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] ] Residuated lattices
A Heyting algebra is a structure A = (A, A,V,—,0,1) where Examples
Properties

m (A,A,V,0,1) is a bounded lattice, Term hierarchy
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Examples

General case

a /\ b S C < b S a— C (/\—reS|duat|On) Bibliography

Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]
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Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]

Boolean algebras are HAs that satisfy =—z = x, (double negation),
or equivalently x V =z = 1 (excluded middle), for -z := x — 0.
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Theorem. [Bezhanishvilli-Harding, '04] The only varieties (i.e.,
equationally defined classes) of Heyting algebras that are closed
under Dedekind-MacNeille completions are the trivial, BA and HA.
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Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]

Boolean algebras are HAs that satisfy =—z = x, (double negation),
or equivalently x V =z = 1 (excluded middle), for -z := x — 0.

Theorem. [Bezhanishvilli-Harding, '04] The only varieties (i.e.,
equationally defined classes) of Heyting algebras that are closed
under Dedekind-MacNeille completions are the trivial, BA and HA.

Fact: The DM-completion of A is the unique (up to isomorphism)
completion in which A is both meet dense and join dense. Namely,
every element a can be written as

a:\/Xz/\Y for some X,Y C A.
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(x = y)V (y — x) =1 (prelinearity).
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Fact: Godel algebras are subdirect products of chains.
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(x = y)V (y — x) =1 (prelinearity).

Fact: Godel algebras are subdirect products of chains.

Since totally ordered Heyting algebras are closed under
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Proposition: Godel algebras are closed under completions.
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Lemma: (lin’) is preserved under DM-completions.

Proof: Assume A satisfies (lin').
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Lemma: (lin’) is preserved under DM-completions.

Proof: Assume A satisfies (lin’). Every element of its
DM-completion A can be written as both a join and a meet of

elements of A. We will show that for X, Y, Z, W C A:

VZ<A\Xand \/W<AY = \/W<AXor \/Z<A\Y

If we had \/ Z < AX, VW <AY, VW LAX and \/Z LAY,
then we could choose x € X,y €Y, z € Z, w € W such that

w £ x and z £ y (by the last two) and

z < x and w < y (by the first two).

This contradicts (lin').
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m (For complete lattices) - distributes over \/. [Quantales]

b<a\(abVec) a<(cVab)/b

= Foralla,b,cel, a(a\cAb) <c (aAc/b)b<c

Therefore, the class RL of residuated lattices is an equational
class/variety. We write x — y for x\y and y/x, when they are equal.
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V{b:ab<c} (=:a\c)and \/{b:ba < c} (=: ¢/a) exist.

m (For complete lattices) - distributes over \/. [Quantales]

b<a\(abVec) a<(cVab)/b

= Foralla,b,cel, a(a\cAb) <c (aAc/b)b<c

Therefore, the class RL of residuated lattices is an equational
class/variety. We write x — y for x\y and y/x, when they are equal.

We also add in the language a constant 0, for which we stipulate
nothing. It allows the definition of negation(s) -« :=z — 0.
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Examples

m Lattice-ordered groups. For z\y = 21y, y/x = yx~ 1.

m (Reducts of) relation algebras. For x -y = x; v,
r\y = (°;y°)°¢, y/z = (y;2°)¢, 1 = id and 0 = id°.

m The powerset (P(M),N,U, -\, /,{e}) of a monoid
M = (M,-,e), where X - Y ={zx-y|z e X, ye Y}
XY ={2eM|{z}-Y C X},
Y\Y={zeM|Y {z} C X}

m Ideals of a ring (with 1), where IJ ={}_,, ij|i€l,j € J}
1)J={k|kJCTI}, IN[={k|JkCI}, 1=R.

m Quantales are (essentially) complete residuated lattices.

m Boolean algebras. z/y =y\z =y — x =y°V x and
rT-Yy=xN4y.

m MV-algebras. Forz -y =2 ©y and z\y = y/x = ~(—z O y).

m Models of relevance and of linear logic.
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Term hierarchy
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Examples
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Bibliography
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Residuated lattices

For {\/7 -7 1} Examples

Term hierarchy
mr-l=x=1-=x N2
Completions
Examples

m z(yVz)=xzyVazand (yVz)r=yxVzx

General case

Bibliography

For {A,\,/} (and {V,-,1} in the denominator)
n z\(y/z) = (z\y)/z
m 2\(y A z) = (2\y) A (2\z) and (y A z)/2 = (y/x) A (2/x)
= (yV2)\z = (y\z) A (2\z) and z/(y V 2) = (z/y) A (z/2)
m (yz2)\z = 2\(y\z) and z/(zy) = (z/y)/=
n \z=z=2x/1
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Examples
A A Properties

m Polarity {V,-, 1}, {A,\,/}

N2

m The sets P,,, N,, of terms are defined by: Completions

Examples

Ps N (0) Py = Ny = the set of variables el e

' (P1) Ny U{1} C Pun
(P2) ﬁepn-i-l = Oé\/ﬁ,CV'BEPn+1
) P
)

(N]. o {O} CNn+1
N2 (N2 ,ﬁGNn_H = CE/\ﬁENn—H

I (N3) a € Ppa1,BEN 1 = a\b,0/a € Nyaa
u n+1l — <Nn>\/,H : Nn‘|’1 — <7D’n>/\,73n+1\,/73n+1

M u Pngpn—l—laNn gNn+17UPn:UN”:Fm
m Pi-reduced: \/[]p;
m Nj-reduced: A(pip2- pu\7/q1G2 - @m)

Nikolaos Galatos, BLAST'10, UC Boulder, June 2010 Dedekind-MacNeille completions of residuated lattices — 8 / 13




N2

N3-normal formulas are of the form ay - - - o, — (3 where
m 3=0o0r (1 V---V (G with each §; a product of variables
s each o is of the form A, . v/ — B, where 3] =0 oris a

variable, and 7 is a product of variables.
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For any set FE of Ns-equations, the following are equivalent:
m The variety Mod(FE) is closed under completions.

m The variety Mod(FE) is closed under DM-completions.
m F is equivalent to a set of acyclic equations.
m F is equivalent to a set of analytic equations.

If £/ implies integrality x < 1, all the above hold.

Heyting algebras
Godel algebras
Why?

Residuated lattices
Examples
Properties

Term hierarchy
Completions
Examples

General case

Bibliography

Nikolaos Galatos, BLAST'10, UC Boulder, June 2010 Dedekind-MacNeille completions of residuated lattices — 9 / 13



Completions

Heyting algebras

Godel algebras
Why?

Residuated lattices

We restrict to varieties that satisfy zy = yx and = < 1. (ICRL) Examples

Properties

Term hierarchy
N2

Examples
General case

Bibliography

Nikolaos Galatos, BLAST'10, UC Boulder, June 2010 Dedekind-MacNeille completions of residuated lattices — 10 / 13



Completions

Heyting algebras

Godel algebras
Why?
Residuated lattices

We restrict to varieties that satisfy zy = yx and = < 1. (ICRL) Examples

Properties
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Theorem. For Sl algebras, each equation in P3 is equivalent to a
finite set of structural clauses.

Nikolaos Galatos, BLAST'10, UC Boulder, June 2010 Dedekind-MacNeille completions of residuated lattices — 10 / 13



Completions

Heyting algebras

Godel algebras

Why?
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We restrict to varieties that satisfy zy = yx and = < 1. (ICRL) Examples
Properties
A structural clause is a universal first-order formula of the form: Term hierarchy
N2
tl S Ul and e o o and tm S Um 2 tm_|_]_ S Um_|_1 Or e o o Or tn S Un Examples

General case

. c . . Bibliograph
where for every 1 < i <mn, t; is a product of variables or 1 and wu; is e

either a variable or 0.

Theorem. For Sl algebras, each equation in P3 is equivalent to a
finite set of structural clauses.

Let L = var{t,+1,...,tn} and R = var{u,i1,...,uy}. The
clause is called analytic if it satisfies:

m L and R are disjoint.
m Each variable occurs only once in t,, 41, Uma1, .- tn, Un.

m var{ty,...,t;m} C L and var{uy,...,un} C R.
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clause is called analytic if it satisfies:

m L and R are disjoint.

m Each variable occurs only once in t,, 41, Uma1, .- tn, Un.

m var{ty,...,t;m} C L and var{uy,...,un} C R.

Theorem. Every structural clause is equivalent in to an analytic one.
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Completions

We restrict to varieties that satisfy zy = yx and = < 1. (ICRL)

A structural clause is a universal first-order formula of the form:

ti <wupand ... and £, < Uy, = tpa1 < Umaq OF ... Or b, < Uy

where for every 1 < i < n, t; is a product of variables or 1 and u; is
either a variable or 0.

Theorem. For Sl algebras, each equation in P3 is equivalent to a
finite set of structural clauses.

Let L = var{t,+1,...,tn} and R = var{u,i1,...,uy}. The
clause is called analytic if it satisfies:

m L and R are disjoint.

m Each variable occurs only once in t,, 41, Uma1, .- tn, Un.

m var{ty,...,t;m} C L and var{uy,...,un} C R.

Theorem. Every structural clause is equivalent in to an analytic one.

Theorem. Analytic clauses are preserved by DM-completions.
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Examples

Example 1 (N2): z%y < zy V yx
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(z1 V 22)%y < (21 V22)y Vy(z: V 22)
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Examples
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Example 1 (N2): z%y < zy V yzx Examples

Properties

(5131 V SEQ)Qy < (:L‘l V :L’Q)y \Y y(xl \/ 552) ":I't-;rm ey

Completions

21y V 112y V 2aw1y V 23y < 11y V T2y V Y21 V Y2

General case

Bibliography

122y < 21y V 22y V Yyx1 V Yo

1y < zand xoy < zand yr; < z and yro < 2z = 122y < 2

Example 2: 1 < =(zy) V (x Ay — xy)
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122y < 21y V 22y V Yyx1 V Yo

1y < zand xoy < zand yr; < z and yro < 2z = 122y < 2

Example 2: 1 < =(zy) V (x Ay — zy)
1 <=(zy)orl< (zxAy— zy) (for Sls)
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Example 1 (N2): z%y < zy V yzx Examples

Properties

(5131 V SEQ)Qy < (:L‘l V :L’Q)y \Y y(xl \/ 55'2) ":I't-;rm ey

Completions

21y V 112y V 2aw1y V 23y < 11y V T2y V Y21 V Y2

General case

Bibliography

122y < 21y V 22y V Yyx1 V Yo

1y < zand xoy < zand yr; < z and yro < 2z = 122y < 2

Example 2: 1 < =(zy) V (x Ay — zy)
1 <=(zy)orl< (zxAy— zy) (for Sls)

xy<Oorzxz ANy <uxy
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122y < 21y V 22y V Yyx1 V Yo

1y < zand xoy < zand yr; < z and yro < 2z = 122y < 2

Example 2: 1 < =(zy) V (x Ay — zy)
1 <=(zy)orl< (zxAy— zy) (for Sls)
xy<Oorzxz ANy <uxy
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In the absence of commutativity and integrality we need to consider: = Examples

Properties

1. iterated conjugates: Term hierarchy
5 . . N2
A conjugate of a term t is either A\, (t) = (u\tu) A 1 or Completions
pu(t) = (ut/u) A1 for some term u. We have:
Bibliography

Au(t) <1, pu(t) <1, Uy (t) < tu, pu(t)u < ut.

Iterated conjugates are compositions of conjugates.
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General case

In the absence of commutativity and integrality we need to consider:
1. iterated conjugates:

A conjugate of a term t is either A\, (t) = (u\tu) A 1 or
pu(t) = (ut/u) A1 for some term u. We have:

Au(t) <1, pu(t) <1, uly (t) < tu, pu(t)u < ut.

Iterated conjugates are compositions of conjugates.

2. acyclic clauses:

A clause

ti <wugpand ... and &, < Uy, = a1 < Umaq OF ... Or ty, < Uy

is called acyclic if there are no directed cycles in the directed graph
(G, E), where G = var{ti,u1,...,tm, um}, and (z,y) € E iff
[xr <y is a premise.
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General case

In the absence of commutativity and integrality we need to consider:
1. iterated conjugates:

A conjugate of a term t is either A\, (t) = (u\tu) A 1 or
pu(t) = (ut/u) A1 for some term u. We have:

Au(t) <1, pu(t) <1, uly (t) < tu, pu(t)u < ut.

Iterated conjugates are compositions of conjugates.

2. acyclic clauses:

A clause

ti <wugpand ... and &, < Uy, = a1 < Umaq OF ... Or ty, < Uy

is called acyclic if there are no directed cycles in the directed graph
(G, E), where G = var{ti,u1,...,tm, um}, and (z,y) € E iff
[xr <y is a premise.

Theorem. Every acyclic structural clause is equivalent to an analytic
one.
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