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A Heyting algebra is a structure A = (A,∧,∨,→, 0, 1) where

■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c ⇔ b ≤ a → c (∧-residuation)

Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]
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A Heyting algebra is a structure A = (A,∧,∨,→, 0, 1) where

■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c ⇔ b ≤ a → c (∧-residuation)

Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]

Boolean algebras are HAs that satisfy ¬¬x = x, (double negation),
or equivalently x ∨ ¬x = 1 (excluded middle), for ¬x := x → 0.
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A Heyting algebra is a structure A = (A,∧,∨,→, 0, 1) where

■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c ⇔ b ≤ a → c (∧-residuation)

Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]

Boolean algebras are HAs that satisfy ¬¬x = x, (double negation),
or equivalently x ∨ ¬x = 1 (excluded middle), for ¬x := x → 0.

Theorem. [Bezhanishvilli-Harding, ’04] The only varieties (i.e.,
equationally defined classes) of Heyting algebras that are closed
under Dedekind-MacNeille completions are the trivial, BA and HA.
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A Heyting algebra is a structure A = (A,∧,∨,→, 0, 1) where

■ (A,∧,∨, 0, 1) is a bounded lattice,
■ for all a, b, c ∈ A,

a ∧ b ≤ c ⇔ b ≤ a → c (∧-residuation)

Heyting algebras provide algebraic semantics for intuitionistic
propositional logic. [Eg: topologies, locales/frames.]

Boolean algebras are HAs that satisfy ¬¬x = x, (double negation),
or equivalently x ∨ ¬x = 1 (excluded middle), for ¬x := x → 0.

Theorem. [Bezhanishvilli-Harding, ’04] The only varieties (i.e.,
equationally defined classes) of Heyting algebras that are closed
under Dedekind-MacNeille completions are the trivial, BA and HA.

Fact: The DM-completion of A is the unique (up to isomorphism)
completion in which A is both meet dense and join dense. Namely,
every element a can be written as

a =
∨

X =
∧

Y for some X, Y ⊆ A.
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A class of ordered algebras is closed under completions if every
algebra in the class embeds in a complete algebra in the class.
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A class of ordered algebras is closed under completions if every
algebra in the class embeds in a complete algebra in the class.

A Gödel algebra is a Heyting algebra that satisfies

(x → y) ∨ (y → x) = 1 (prelinearity).



Gödel algebras
Heyting algebras

Gödel algebras

Why?

Residuated lattices

Examples

Properties

Term hierarchy

N2

Completions

Examples

General case

Bibliography

Nikolaos Galatos, BLAST’10, UC Boulder, June 2010 Dedekind-MacNeille completions of residuated lattices – 3 / 13

A class of ordered algebras is closed under completions if every
algebra in the class embeds in a complete algebra in the class.

A Gödel algebra is a Heyting algebra that satisfies

(x → y) ∨ (y → x) = 1 (prelinearity).

Fact: Gödel algebras are subdirect products of chains.
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A class of ordered algebras is closed under completions if every
algebra in the class embeds in a complete algebra in the class.

A Gödel algebra is a Heyting algebra that satisfies

(x → y) ∨ (y → x) = 1 (prelinearity).

Fact: Gödel algebras are subdirect products of chains.

Since totally ordered Heyting algebras are closed under
DM-completions we get

A →֒
∏

i∈I

Ai →֒
∏

i∈I

Ai.
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A class of ordered algebras is closed under completions if every
algebra in the class embeds in a complete algebra in the class.

A Gödel algebra is a Heyting algebra that satisfies

(x → y) ∨ (y → x) = 1 (prelinearity).

Fact: Gödel algebras are subdirect products of chains.

Since totally ordered Heyting algebras are closed under
DM-completions we get

A →֒
∏

i∈I

Ai →֒
∏

i∈I

Ai.

Proposition: Gödel algebras are closed under completions.
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).

Lemma: (lin′) is preserved under DM-completions.

Proof: Assume A satisfies (lin′).
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).

Lemma: (lin′) is preserved under DM-completions.

Proof: Assume A satisfies (lin′). Every element of its
DM-completion A can be written as both a join and a meet of
elements of A. We will show that for X, Y, Z, W ⊆ A:

∨
Z ≤

∧
X and

∨
W ≤

∧
Y =⇒

∨
W ≤

∧
X or

∨
Z ≤

∧
Y
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).

Lemma: (lin′) is preserved under DM-completions.

Proof: Assume A satisfies (lin′). Every element of its
DM-completion A can be written as both a join and a meet of
elements of A. We will show that for X, Y, Z, W ⊆ A:

∨
Z ≤

∧
X and

∨
W ≤

∧
Y =⇒

∨
W ≤

∧
X or

∨
Z ≤

∧
Y

If we had
∨

Z ≤
∧

X,
∨

W ≤
∧

Y ,
∨

W 6≤
∧

X and
∨

Z 6≤
∧

Y ,
then we could choose x ∈ X, y ∈ Y , z ∈ Z, w ∈ W such that
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).

Lemma: (lin′) is preserved under DM-completions.

Proof: Assume A satisfies (lin′). Every element of its
DM-completion A can be written as both a join and a meet of
elements of A. We will show that for X, Y, Z, W ⊆ A:

∨
Z ≤

∧
X and

∨
W ≤

∧
Y =⇒

∨
W ≤

∧
X or

∨
Z ≤

∧
Y

If we had
∨

Z ≤
∧

X,
∨

W ≤
∧

Y ,
∨

W 6≤
∧

X and
∨

Z 6≤
∧

Y ,
then we could choose x ∈ X, y ∈ Y , z ∈ Z, w ∈ W such that
w 6≤ x and z 6≤ y (by the last two) and
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).

Lemma: (lin′) is preserved under DM-completions.

Proof: Assume A satisfies (lin′). Every element of its
DM-completion A can be written as both a join and a meet of
elements of A. We will show that for X, Y, Z, W ⊆ A:

∨
Z ≤

∧
X and

∨
W ≤

∧
Y =⇒

∨
W ≤

∧
X or

∨
Z ≤

∧
Y

If we had
∨

Z ≤
∧

X,
∨

W ≤
∧

Y ,
∨

W 6≤
∧

X and
∨

Z 6≤
∧

Y ,
then we could choose x ∈ X, y ∈ Y , z ∈ Z, w ∈ W such that
w 6≤ x and z 6≤ y (by the last two) and
z ≤ x and w ≤ y (by the first two).
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Fact: A |= (x → y) ∨ (y → x) = 1 iff A |= x ≤ y or y ≤ x (lin), for
A ∈ HASI .

Fact: (y ≤ x or x ≤ y) ⇔ (z ≤ x and w ≤ y =⇒ w ≤ x or z ≤ y)
(lin′).

Lemma: (lin′) is preserved under DM-completions.

Proof: Assume A satisfies (lin′). Every element of its
DM-completion A can be written as both a join and a meet of
elements of A. We will show that for X, Y, Z, W ⊆ A:

∨
Z ≤

∧
X and

∨
W ≤

∧
Y =⇒

∨
W ≤

∧
X or

∨
Z ≤

∧
Y

If we had
∨

Z ≤
∧

X,
∨

W ≤
∧

Y ,
∨

W 6≤
∧

X and
∨

Z 6≤
∧

Y ,
then we could choose x ∈ X, y ∈ Y , z ∈ Z, w ∈ W such that
w 6≤ x and z 6≤ y (by the last two) and
z ≤ x and w ≤ y (by the first two).
This contradicts (lin′).
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A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.
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A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ L,∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.
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A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ L,∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.

■ (For complete lattices) · distributes over
∨

. [Quantales]
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A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ L,∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.

■ (For complete lattices) · distributes over
∨

. [Quantales]

■ For all a, b, c ∈ L,
b ≤ a\(ab ∨ c) a ≤ (c ∨ ab)/b
a(a\c ∧ b) ≤ c (a ∧ c/b)b ≤ c
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A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ L,∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.

■ (For complete lattices) · distributes over
∨

. [Quantales]

■ For all a, b, c ∈ L,
b ≤ a\(ab ∨ c) a ≤ (c ∨ ab)/b
a(a\c ∧ b) ≤ c (a ∧ c/b)b ≤ c

Therefore, the class RL of residuated lattices is an equational
class/variety. We write x → y for x\y and y/x, when they are equal.
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A residuated lattice, or residuated lattice-ordered monoid , is an
algebra L = (L,∧,∨, ·, \, /, 1) such that

■ (L,∧,∨) is a lattice,

■ (L, ·, 1) is a monoid and
■ for all a, b, c ∈ L,

ab ≤ c ⇔ b ≤ a\c ⇔ a ≤ c/b.

Fact. The last condition is equivalent to either one of:

■ Multiplication distributes over existing
∨

’s and, for all a, c ∈ L,∨
{b : ab ≤ c} (=: a\c) and

∨
{b : ba ≤ c} (=: c/a) exist.

■ (For complete lattices) · distributes over
∨

. [Quantales]

■ For all a, b, c ∈ L,
b ≤ a\(ab ∨ c) a ≤ (c ∨ ab)/b
a(a\c ∧ b) ≤ c (a ∧ c/b)b ≤ c

Therefore, the class RL of residuated lattices is an equational
class/variety. We write x → y for x\y and y/x, when they are equal.

We also add in the language a constant 0, for which we stipulate
nothing. It allows the definition of negation(s) ¬x := x → 0.
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■ Lattice-ordered groups. For x\y = x−1y, y/x = yx−1.

■ (Reducts of) relation algebras. For x · y = x; y,
x\y = (x∪; yc)c, y/x = (yc;x∪)c, 1 = id and 0 = idc.

■ The powerset (P(M),∩,∪, ·, \, /, {e}) of a monoid
M = (M, ·, e), where X · Y = {x · y | x ∈ X, y ∈ Y },
X/Y = {z ∈ M | {z} · Y ⊆ X},
Y \Y = {z ∈ M | Y · {z} ⊆ X}.

■ Ideals of a ring (with 1), where IJ = {
∑

fin ij | i ∈ I, j ∈ J}
I/J = {k | kJ ⊆ I}, J\I = {k | Jk ⊆ I}, 1 = R.

■ Quantales are (essentially) complete residuated lattices.

■ Boolean algebras. x/y = y\x = y → x = yc ∨ x and
x · y = x ∧ y.

■ MV-algebras. For x · y = x ⊙ y and x\y = y/x = ¬(¬x ⊙ y).

■ Models of relevance and of linear logic.
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For {∨, ·, 1}

■ x · 1 = x = 1 · x

■ x(y ∨ z) = xy ∨ xz and (y ∨ z)x = yx ∨ zx

For {∧, \, /} (and {∨, ·, 1} in the denominator)

■ x\(y/z) = (x\y)/z

■ x\(y ∧ z) = (x\y) ∧ (x\z) and (y ∧ z)/x = (y/x) ∧ (z/x)

■ (y ∨ z)\x = (y\x) ∧ (z\x) and x/(y ∨ z) = (x/y) ∧ (x/z)

■ (yz)\x = z\(y\x) and x/(zy) = (x/y)/z

■ 1\x = x = x/1
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■ Polarity {∨, ·, 1}, {∧, \, /}

■ The sets Pn,Nn of terms are defined by:
(0) P0 = N0 = the set of variables

(P1) Nn ∪ {1} ⊆ Pn+1

(P2) α, β ∈ Pn+1 ⇒ α ∨ β, α · β ∈ Pn+1

(N1) Pn ∪ {0} ⊆ Nn+1

(N2) α, β ∈ Nn+1 ⇒ α ∧ β ∈ Nn+1

(N3) α ∈ Pn+1, β ∈ Nn+1 ⇒ α\β, β/α ∈ Nn+1

■ Pn+1 = 〈Nn〉∨ ,
∏ ; Nn+1 = 〈Pn〉∧ ,Pn+1\,/Pn+1

■ Pn ⊆ Pn+1,Nn ⊆ Nn+1,
⋃

Pn =
⋃

Nn = Fm

■ P1-reduced:
∨ ∏

pi

■ N1-reduced:
∧

(p1p2 · · · pn\r/q1q2 · · · qm)
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N2-normal formulas are of the form α1 · · ·αn → β where

■ β = 0 or β1 ∨ · · · ∨ βk with each βi a product of variables

■ each αi is of the form
∧

1≤j≤mi
γj

i → βj
i , where βj

i = 0 or is a

variable, and γj
i is a product of variables.
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N2-normal formulas are of the form α1 · · ·αn → β where

■ β = 0 or β1 ∨ · · · ∨ βk with each βi a product of variables

■ each αi is of the form
∧

1≤j≤mi
γj

i → βj
i , where βj

i = 0 or is a

variable, and γj
i is a product of variables.

For any set E of N2-equations, the following are equivalent:

■ The variety Mod(E) is closed under completions.

■ The variety Mod(E) is closed under DM-completions.

■ E is equivalent to a set of acyclic equations.

■ E is equivalent to a set of analytic equations.

If E implies integrality x ≤ 1, all the above hold.
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We restrict to varieties that satisfy xy = yx and x ≤ 1. (ICRL)
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We restrict to varieties that satisfy xy = yx and x ≤ 1. (ICRL)

A structural clause is a universal first-order formula of the form:

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

where for every 1 ≤ i ≤ n, ti is a product of variables or 1 and ui is
either a variable or 0.
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We restrict to varieties that satisfy xy = yx and x ≤ 1. (ICRL)

A structural clause is a universal first-order formula of the form:

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

where for every 1 ≤ i ≤ n, ti is a product of variables or 1 and ui is
either a variable or 0.

Theorem. For SI algebras, each equation in P3 is equivalent to a
finite set of structural clauses.
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We restrict to varieties that satisfy xy = yx and x ≤ 1. (ICRL)

A structural clause is a universal first-order formula of the form:

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

where for every 1 ≤ i ≤ n, ti is a product of variables or 1 and ui is
either a variable or 0.

Theorem. For SI algebras, each equation in P3 is equivalent to a
finite set of structural clauses.

Let L = var{tm+1, . . . , tn} and R = var{um+1, . . . , un}. The
clause is called analytic if it satisfies:

■ L and R are disjoint.

■ Each variable occurs only once in tm+1, um+1, . . . , tn, un.

■ var{t1, . . . , tm} ⊆ L and var{u1, . . . , um} ⊆ R.
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We restrict to varieties that satisfy xy = yx and x ≤ 1. (ICRL)

A structural clause is a universal first-order formula of the form:

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

where for every 1 ≤ i ≤ n, ti is a product of variables or 1 and ui is
either a variable or 0.

Theorem. For SI algebras, each equation in P3 is equivalent to a
finite set of structural clauses.

Let L = var{tm+1, . . . , tn} and R = var{um+1, . . . , un}. The
clause is called analytic if it satisfies:

■ L and R are disjoint.

■ Each variable occurs only once in tm+1, um+1, . . . , tn, un.

■ var{t1, . . . , tm} ⊆ L and var{u1, . . . , um} ⊆ R.

Theorem. Every structural clause is equivalent in to an analytic one.
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We restrict to varieties that satisfy xy = yx and x ≤ 1. (ICRL)

A structural clause is a universal first-order formula of the form:

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

where for every 1 ≤ i ≤ n, ti is a product of variables or 1 and ui is
either a variable or 0.

Theorem. For SI algebras, each equation in P3 is equivalent to a
finite set of structural clauses.

Let L = var{tm+1, . . . , tn} and R = var{um+1, . . . , un}. The
clause is called analytic if it satisfies:

■ L and R are disjoint.

■ Each variable occurs only once in tm+1, um+1, . . . , tn, un.

■ var{t1, . . . , tm} ⊆ L and var{u1, . . . , um} ⊆ R.

Theorem. Every structural clause is equivalent in to an analytic one.

Theorem. Analytic clauses are preserved by DM-completions.



Examples
Heyting algebras
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Example 1 (N2): x2y ≤ xy ∨ yx
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Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)
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Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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(x1 ∨ x2)
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x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2
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Gödel algebras

Why?

Residuated lattices

Examples

Properties

Term hierarchy

N2

Completions

Examples

General case

Bibliography

Nikolaos Galatos, BLAST’10, UC Boulder, June 2010 Dedekind-MacNeille completions of residuated lattices – 11 / 13

Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ z and x2y ≤ z and yx1 ≤ z and yx2 ≤ z =⇒ x1x2y ≤ z
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Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ z and x2y ≤ z and yx1 ≤ z and yx2 ≤ z =⇒ x1x2y ≤ z

Example 2: 1 ≤ ¬(xy) ∨ (x ∧ y → xy)
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Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ z and x2y ≤ z and yx1 ≤ z and yx2 ≤ z =⇒ x1x2y ≤ z

Example 2: 1 ≤ ¬(xy) ∨ (x ∧ y → xy)

1 ≤ ¬(xy) or 1 ≤ (x ∧ y → xy) (for SIs)
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Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)

x2
1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ z and x2y ≤ z and yx1 ≤ z and yx2 ≤ z =⇒ x1x2y ≤ z

Example 2: 1 ≤ ¬(xy) ∨ (x ∧ y → xy)

1 ≤ ¬(xy) or 1 ≤ (x ∧ y → xy) (for SIs)

xy ≤ 0 or x ∧ y ≤ xy
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Example 1 (N2): x2y ≤ xy ∨ yx

(x1 ∨ x2)
2y ≤ (x1 ∨ x2)y ∨ y(x1 ∨ x2)
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1y ∨ x1x2y ∨ x2x1y ∨ x2

2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1x2y ≤ x1y ∨ x2y ∨ yx1 ∨ yx2

x1y ≤ z and x2y ≤ z and yx1 ≤ z and yx2 ≤ z =⇒ x1x2y ≤ z

Example 2: 1 ≤ ¬(xy) ∨ (x ∧ y → xy)

1 ≤ ¬(xy) or 1 ≤ (x ∧ y → xy) (for SIs)

xy ≤ 0 or x ∧ y ≤ xy

z ≤ x ∧ y and xy ≤ w =⇒ xy ≤ 0 or x ≤ w
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x1y ≤ z and x2y ≤ z and yx1 ≤ z and yx2 ≤ z =⇒ x1x2y ≤ z

Example 2: 1 ≤ ¬(xy) ∨ (x ∧ y → xy)

1 ≤ ¬(xy) or 1 ≤ (x ∧ y → xy) (for SIs)

xy ≤ 0 or x ∧ y ≤ xy

z ≤ x ∧ y and xy ≤ w =⇒ xy ≤ 0 or x ≤ w

z ≤ x and z ≤ y and xy ≤ w =⇒ xy ≤ 0 or x ≤ w
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1 ≤ ¬(xy) or 1 ≤ (x ∧ y → xy) (for SIs)

xy ≤ 0 or x ∧ y ≤ xy

z ≤ x ∧ y and xy ≤ w =⇒ xy ≤ 0 or x ≤ w

z ≤ x and z ≤ y and xy ≤ w =⇒ xy ≤ 0 or x ≤ w

xy ≤ w and zy ≤ w and xz ≤ w and zz ≤ w =⇒ xy ≤ 0 or x ≤ w
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In the absence of commutativity and integrality we need to consider:

1. iterated conjugates:

A conjugate of a term t is either λu(t) = (u\tu) ∧ 1 or
ρu(t) = (ut/u) ∧ 1 for some term u. We have:

λu(t) ≤ 1, ρu(t) ≤ 1, uλu(t) ≤ tu, ρu(t)u ≤ ut.

Iterated conjugates are compositions of conjugates.
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In the absence of commutativity and integrality we need to consider:

1. iterated conjugates:

A conjugate of a term t is either λu(t) = (u\tu) ∧ 1 or
ρu(t) = (ut/u) ∧ 1 for some term u. We have:

λu(t) ≤ 1, ρu(t) ≤ 1, uλu(t) ≤ tu, ρu(t)u ≤ ut.

Iterated conjugates are compositions of conjugates.

2. acyclic clauses:

A clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

is called acyclic if there are no directed cycles in the directed graph
(G, E), where G = var{t1, u1, . . . , tm, um}, and (x, y) ∈ E iff
lxr ≤ y is a premise.
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In the absence of commutativity and integrality we need to consider:

1. iterated conjugates:

A conjugate of a term t is either λu(t) = (u\tu) ∧ 1 or
ρu(t) = (ut/u) ∧ 1 for some term u. We have:

λu(t) ≤ 1, ρu(t) ≤ 1, uλu(t) ≤ tu, ρu(t)u ≤ ut.

Iterated conjugates are compositions of conjugates.

2. acyclic clauses:

A clause

t1 ≤ u1 and . . . and tm ≤ um =⇒ tm+1 ≤ um+1 or . . . or tn ≤ un

is called acyclic if there are no directed cycles in the directed graph
(G, E), where G = var{t1, u1, . . . , tm, um}, and (x, y) ∈ E iff
lxr ≤ y is a premise.

Theorem. Every acyclic structural clause is equivalent to an analytic
one.
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