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The general setup

I’ll mostly talk about games of length ω of the following type:

There are two players, I and II.
In the nth round, I chooses a set In (in some restricted collection of sets
defined by the “rules” of the game). II responds by choosing a set Jn.

I: I0 I1 . . . In
. . .

II: J0 J1 . . . Jn

There is a round for every n ∈ ω, and then the game is over.
I wins the game if the sequence

I0, J0, I1, J1, . . .

of plays of the game satisfies a certain condition (e.g.,
⋂

n∈ω Jn = ∅);
otherwise II wins.

In a topological game, the sets In and Jn of course are topological objects,
e.g., points in a space X , closed subsets of a space, an open cover of a
space, etc.
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A strategy for Player I is a function σ whose domain is the set of finite
initial segments I0, J0, ..., In, Jn of plays of the game ending with a play by
Player II.

The strategy σ is a winning strategy for Player I if I wins every sequence

I0, J0, I1, J1, . . .

of legal plays of the game in which In = σ(I0, J0, ..., In−1, Jn−1) for every
n ∈ ω.

Wlog, a strategy for Player I may be considered to be a function whose
domain is a the set of finite sequences J0, J1, . . . of plays by Player II,
since given a strategy σ as above, and J0, ..., Jn, there is a unique way to
fill in the plays I0 = σ(∅), I1 = σ(I0, J0), etc. of Player I.

A (winning) strategy for Player II is defined mutatis mutandis.

Obviously, I and II cannot both have a winning strategy, and it is possible
that neither has. A game is determined if one of the players has a winning
strategy, otherwise it is undetermined.
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Banach-Mazur game

Banach-Mazur game BM(X) on X :

Players E and NE alternately choose nonempty open sets in X:

E: U0 U1

...
NE: V0 V1

such that U0 ⊃ V0 ⊃ U1 ⊃ V1....

E wins if
⋂

n∈ω Un = ∅.

Theorem (Oxtoby)

A space X is a Baire space iff E has no winning strategy in BM(X).

If G(X) is a game on X, we’ll write “I ↑ G(X)” to mean “Player I has a
winning strategy in G(X)”
So: X is Baire iff E 6↑ BM(X)
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A space X in which NE ↑ BM(X) is called weakly α-favorable

X completely metrizable (or Čech complete) ⇒ NE ↑ BM(X) ⇒ Baire

There are metric Baire spaces X ,Y with X × Y not Baire

NE ↑ BM(Xα) for each α ⇒ NE ↑ BM(Πα∈κXα)

Easy: NE ↑ BM(X ) ⇒ Xκ with box topology Baire ∀κ

Conjecture (Galvin)

Converse is true: NE ↑ BM(X ) ⇐⇒ Xκ with box topology Baire ∀κ

Conjecture is consistent if there is a proper class of measurables;
true in ZFC?
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Stationary strategies

A strategy of a player is stationary if that players next move depends only
on the previous move of his opponent.

Galvin and Telgarsky obtained a result which says that for games in a
certain class, call it STAT, if Player I has a winning strategy, then she has
a stationary winning strategy.

BM(X) in this class. If E has a winning strategy in the BM(X), then E has
a stationary winning strategy.
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Idea of proof:

Let σ be a winning strategy for E.

Fix a well-order ≺ of the collection of all open sets.

Suppose NE plays Vn = V in round n.
Look at the set P(V ) of all partial legal plays (U0,V0, ...,Uk ,Vk) of the
game with E using σ and with Vk = V .
One may check:
(i)The lexicographic order on P(V ) is a well-order.
(ii) Given Vn = V is NE’s move in round n, let
τ(V ) = σ(V0,V1, ...,Vk = V ), where (V0,V1, ...,Vk = V ) is the least
element of P(V ) ending in V . Then τ defines a stationary winning
strategy for E.
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Example (Debs)

∃X with NE↑BM(X) but NE has no stationary winning strategy.

NE has strategy depending on last two moves of E.
Open: must they all?

Question (Telgarsky)

∃X with NE having winning strategy based on last 3 moves of E but not
last 2?

Remark: Galvin and Telgarsky, Debs: NE ↑ BM(X) ⇒ NE has winning
strategy based on last move of opponent and his own last move.
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Telgársky’s game

Let X be a space, and let K be a closed hereditary class of spaces.

We define the game G (K,X ). There are two players, I and II.
Player I begins by choosing a nonempty closed subset A0 of X such that
A0 ∈ K.
II responds by choosing a closed set B0 ⊂ X \ A0.
Player I then chooses a nonempty closed A1 ⊂ B0 with A1 ∈ K.
II chooses a closed B1 ⊂ B0 \ A1

etc.
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I: A0 ∈ K A1 ⊂ B0,A1 ∈ K . . . An ⊂ Bn−1,An ∈ K

II: B0 ⊂ X \A0 B1 ⊂ B0 \A1 . . . Bn ⊂ Bn−1 \An

We say I wins the game if
⋂

n∈ω Bn = ∅; otherwise II wins.

The space X is said to be K-like if Player I has a winning strategy in
G (K,X ) (i.e., if I ↑ G (K,X )).

Trivially, K is contained in the class of K-like spaces.
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Let DC be the class of all topological sums (discrete unions) of compact
sets.

If X ∈ DC, then X × Y is paracompact ∀ paracompact Y
(because compact × paracompact is paracompact)

Theorem (Telgarsky)

If X is paracompact and DC-like, then X × Y is paracompact for all
paracompact spaces Y .

(Sub)paracompact scattered spaces, more generally C-scattered (every
closed subspace has a point of local compactness), and spaces with a
σ-closure-preserving cover by compact sets, are DC-like.
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Telgarsky’s Conjecture

X × Y is paracompact ∀ paracompact Y iff I has a winning strategy in
G (DC,X ) (i.e., X is DC-like)

Theorem(Alster, 2006)

Telgärsky’s Conjecture holds if X has a base of cardinality ≤ ℵ1
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Telgärsky’s game is in STAT. Player I has a winning strategy iff she has a
stationary winning strategy.

Thus, X is K-like iff there is a function σ : C(X )→ K, where C(X ) is the
collection of nonempty closed subsets of X , such that

1 σ(C ) ⊂ C ;

2 σ(C ) ∈ K;

3 If
X = B−1 ⊃ B0 ⊃ B1 · · · ⊃ Bn ⊃ . . .

is a decreasing sequence of closed sets such that for each n ∈ ω,
Bn ∩ σ(Bn−1) = ∅, then

⋂
n∈ω Bn = ∅.
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D-spaces

A space X is a D-space if, given an open nbhd N(x) for each x ∈ X , there
is a closed discrete D ⊂ X such that N(D) = {N(x) : x ∈ D} covers X .

Compact or σ-compact implies D.

Open question:

Do any of the other standard covering properties (e.g., (Lindelöf,
paracompact, metacompact, submetacompact,...) imply D?
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X is said to be Menger if, given open covers U0,U1, . . . , there are finite
Fn ⊂ Un such that

⋃
n∈ω Fn covers X .

σ-compact ⇒ Menger ⇒ Lindelöf

Irrationals are not Menger.

MA(κ)⇒ any X ⊂ R with |X | ≤ κ is Menger.

Hurewicz: analytic + Menger ⇒ σ-compact

(Fremlin-Miller)ZFC⇒ ∃ non-σ-compact Menger X ⊂ R

Theorem(Aurichi)

Menger spaces are D-spaces.

Not clear how to do a direct proof. A game characterization of Menger,
due to Hurewicz, provides an easy proof.
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Irrationals are not Menger.

MA(κ)⇒ any X ⊂ R with |X | ≤ κ is Menger.

Hurewicz: analytic + Menger ⇒ σ-compact

(Fremlin-Miller)ZFC⇒ ∃ non-σ-compact Menger X ⊂ R

Theorem(Aurichi)

Menger spaces are D-spaces.

Not clear how to do a direct proof. A game characterization of Menger,
due to Hurewicz, provides an easy proof.

Gary Gruenhage Auburn University () Topological games May 31, 2010 15 / 54



Menger game M(X):

In round n, Player I chooses open cover Un of X .
II responds with finite Fn ⊂ Un.

II wins if
⋃

n∈ω Fn covers X .
Equivalently, I’s cover is closed under finite unions, and II chooses
Un ∈ Un. II wins if

⋃
n∈ω Un = X .

Easy: I 6↑ M(X)⇒ X Menger

Theorem (Hurewicz)

X is Menger iff I 6↑ M(X)
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Proof of Aurichi’s theorem

Assume X Menger.
Let N be a neighborhood assignment on X .
Let Player I’s first play be {N(x) : x ∈ X}.
Player II responds with {N(x) : x ∈ F0}, F0 ∈ [X ]<ω.
Let V0 = ∪{N(x) : x ∈ F0}, and let I then play

{V0 ∪ N(x) : x ∈ X \ V0}.

Then similarly, if II’s reply is {V0 ∪N(x) : x ∈ F1}, where F1 ∈ [X \V0]<ω,
let V1 = V0 ∪

⋃
{N(x) : x ∈ F1} and let I play

{V1 ∪ N(x) : x ∈ X \ V1},

and so on.

This defines a strategy for Player I.
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X is Menger, so this can’t be a winning strategy.

Therefore there is some play of the game with I using this strategy such
that, if F0,F1, . . . code the plays of II, then
X =

⋃
n∈ω Vn =

⋃
{N(x) : x ∈

⋃
n∈ω Fn}.

Let D =
⋃

n∈ω Fn. Then N(D) covers X .
Since for each n, we have Fn ⊂ Vn and Fn+1 ∩ Vn = ∅, it is easy to check
that D is a closed discrete subset of X . Hence X is a D-space.
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Proof of Hurewicz’s theorem

To show: Menger ⇒ I 6↑ M(X)

Suppose X Menger, and consider any fixed strategy by I. We show it can
be defeated.
X is Lindelöf, so wlog, I always chooses a countable open cover.
Since II is choosing a finite subcollection, it doesn’t hurt I to be restricted
to increasing open covers.
In this case, it doesn’t harm II to be restricted to choosing a single
element of the cover.
Finally, if II chooses U, I may as well make the first member of the
increasing open cover that is his response contain U.
To summarize: I chooses countable increasing open cover, each member of
which contains II’s previous move. II chooses a member of I’s cover.
Want to show that II can defeat I’s strategy.
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{Un}n

{U0m}m {U1m}m ... {Unm}m ...

{Un0k}k {Un1k}k ... {Unmk}k

Let {Un}n be I’s first move using the strategy.
If II responds with Un, let {Unm}m be I’s next move.
Then if II plays Unm, let {Unmk}k be I’s reply.

In this way we define a “game tree” {Uσ}σ∈ω<ω . (Let U∅ = ∅.)
We need to show that there is a play of the game, i.e., a branch of the
game tree, for which the corresponding open sets cover.
That is, we want f : ω → ω such that X =

⋃
n∈ω Uf �n.

A naive idea is to apply the Menger property to the countably many covers
{Uσ_n}n. There is a choice of one member of each that covers. But this
doesn’t get you a branch that covers!
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Instead, we use the game tree to define covers {V n
k }k as follows.

Let V 0
k = Uk ; then {V 0

k }k is increasing open cover
Next let

V 1
k = Uk ∩ U0k ∩ U1k ∩ ... ∩ Uk−1,k .

Since we have assumed Uik ⊃ Ui , note that V 1
k =

⋂
σ∈ω≤1 Uσk , i.e.,

V 1
k = intersection of all kth terms of all of I’s plays from rounds 0 and 1

Claim. {V 1
k }k is an increasing open cover.

Increasing: V 1
k+1 = Uk+1 ∩

⋂
i≤k Ui ,k+1 ⊇ Uk ∩ (

⋂
i<k Uik) ∩ Uk,k+1 =

Uk ∩ (
⋂

i<k Uik) = V 1
k .

Cover: Let x ∈ X . There is k0 with x ∈ Uk0 .
For each i < k0, there is li such that x ∈ Uili .
Let k be greater than k0 and the li ’s.
Then V 1

k is the intersection of (i)Uk ; (ii)
⋂

i<k0
Uik , and (iii)

⋂
k0≤i<k Uik .

Now x is in (i) since k ≥ k0,
x is in (ii) since k ≥ li for all i < k0, and
x is in (iii) since Uik ⊇ Uk0 for all i ≥ k0.
So x ∈ V 1

k .
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Similarly, for each n, {V n
k }k is an increasing open cover, where

V n
k =

⋂
σ∈ω≤n

Uσ_k

Since X is Menger, there is f : ω → ω such that X =
⋃

n∈ω V n
f (n).

But V n
f (n) ⊂ U(f �n)_f (n) = Uf �n+1.

So X =
⋃

n∈ω Uf �n+1, which corresponds to a play of the game in which
I’s strategy has been defeated.
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TUTORIAL: Topological games, lecture II
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Convergence game

Let X be a space, and H a closed subset of X . Define G (H,X ) as follows:

There are two players, O and P.
In the nth round, O chooses an open On ⊃ H, and P chooses a point
pn ∈ On.

We say O wins the game if pn → H in the sense that every open superset
of H contains pn for all but finitely many n ∈ ω.

If O ↑ G (H,X ), we call H a W -set in X .
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Clearly X first countable implies every point of X is a W -set in X .

Spaces in which O has a winning strategy at every point are called
W -spaces.

A W -space which is not first countable:
The one-point compactification of uncountable discrete space

I called spaces in which P does not have a winning strategy w -spaces.

P. Sharma proved X is a w -space iff for each x ∈ X :
if x ∈ An for each n ∈ ω, then there are xn ∈ An with xn → x .

This showed the class of w -spaces equivalent to a class introduced by
Arhangel’skii ( Fréchet α2-spaces).
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Theorem
1 First-countable ⇒ W -space ⇒ w-space ⇒ Fréchet;

2 W -spaces are hereditary and countably productive (closed under
Σ-products, even).

Consider the game G (H,X ) played in a compact Hausdorff space X ,
where H ⊂ X is closed.

O will have a winning strategy if H has a countable “outer base”, i.e.,
there is a countable collection of open supersets of H such that every open
superset of H contains one. By compactness, H has a countable outer
base iff H is Gδ.

A classical result:

Theorem (Schneider)

A compact Hausdorff space X is metrizable iff the diagonal ∆ of X is Gδ
in X 2.
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O can have a winning strategy in G (H,X ) for compact X without H being
Gδ:

consider one-point compactification of uncountable discrete space.

To say that O has winning strategy in G (∆,X 2) is weaker than to say the
diagonal is Gδ in X 2.

Definition. Compact X is Corson compact iff

X is homeo to subspace of

ΣRκ = {x ∈ Rκ : |{α < κ : x(α) 6= 0}| ≤ ω}

or equivalently

X has a point-countable T0-separating cover by open Fσ’s.

Theorem(G.G., 1984)

A compact space X is Corson compact iff O ↑ G (∆,X 2).
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Eberlein compact: homeo to weakly compact subset of Banach space

Eberlein ⇒ Corson

Theorem(G.G., 1986)

A compact X is Eberlein compact iff O has a winning strategy in
G (∆,X 2) which depends only on P’s last move and the number of the
move (i.e., a Markov strategy).

Strong Eberlein = scattered Eberlein

Theorem(G.G., 1984)

A compact scattered space X is strong Eberlein compact iff X is a
W -space.
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A recent use of the Corson result.

DEF (Tkachuk): A space X is monotonically monolithic if one can assign
to each F ∈ [X ]<ω a countable collection N (F ) of subsets of X such that

1 F ⊂ F ′ ⇒ N (F ) ⊂ N (F ′);

2 If U open and x ∈ A ∩ U there is F ∈ [A]<ω and N ∈ N (F ) with
x ∈ N ⊂ U.

(That is,
⋃

F∈[A]<ω N (F ) includes a network at every point of A.)
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Tkachuk proved:

1 Point-countable base ⇒ monotonically monolithic

2 X Lindelöf Σ ⇒ Cp(X ) monotonically monolithic (Lindelöf Σ =
continuous image of closed subspace of separable metric × compact)

3 Monotonically monolithic ⇒ hereditarily D.

D-space: x ∈ N(x)o ∀x ∈ X ⇒ ∃ closed discrete D with {N(x) : x ∈ D}
covering X

X is Gul’ko compact iff X compact and Cp(X ) is Lindelöf Σ. It follows
that:

Gul’ko compact ⇒ monotonically monolithic

Eberlein compact ⇒ Gul’ko compact ⇒ Corson compact

⇒ hereditarily D
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Question(Tkachuk)

Monotonically monolithic compact ⇒ Corson compact?

Yes:

Theorem (G.G., 2010)

If X is compact and monotonically monolithic, then X is Corson compact.
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Lemma

Suppose X is compact and monotonically monolithic. Then O has a
winning strategy in G (H,X ) for any closed H ⊂ X .

To prove the Theorem from the Lemma:

X compact monotonically monolithic ⇒ ditto for X 2 ⇒ O has winning
strategy in G (∆,X 2) ⇒ X Corson compact
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Proof of lemma

X compact, N witnesses monotonically monolithic.
H ⊂ X closed
O plays O0 = X , P plays p0 ∈ X .
O looks at N ({p0}) = {N00,N01, . . . }
O chooses open O1 ⊃ H s.t. O1 ∩ N00 = ∅ if such O1 exists; else O1 = X .

P chooses p1 ∈ O1. Let N ({p0, p1}) = {N10,N11, . . . }
O chooses O2 ⊂ O1 s.t., whenever possible for i , j < 2, O2 ∩ Nij = ∅.
Etc
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O chooses O2 ⊂ O1 s.t., whenever possible for i , j < 2, O2 ∩ Nij = ∅.
Etc
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Claim. This wins for O.

Suppose pn 6→ H. Then {pn}n has limit point q 6∈ H

Let q ∈ U open, U ∩ H = ∅.

∃k ∈ ω with N ∈ N ({pi}i≤k) and q ∈ N ⊂ U

N = Nkj for some k, j

On ∩ N = ∅ for n > max{j , k}

q 6∈ On ⇒ q not limit of {pn}n.
Contradiction.
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How to show O wins in G (∆,X 2) implies X Corson compact.

First, easy to get from this that O wins in G (x ,X ) for every x ∈ X ; i.e., X
is a W -space hence Fréchet (and so is X 2).

Use the point-countable T0-separating open cover characterization. Can
get such if can show X 2 \∆ is metalindelöf, i.e., every open cover has a
point-countable open refinement.
Then we have:

Theorem

Let X be compact and countably tight, and H closed. Then O has a
winning strategy in G (H,X ) iff X \ H is metalindelöf.
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It is useful to view the game as a game in X \ H, with players K and P.

In the nth round, K chooses a compact Kn ⊂ X \ H (the complement of a
play by O), and P responds with a point pn 6∈ Kn.

K wins if pn →∞ (i.e., {pn : n ∈ ω} is closed discrete in X \ H).
Replacing X \ H with X , let us denote this game by GK ,P(X ).

Then the result becomes:

Theorem

Let X be locally compact and countably tight. Then K has a winning
strategy in GK ,P(X ) iff X is metalindelöf.

(I don’t know if the countable tightness assumption is necessary.)
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Outline of proof, elementary submodel style

Proof. If X is metalindelöf, then there is a point-countable cover U of X
by open sets with compact closures .

K wins by looking at the countably many members of U containing P’s
chosen point at each round, and choosing an increasing sequence of
compact sets that eventually cover every one of these members of U . It is
easy to check that this wins for K .

Now suppose K has a winning strategy σ, and let U be a cover of X by
open sets with compact closures. Let M be an elementary submodel (of
some sufficiently large H(θ)) with X ,U , σ ∈ M.
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Key Claim. M ∩ X ⊂
⋃

(M ∩ U).

Proof of Key Claim. Suppose p ∈ M ∩ X \
⋃

(M ∩ U). Let p ∈ Up ∈ U .

Suppose F = {p0, p1, . . . , pn} ⊂ Up ∩ (M ∩ X ). Then σ(F ) is compact
and in M so there exists a finite U0 ⊂ U in M covering σ(F ).

Since M also contains a finite subset of U covering ∪U0, we have
p 6∈ ∪U0. So there exists pn+1 ∈ Up ∩ (M ∩ X ) \ ∪U0.

It follows that if K uses the strategy σ, P can always choose a point in
Up ∩ (M ∩ X ). But then K loses the game, a contradiction which
completes the proof of Key Claim.
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Since there is an M with U ⊂ M, the next claim completes the proof of
the theorem.

Claim 2. There is a point-countable open refinement VM of M ∩ U
covering ∪(M ∩ U).

Proof of Claim 2. By induction on |M| = κ. Write M =
⋃
{Mα : α < κ}

and use Key Claim to put together point-countable refinements of Mα ∩U .
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GK ,L(X ) is defined just like GK ,P(X ), except that P, who will be renamed
L, chooses compact sets instead of points, i.e., L’s nth play is a compact
set Ln missing K ’s previous move Kn.

K wins iff {Li}i∈ω is a discrete collection.

G o
K ,L(X ) is the same as GK ,L(X ), except that K wins iff {Li}i∈ω has a

discrete open expansion.

It is easy to see that K has a winning strategy in any locally compact
σ-compact space: K simply chooses at the nth play the nth set in an
increasing sequence of compact sets whose interiors cover the space.

It is nearly as easy to see that K wins if X is a topological sum of locally
compact σ-compact spaces, i.e., whenever X is locally compact and
paracompact. The next theorem shows we have an equivalence:
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Theorem

Let X be a locally compact space. Then the following are equivalent:

1 K ↑ GK ,L(X );

2 K ↑ G o
K ,L(X );

3 X is paracompact.
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Why G o
K ,L(X )? Because it is the most natural one for attacking the

following open problem:

Question

For what (completely regular) spaces X is Ck(X ) a Baire space?

(Ck(X ) is the space of continuous real-valued functions on X with the
compact-open topology.)
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Theorem (McCoy, Ntantu)

1 If NE ↑ BM(Ck(X )) then K ↑ G o
K ,L(X );

2 If Ck(X ) is Baire, then L 6↑ G o
K ,L(X );

3 If X is locally compact, then NE ↑ BM(Ck(X )) iff K ↑ G o
K ,L(X ).

Proof of(2) Suppose L ↑ G o
K ,L(X )

Claim. E ↑ BM(Ck(X )) (so Ck(X ) not Baire, contradiction).
W.l.o.g., in the nth round, Non-empty chooses a basic open set of the
form B(Kn, fn, εn) = {g ∈ Ck(X ) : ∀x ∈ Kn(|g(x)− fn(x)| < εn}, where
Kn is compact.

Let Ln be L’s response to Kn in G o
K ,L(X ) using a winning strategy.

Then Empty plays B(Kn, fn, εn} ∩ B(Ln, cn, 1/3), where cn = constant n
Suppose φ ∈

⋂
n∈ω B(Ln, cn, 1/3). Then φ(Ln) ⊂ (n− 1/3, n + 1/3) for all

n. Thus {Ln : n ∈ ω} has a discrete open expansion, contradiction.
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Theorem (Ma, GG)

If X is locally compact, then Ck(X ) is Baire iff L 6↑ G o
K ,L(X ).

Question

Is it true that for any completely regular space X , Ck(X ) is Baire iff L 6↑
G o

K ,L(X )? That NE ↑ BM(Ck(X )) iff K ↑ G o
K ,L(X )?
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A non-game theory characterization of “L has no winning strategy in
G o

K ,L(X )”

Definition. A collection L of non-empty compact subsets of X is said to
move off the compact sets if for every compact subset K of X , there is
some L ∈ L with K ∩ L = ∅.
The space X is said to have the Moving Off Property (MOP) iff every
collection L which moves off the compact sets contains an infinite
subcollection which has a discrete open expansion.

Theorem

TFAE:

1 X has the MOP;

2 L 6↑ G o
K ,L(X ).

Question

Does X have MOP iff Ck(X ) Baire?

Gary Gruenhage Auburn University () Topological games May 31, 2010 45 / 54



A non-game theory characterization of “L has no winning strategy in
G o

K ,L(X )”

Definition. A collection L of non-empty compact subsets of X is said to
move off the compact sets if for every compact subset K of X , there is
some L ∈ L with K ∩ L = ∅.

The space X is said to have the Moving Off Property (MOP) iff every
collection L which moves off the compact sets contains an infinite
subcollection which has a discrete open expansion.

Theorem

TFAE:

1 X has the MOP;

2 L 6↑ G o
K ,L(X ).

Question

Does X have MOP iff Ck(X ) Baire?

Gary Gruenhage Auburn University () Topological games May 31, 2010 45 / 54



A non-game theory characterization of “L has no winning strategy in
G o

K ,L(X )”

Definition. A collection L of non-empty compact subsets of X is said to
move off the compact sets if for every compact subset K of X , there is
some L ∈ L with K ∩ L = ∅.
The space X is said to have the Moving Off Property (MOP) iff every
collection L which moves off the compact sets contains an infinite
subcollection which has a discrete open expansion.

Theorem

TFAE:

1 X has the MOP;

2 L 6↑ G o
K ,L(X ).

Question

Does X have MOP iff Ck(X ) Baire?

Gary Gruenhage Auburn University () Topological games May 31, 2010 45 / 54



A non-game theory characterization of “L has no winning strategy in
G o

K ,L(X )”

Definition. A collection L of non-empty compact subsets of X is said to
move off the compact sets if for every compact subset K of X , there is
some L ∈ L with K ∩ L = ∅.
The space X is said to have the Moving Off Property (MOP) iff every
collection L which moves off the compact sets contains an infinite
subcollection which has a discrete open expansion.

Theorem

TFAE:

1 X has the MOP;

2 L 6↑ G o
K ,L(X ).

Question

Does X have MOP iff Ck(X ) Baire?

Gary Gruenhage Auburn University () Topological games May 31, 2010 45 / 54



A non-game theory characterization of “L has no winning strategy in
G o

K ,L(X )”

Definition. A collection L of non-empty compact subsets of X is said to
move off the compact sets if for every compact subset K of X , there is
some L ∈ L with K ∩ L = ∅.
The space X is said to have the Moving Off Property (MOP) iff every
collection L which moves off the compact sets contains an infinite
subcollection which has a discrete open expansion.

Theorem

TFAE:

1 X has the MOP;

2 L 6↑ G o
K ,L(X ).

Question

Does X have MOP iff Ck(X ) Baire?

Gary Gruenhage Auburn University () Topological games May 31, 2010 45 / 54



There is some subtlety in determining when X (even locally compact X )
has the property “L has no winning strategy in GK ,L(X )”:

Consider spaces T ∪ A, where T is the Cantor tree and A is a subset of
the Cantor set.

Theorem (Ma)

The following are equivalent:

1 Ck(T ∪ A) is a Baire space;

2 L 6↑ GK ,L(X )

3 A is a γ-set.

A ⊂ R is a γ-set if, given any collection U of open sets such that any finite
subset of A is contained in some member of U , there are U0,U1, . . . in U
such that A ⊂

⋃
n∈ω

⋂
i≥n Ui .
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Todorcevic showed that it is consistent for there to be two γ-sets A0 and
A1 whose topological sum is not a γ-set.
Since Ck(X0 ⊕ X1) ∼= Ck(X0)× Ck(X1), Ma obtained the following
corollary.

Corollary

There are, consistently, two function spaces with the compact-open
topology which are Baire but whose product is not.

But we don’t know about ZFC examples.

Question

Are there examples in ZFC of two Baire function spaces whose product is
not Baire?
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Some other games and/or applications

Tel’garsky(1975) The countably metacompact game CM(X )

In the nth round, I chooses closed Cn ⊂ Cn−1

II chooses open Un ⊃ Cn

I wins if
⋂

n∈ω Cn = ∅ but
⋂

n∈ω Un 6= ∅

X not countably metacompact ⇒ I ↑ CM(X )

Theorem

X ×M is normal for every metrizable space M iff X is normal and II ↑
CM(X ).
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Babinkostova (2005) The screening game S(X )
In the nth round, I chooses open cover Un of X

II chooses disjoint open refinement Vn of Un

II ↑ S(X ) if
⋃

n∈ω Vn covers X

Theorem

(Babinkostova)

1 II ↑ S(X ) iff X is countable dimensional;

2 II has winning strategy in game of length k + 1 iff X is ≤ k
dimensional.
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A space X is selectively separable (SS) if, given dense sets D0,D1, . . . ,
there are finite Fi ⊂ Di with

⋃
n∈ω Fn dense.

The game SS(X) (Dow, Barman): In round n, I chooses dense Dn, II
chooses finite Fn ⊂ Dn. II wins if

⋃
n∈ω Fn is dense.

X is SS+ if II ↑ SS(X ).

Countable π-base ⇒ SS+ ⇒ SS
Separable Fréchet ⇒ SS
SS 6⇒ SS+.
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⋃
n∈ω Fn dense.
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Theorem

(Dow) X countable SS+ ⇒ II has Markov winning strategy in SS(X ).

So, for each dense D, for each n ∈ ω, one can assign finite F (D, n) ⊂ D
such that, if D0,D1, . . . are dense, then

⋃
n∈ω F (Dn, n) is dense.
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Idea of proof.
Let σ be winning strategy for II.

X countable ⇒ II has only countably many possible replies

For each possible first round reply F , choose D(F ) dense such that
σ(D(F )) = F .

For each possible second round reply F ′ of II, choose dense D(F ,F ′) such
that σ(D(F ),D(F ,F ′)) = F ′.
Etc.
This constructs a (countable) tree of finite sequences of dense sets. Let
t0, t1, . . . be the nodes of the tree. The Markov winning strategy for II is:

Given dense D in round n, II plays σ(t_n 〈D〉).

[Same result for any game with II having only countably many responses,
and I’s legal plays unchanged during the game.]
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