \in \mathcal{F}$.

Succesor stage

Lemma 2a.

(MA_{ctble}) Assume \mathcal{I}_g is a tall summable ideal, \mathcal{F} is a filter base on ω with $|\mathcal{F}| < \mathfrak{c}$ and $\mathcal{F} \cap \mathcal{W} = \emptyset$.

Then there exists $G \in [\omega]^{\omega}$ such that $G \in \mathcal{I}_g$ and $G \cap F$ is an AP-set for every $F \in \mathcal{F}$.

Proof of Lemma 2a:

If
$$\mathcal{F} \cap \mathcal{I}_g = \emptyset$$
 then consider $P = \{K \in [\omega]^{<\omega} : \sum_{\mathbf{a} \in K} g(\mathbf{a}) < 1\}$

with a partial order \leq_P defined by: $K \leq_P L$ if and only if K = L or $K \supset L$ and $\min(K \setminus L) > \max L$.

Succesor stage

Lemma 2a.

(MA_{ctble}) Assume \mathcal{I}_g is a tall summable ideal, \mathcal{F} is a filter base on ω with $|\mathcal{F}| < \mathfrak{c}$ and $\mathcal{F} \cap \mathcal{W} = \emptyset$.

Then there exists $G \in [\omega]^{\omega}$ such that $G \in \mathcal{I}_g$ and $G \cap F$ is an AP-set for every $F \in \mathcal{F}$.

Proof of Lemma 2a:

If
$$\mathcal{F} \cap \mathcal{I}_g = \emptyset$$
 then consider $P = \{K \in [\omega]^{<\omega} : \sum_{a \in K} g(a) < 1\}$

with a partial order \leq_P defined by: $K \leq_P L$ if and only if K = L or $K \supset L$ and $\min(K \setminus L) > \max L$.

 $D_{F,k} = \{K \in P : K \cap F \text{ contains an a. p. of length } k\}$ are dense

W-ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called

a weak W-ultrafilter if for every finite-to-one $f: \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{W}$.

an \mathcal{W} -ultrafilter if for every $f:\omega\to\omega$ there exists $U\in\mathcal{U}$ such that $f[U]\in\mathcal{W}$.

W-ultrafilters

Definition.

An ultrafilter $\mathcal{U} \in \omega^*$ is called

a weak \mathcal{W} -ultrafilter if for every finite-to-one $f:\omega\to\omega$ there exists $U\in\mathcal{U}$ such that $f[U]\in\mathcal{W}$.

an W-ultrafilter if for every $f : \omega \to \omega$ there exists $U \in \mathcal{U}$ such that $f[U] \in \mathcal{W}$.

Every \mathcal{W} -ultrafilter is a weak \mathcal{W} -ultrafilter.

Every weak \mathcal{W} -ultrafilter has a nonempty intersection with the van der Waerden ideal.

W-ultrafilters and Q-points

Lemma 3.

Every Q-point is a weak W-ultrafilter.

Proposition 4.

 (MA_{ctble}) There is a Q-point which is not a \mathcal{W} -ultrafilter.

W-ultrafilters and Q-points

Lemma 3.

Every Q-point is a weak W-ultrafilter.

Proposition 4.

 (MA_{ctble}) There is a Q-point which is not a \mathcal{W} -ultrafilter.

Theorem 5.

 (MA_{ctble}) There is a W-ultrafilter which is not a Q-point.

Property ()

Definition.

A filter base \mathcal{F} has property (\spadesuit) if

$$(\forall F \in \mathcal{F}) (\forall k \in \omega) (\exists n \in \omega) |F \cap [2^n, 2^{n+1})| > k.$$

Property (♠)

Definition.

A filter base \mathcal{F} has property (\spadesuit) if

$$(\forall F \in \mathcal{F}) (\forall k \in \omega) (\exists n \in \omega) |F \cap [2^n, 2^{n+1})| > k.$$

Lemma 5a.

Every filter base \mathcal{F} which has property (\spadesuit) can be extended into an ultrafilter which is not a Q-point.

Outline of the construction

- 1. List all functions $\omega \omega = \{ f_{\alpha} : \alpha < \mathfrak{c} \}$.
- 2. For $\alpha < \mathfrak{c}$ construct filter bases \mathcal{F}_{α} such that for every $\alpha < \mathfrak{c}$ the following hold:
 - (i) \mathcal{F}_0 is the Fréchet filter
 - (ii) $\mathcal{F}_{\alpha} \supseteq \mathcal{F}_{\beta}$ whenever $\alpha \geq \beta$
 - (iii) $\mathcal{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$ for γ limit
 - (iv) $(\forall \alpha) |\mathcal{F}_{\alpha}| \leq |\alpha + 1| \cdot \omega$
 - (v) $(\forall \alpha) \mathcal{F}_{\alpha}$ has property (\spadesuit)
 - (vi) $(\forall \alpha)$ $(\exists F \in \mathcal{F}_{\alpha+1})$ $f_{\alpha}[F] \in \mathcal{W}$

Outline of the construction

- 1. List all functions $\omega \omega = \{ f_{\alpha} : \alpha < \mathfrak{c} \}$.
- 2. For $\alpha < \mathfrak{c}$ construct filter bases \mathcal{F}_{α} such that for every $\alpha < \mathfrak{c}$ the following hold:
 - (i) \mathcal{F}_0 is the Fréchet filter
 - (ii) $\mathcal{F}_{\alpha} \supseteq \mathcal{F}_{\beta}$ whenever $\alpha \geq \beta$
 - (iii) $\mathcal{F}_{\gamma} = \bigcup_{\alpha < \gamma} \mathcal{F}_{\alpha}$ for γ limit
 - (iv) $(\forall \alpha) |\mathcal{F}_{\alpha}| \leq |\alpha + 1| \cdot \omega$
 - (v) $(\forall \alpha) \mathcal{F}_{\alpha}$ has property (\spadesuit)
 - (vi) $(\forall \alpha)$ $(\exists F \in \mathcal{F}_{\alpha+1})$ $f_{\alpha}[F] \in \mathcal{W}$
- 3. At successor stage use the following lemma:

Successor stage

Lemma 5b.

(MA_{ctble}) Assume \mathcal{F} is a filter base with $|\mathcal{F}| < \mathfrak{c}$ with the property (\spadesuit). Assume $f \in {}^{\omega}\omega$.

Then there is $G \in [\omega]^{\omega}$ such that $f[G] \in \mathcal{W}$ and the filter base generated by \mathcal{F} and G has property (\spadesuit) .

Successor stage

Lemma 5b.

(MA_{ctble}) Assume $\mathcal F$ is a filter base with $|\mathcal F|<\mathfrak c$ with the property (\spadesuit). Assume $f\in {}^\omega\omega$.

Then there is $G \in [\omega]^{\omega}$ such that $f[G] \in \mathcal{W}$ and the filter base generated by \mathcal{F} and G has property (\spadesuit) .

Proof of Lemma 5b:

If neither a set from \mathcal{F} nor $f^{-1}[K]$ for some finite set K has the required property then consider

 $P = \{K \in [\omega]^{<\omega} : f[K] \text{ contains no a. p. of length 3}\}$

with a partial order \leq_P defined by: $K \leq_P L$ if and only if K = L or $K \supset L$ and $\min(K \setminus L) > \max L$.

Successor stage

Lemma 5b.

(MA_{ctble}) Assume \mathcal{F} is a filter base with $|\mathcal{F}| < \mathfrak{c}$ with the property (\spadesuit). Assume $f \in {}^{\omega}\omega$.

Then there is $G \in [\omega]^{\omega}$ such that $f[G] \in \mathcal{W}$ and the filter base generated by \mathcal{F} and G has property (\spadesuit) .

Proof of Lemma 5b:

If neither a set from \mathcal{F} nor $f^{-1}[K]$ for some finite set K has the required property then consider

$$P = \{K \in [\omega]^{<\omega} : f[K] \text{ contains no a. p. of length 3}\}$$

with a partial order \leq_P defined by: $K \leq_P L$ if and only if K = L or $K \supset L$ and $\min(K \setminus L) > \max L$.

$$D_{F,k} = \{K \in P : (\exists n \in \omega) | K \cap F \cap [2^n, 2^{n+1})| \ge k\}$$
 are dense

Questions

Theorem 2.

 (MA_{ctble}) There is a rapid ultrafilter \mathcal{U} such that $\mathcal{U} \cap \mathcal{W} = \emptyset$.

Question A.

Does there consistently exist an idempotent ultrafilter which is a rapid ultrafilter?

Questions

Theorem 2.

 (MA_{ctble}) There is a rapid ultrafilter \mathcal{U} such that $\mathcal{U} \cap \mathcal{W} = \emptyset$.

Question A.

Does there consistently exist an idempotent ultrafilter which is a rapid ultrafilter?

Theorem 5.

 (MA_{ctble}) There is a \mathcal{W} -ultrafilter which is not a Q-point.

Question B.

Does there (consistently) exist a \mathcal{W} -ultrafilter which is not a rapid ultrafilter?

References

- J. Flašková, The relation of rapid ultrafilters and *Q*-points to van der Waerden ideal, *to appear*. arXiv:1004.1879v2
- D. Booth, Ultrafilters on a countable set, *Ann. Math. Logic* **2** (1970/1971) no. 1, 1–24.
- A. Miller, There are no *Q*-points in Laver's model for the Borel conjecture, *Proc. Amer. Math. Soc.* **78** (1980), 498 502.
- R. M. Canjar, On the generic existence of special ultrafilters, *Proc. Amer. Math. Soc.* **110** (1990), 233 241.
- P. Vojtáš, On ω^* and absolutely divergent series, *Topology Proceedings* **19** (1994), 335 348.

