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Q-points and rapid ultrafilters

Definition.

A free ultrafilter ¢/ is called a Q-point if for every {Q; : i € w},
a partition of w into finite sets, there exists U € U such that
(Vi ew) |UNQ| <1.
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Q-points and rapid ultrafilters

Definition.

A free ultrafilter ¢/ is called a Q-point if for every {Q; : i € w},
a partition of w into finite sets, there exists U € U such that
(Vi ew) |UNQ| <1.

A free ultrafilter U/ is called rapid if for every {Q; : i € w},
a partition of w into finite sets, there exists U € U such that

(Vi ew) [UNQ| < i.
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Q-points and rapid ultrafilters

Definition.

A free ultrafilter ¢/ is called a Q-point if for every {Q; : i € w},
a partition of w into finite sets, there exists U € U such that
(Vi ew) |UNQ| <1.

A free ultrafilter U/ is called rapid if for every {Q; : i € w},
a partition of w into finite sets, there exists U € U such that
(Vi ew)lUNQ| <.

Alternative definition of rapid ultrafilters:

A free ultrafilter U is called rapid if the enumeration functions of
its sets form a dominating family in (w*, <*).
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Existence of Q-points and rapid ultrafilters

Every Q-point is rapid, but the converse is not true.
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Existence of Q-points and rapid ultrafilters

Every Q-point is rapid, but the converse is not true.

Theorem (Booth?).
(CH) Q-points exist.
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Existence of Q-points and rapid ultrafilters

Every Q-point is rapid, but the converse is not true.

Theorem (Booth?).
(CH) Q-points exist.

Theorem (Miller).
In Laver’s model there are no rapid ultrafilters.
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Existence of Q-points and rapid ultrafilters

Every Q-point is rapid, but the converse is not true.

Theorem (Booth?).
(CH) Q-points exist.

Theorem (Miller).
In Laver’s model there are no rapid ultrafilters.

In every model where Q-points are known not to exist,
rapid ultrafilters do not exist either.
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Generic existence

Definition (Canjar).

We say that Q-points (respectively rapid ultrafilters) exist
generically if every filter of character < v is included in a
Q-point (respectively rapid ultrafilter).
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Generic existence

Definition (Canjar).

We say that Q-points (respectively rapid ultrafilters) exist
generically if every filter of character < v is included in a
Q-point (respectively rapid ultrafilter).

Theorem (Canijar).
The following are equivalent:
e COV(M) =,
e QQ-points exist generically,
o Rapid ultrafilters exist generically.
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Product of ultrafilters

Definition.

Leti/ and V, n € w, be ultrafilters on w.

The product of ultrafilters ¢/ and ), denoted by &/ x V), is an
ultrafilter on w x w defined by A € U x V if and only if
{n:{m:(n,m) e A} eV} e U.
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Product of ultrafilters

Definition.

Leti/ and V, n € w, be ultrafilters on w.

The product of ultrafilters ¢/ and ), denoted by &/ x V), is an
ultrafilter on w x w defined by A € U x V if and only if
{n:{m:(n,m) e A} eV} e U.

It is known that &/ x V is never a Q-point.



Introduction van der Waerden ideal Wh-ultrafilters Questions References
o

(e]e} (ele] (e]e] [e]
oe [e]o]e} [e]e]e}

Product of ultrafilters

Definition.

Leti/ and V, n € w, be ultrafilters on w.

The product of ultrafilters ¢/ and ), denoted by &/ x V), is an
ultrafilter on w x w defined by A € U x V if and only if
{n:{m:(n,m) e A} eV} e U.

It is known that &/ x V is never a Q-point.

Theorem (Miller).
U x V is arapid ultrafilter if and only if V is rapid.
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AP-sets and van der Waerden ideal

Definition.

A set A C wis called an AP-set if it contains arbitrary long
arithmetic progressions.
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AP-sets and van der Waerden ideal

Definition.

A set A C wis called an AP-set if it contains arbitrary long
arithmetic progressions.

Sets which are not AP-sets form a proper ideal on w.
It is van der Waerden ideal W.
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AP-sets and van der Waerden ideal

Definition.

A set A C wis called an AP-set if it contains arbitrary long
arithmetic progressions.

Sets which are not AP-sets form a proper ideal on w.
It is van der Waerden ideal W.

The van der Waerden ideal W is F,-ideal, not a P-ideal.
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Difference between Q-points and rapid ultrafilters

Lemma 1.
Every Q-point has a nonempty intersection with the ideal .
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Difference between Q-points and rapid ultrafilters

Lemma 1.
Every Q-point has a nonempty intersection with the ideal .

Proof of Lemma 1.
1. Letw = Upe,, In Where I, = [27,2"F1),
2. 3y in the ultrafilter such that |Uy N In| < 1 for every n.

3. Either Uy = U, pgq In OF U2 = U}, gven In is in the ultrafilter.
4. Theset U= Uyn Ujisin W.
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Difference between Q-points and rapid ultrafilters

Lemma 1.
Every Q-point has a nonempty intersection with the ideal .

Proof of Lemma 1.
1. Letw = Upe,, In Where I, = [27,2"F1),
2. 3y in the ultrafilter such that |Uy N In| < 1 for every n.

3. Either Uy = U, pgq In OF U2 = U}, gven In is in the ultrafilter.
4. Theset U= Uyn Ujisin W.

Theorem 2.
(MA_tp1e) There is a rapid ultrafilter ¢/ such that 2/ N W = 0.
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Proof of Theorem 2

An alternative characterization of rapid ultrafilters

Definition.
For a function g : w — [0, 00) with 3~ g(n) = oo the family

new

Ig:{Agw:Zg(a)<+oo}

acA

is a summable ideal determined by function g.
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Proof of Theorem 2

An alternative characterization of rapid ultrafilters

Definition.
For a function g : w — [0, 00) with 3~ g(n) = oo the family
new
Ig={ACw: Zg(a) < +o0}
acA

is a summable ideal determined by function g.

A summable ideal Z is tall if and only if nlim g(n)=0.
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Proof of Theorem 2

An alternative characterization of rapid ultrafilters

Definition.
For a function g : w — [0, 00) with 3~ g(n) = oo the family

new

Ig:{Agw:Zg(a)<+oo}

acA
is a summable ideal determined by function g.
A summable ideal Z is tall if and only if nlim g(n)=0.
Theorem (Vojtas).

An ultrafilter & € w* is rapid if and only if i/ N Zy # 0
for every tall summable ideal Z.
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Proof of Theorem 2

QOutline of the construction

1. List all tall summable ideals as {Zg, : a < c}.

2. For o < ¢ construct filter bases F, such that for every o < ¢
the following hold:

(i) Fo is the Fréchet filter

(i) Fo 2 Fp whenever a >

(i) Fy = U, . Fo for y limit

(V) (Y) [Fal < la+1]-w

(v) (Ya) (VF € F,) F is an AP-set
)

(vi) (Va) (3F € Faqt) F €,
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Proof of Theorem 2

QOutline of the construction

1. List all tall summable ideals as {Zg, : a < c}.

2. For o < ¢ construct filter bases F, such that for every o < ¢
the following hold:
(i) Fo is the Fréchet filter
(i) Fo 2 Fs whenever a >
(i) Fy = Uyery Fo for limit
(iv) (Va) |Fol <la+1]-w
(v) (Vo) (VF € F,) Fis an AP-set
(Vi) (Vo) (3F € Far1) F € I,

3. At successor stage use the following lemma:
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Proof of Theorem 2

Succesor stage

Lemma 2a.
(MA¢ipie) Assume Iy is a tall summable ideal, F is a filter base

on w with |F| < cand FNW = 0.
Then there exists G € [w]* such that G € Zg and GN F is an

AP-set for every F € F.
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Proof of Theorem 2

Succesor stage

Lemma 2a.

(MA¢ipie) Assume Iy is a tall summable ideal, F is a filter base
on w with |F| < cand FNW = 0.

Then there exists G € [w]* such that G € Zg and GN F is an
AP-set for every F € F.

Proof of Lemma 2a:

If FNZy = 0 then consider P = {K € [w]<“: 3 g(a) < 1}
ack

with a partial order <p defined by: K <p Lifandonly if K = L

or K O Land min(K \ L) > max L.
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Proof of Theorem 2

Succesor stage

Lemma 2a.

(MA¢ipie) Assume Iy is a tall summable ideal, F is a filter base
on w with |F| < cand FNW = 0.

Then there exists G € [w]* such that G € Zg and GN F is an
AP-set for every F € F.

Proof of Lemma 2a:
If FNZy = 0 then consider P = {K € [w]<“: 3 g(a) < 1}

acK
with a partial order <p defined by: K <p Lifandonly if K = L
or K O Land min(K \ L) > max L.

Dr x = {K € P: KN F contains an a. p. of length k} are dense
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Wh-ultrafilters

Definition.

An ultrafilter 4 € w* is called
a weak W-ultrafilter if for every finite-to-one f : w — w there
exists U € U such that f[U] e W.
an W-ultrafilter if for every f : w — w there exists U € U
such that f[U] € W.
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Definition.
An ultrafilter &/ € w* is called

a weak W-ultrafilter if for every finite-to-one f : w — w there
exists U € U such that f[U] e W.

an W-ultrafilter if for every f : w — w there exists U € U
such that f[U] € W.

Every W-ultrafilter is a weak W-ultrafilter.

Every weak W-ultrafilter has a nonempty intersection with the
van der Waerden ideal.
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W-ultrafilters and Q-points

Lemma 3.
Every Q-point is a weak W-ultrafilter.

Proposition 4.
(MA(tpie) There is a Q-point which is not a W-ultrafilter.
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W-ultrafilters and Q-points

Lemma 3.
Every Q-point is a weak W-ultrafilter.

Proposition 4.
(MA(tpie) There is a Q-point which is not a W-ultrafilter.

Theorem 5.
(MA_tpie) There is a W-ultrafilter which is not a Q-point.
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Proof of Theorem 5.
Property (&)

Definition.
A filter base F has property (#) if

(VF € F) (Vk € w) (3n e w) |[FN[2",2")| > k.
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Proof of Theorem 5.
Property (&)

Definition.
A filter base F has property (#) if

(VF € F)(Vk e w)(3n e w) |FN[2", 2" > k.

Lemma 5a.

Every filter base F which has property (#) can be extended
into an ultrafilter which is not a Q-point.

References
o
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Proof of Theorem 5.

Outline of the construction
1. List all functions “w = {f, : a < ¢}.

2. For o < ¢ construct filter bases F, such that for every o < ¢
the following hold:

(i) Fo is the Fréchet filter

(i) Fo D Fp whenever a >

(iiiy F, = Ua<7 Fo, for ~ limit

(iv) (Vo) |Fol <la+1] w

(v) (Vo) F, has property (&)
)

(Vi) (Ya) (3F € Fay1) f[FleW



W-ultrafilters

oeo

Proof of Theorem 5.

Outline of the construction
1. List all functions “w = {f, : a < ¢}.

2. For o < ¢ construct filter bases F, such that for every o < ¢
the following hold:

(i) Fo is the Fréchet filter

(i) Fo D Fp whenever a >

(iiiy F, = Ua<7 Fo, for ~ limit

(iv) (Vo) |Fol <la+1] w

(v) (Vo) F, has property (&)
)

(Vi) (Ya) (3F € Fay1) f[FleW

3. At successor stage use the following lemma:
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Proof of Theorem 5.

Successor stage

Lemma 5b.
(MA(tpie) Assume F is a filter base with | 7| < ¢ with the

property (#). Assume f € “w.
Then there is G € [w]“ such that f[G] € W and the filter base

generated by F and G has property (#).
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Proof of Theorem 5.

Successor stage

Lemma 5b.

(MA(tpie) Assume F is a filter base with | 7| < ¢ with the
property (#). Assume f € “w.

Then there is G € [w]“ such that f[G] € W and the filter base
generated by F and G has property (#).

Proof of Lemma 5b:

If neither a set from F nor f~'[K] for some finite set K has the
required property then consider

P = {K € [w]<“ : f[K] contains no a. p. of length 3}

with a partial order <p defined by: K <p Lifandonly if K =L
or KO Land min(K \ L) > max L.
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Proof of Theorem 5.

Successor stage

Lemma 5b.

(MA(tpie) Assume F is a filter base with | 7| < ¢ with the
property (#). Assume f € “w.

Then there is G € [w]“ such that f[G] € W and the filter base
generated by F and G has property (#).

Proof of Lemma 5b:

If neither a set from F nor f~'[K] for some finite set K has the
required property then consider

P = {K € [w]<“ : f[K] contains no a. p. of length 3}

with a partial order <p defined by: K <p Lifandonly if K =L
or KO Land min(K \ L) > max L.

Dex={K e P:(Incw)|KNFn[2"2M")| > k} are dense
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Questions

Theorem 2.
(MA_tpie) There is a rapid ultrafilter ¢/ such that 2/ N W = 0.
Question A.

Does there consistently exist an idempotent ultrafilter which is a
rapid ultrafilter?



Questions
°

Questions

Theorem 2.
(MA_tpie) There is a rapid ultrafilter ¢/ such that 2/ N W = 0.

Question A.

Does there consistently exist an idempotent ultrafilter which is a
rapid ultrafilter?

Theorem 5.
(MA_tp1e) There is a W-ultrafilter which is not a Q-point.

Question B.

Does there (consistently) exist a W-ultrafilter which is not a
rapid ultrafilter?
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