Topological games

Gary Gruenhage Auburn University

May 31, 2010

Gary Gruenhage Auburn University ()

I'll mostly talk about games of length ω of the following type:

I'll mostly talk about games of length ω of the following type: There are two players, I and II.

I'll mostly talk about games of length ω of the following type: There are two players, I and II.

In the n^{th} round, I chooses a set I_n (in some restricted collection of sets defined by the "rules" of the game). Il responds by choosing a set J_n .

I'll mostly talk about games of length ω of the following type: There are two players, I and II. In the n^{th} round, I chooses a set I_n (in some restricted collection of sets defined by the "rules" of the game). II responds by choosing a set J_n .

I: I_0 I_1 ... I_n

II: J_0 J_1 ... J_n

I'll mostly talk about games of length ω of the following type: There are two players, I and II. In the n^{th} round, I chooses a set I_n (in some restricted collection of sets defined by the "rules" of the game). Il responds by choosing a set J_n . I: I_0 I_1 \dots I_n

 $II: J_0 \qquad J_1 \qquad \dots \qquad J_n$

There is a round for every $n \in \omega$, and then the game is over.

I'll mostly talk about games of length ω of the following type: There are two players, I and II. In the n^{th} round, I chooses a set I_n (in some restricted collection of sets defined by the "rules" of the game). II responds by choosing a set J_n . I: I_0 I_1 \dots I_n II: J_0 J_1 \dots J_n There is a round for every $n \in \omega$, and then the game is over. I wins the game if the sequence

 $\textit{I}_0,\textit{J}_0,\textit{I}_1,\textit{J}_1,\ldots$

of plays of the game satisfies a certain condition (e.g., $\bigcap_{n \in \omega} J_n = \emptyset$); otherwise II wins.

I'll mostly talk about games of length ω of the following type: There are two players, I and II. In the *n*th round, I chooses a set I_n (in some restricted collection of sets defined by the "rules" of the game). II responds by choosing a set J_n . I: I_0 I_1 \dots I_n II: J_0 J_1 \dots J_n

There is a round for every $n \in \omega$, and then the game is over. I wins the game if the sequence

 $\textit{I}_0,\textit{J}_0,\textit{I}_1,\textit{J}_1,\ldots$

of plays of the game satisfies a certain condition (e.g., $\bigcap_{n \in \omega} J_n = \emptyset$); otherwise II wins.

In a topological game, the sets I_n and J_n of course are topological objects, e.g., points in a space X, closed subsets of a space, an open cover of a space, etc.

Image: Image:

The strategy σ is a *winning strategy for Player I* if I wins every sequence

 $\textit{I}_0,\textit{J}_0,\textit{I}_1,\textit{J}_1,\ldots$

of legal plays of the game in which $I_n = \sigma(I_0, J_0, ..., I_{n-1}, J_{n-1})$ for every $n \in \omega$.

The strategy σ is a *winning strategy for Player I* if I wins every sequence

 $\textit{I}_0,\textit{J}_0,\textit{I}_1,\textit{J}_1,\ldots$

of legal plays of the game in which $I_n = \sigma(I_0, J_0, ..., I_{n-1}, J_{n-1})$ for every $n \in \omega$.

Wlog, a strategy for Player I may be considered to be a function whose domain is a the set of finite sequences J_0, J_1, \ldots of plays by Player II, since given a strategy σ as above, and J_0, \ldots, J_n , there is a unique way to fill in the plays $I_0 = \sigma(\emptyset)$, $I_1 = \sigma(I_0, J_0)$, etc. of Player I.

The strategy σ is a *winning strategy for Player I* if I wins every sequence

 $\textit{I}_0,\textit{J}_0,\textit{I}_1,\textit{J}_1,\ldots$

of legal plays of the game in which $I_n = \sigma(I_0, J_0, ..., I_{n-1}, J_{n-1})$ for every $n \in \omega$.

Wlog, a strategy for Player I may be considered to be a function whose domain is a the set of finite sequences J_0, J_1, \ldots of plays by Player II, since given a strategy σ as above, and J_0, \ldots, J_n , there is a unique way to fill in the plays $I_0 = \sigma(\emptyset)$, $I_1 = \sigma(I_0, J_0)$, etc. of Player I.

A (winning) strategy for Player II is defined mutatis mutandis.

The strategy σ is a *winning strategy for Player I* if I wins every sequence

 $\textit{I}_0,\textit{J}_0,\textit{I}_1,\textit{J}_1,\ldots$

of legal plays of the game in which $I_n = \sigma(I_0, J_0, ..., I_{n-1}, J_{n-1})$ for every $n \in \omega$.

Wlog, a strategy for Player I may be considered to be a function whose domain is a the set of finite sequences J_0, J_1, \ldots of plays by Player II, since given a strategy σ as above, and J_0, \ldots, J_n , there is a unique way to fill in the plays $I_0 = \sigma(\emptyset)$, $I_1 = \sigma(I_0, J_0)$, etc. of Player I.

A (winning) strategy for Player II is defined mutatis mutandis.

Obviously, I and II cannot both have a winning strategy, and it is possible that neither has. A game is *determined* if one of the players has a winning strategy, otherwise it is *undetermined*.

Gary Gruenhage Auburn University ()

Topological games

Banach-Mazur game

Banach-Mazur game BM(X) on X:

. . .

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

Image: A matrix and A matrix

. . .

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

such that $U_0 \supset V_0 \supset U_1 \supset V_1...$

. . .

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

such that $U_0 \supset V_0 \supset U_1 \supset V_1...$

E wins if $\bigcap_{n \in \omega} U_n = \emptyset$.

. . .

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

such that $U_0 \supset V_0 \supset U_1 \supset V_1...$

E wins if $\bigcap_{n \in \omega} U_n = \emptyset$.

. . .

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

such that $U_0 \supset V_0 \supset U_1 \supset V_1...$

E wins if $\bigcap_{n \in \omega} U_n = \emptyset$.

Theorem (Oxtoby)

A space X is a Baire space iff E has no winning strategy in BM(X).

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

such that $U_0 \supset V_0 \supset U_1 \supset V_1...$

E wins if $\bigcap_{n \in \omega} U_n = \emptyset$.

Theorem (Oxtoby)

A space X is a Baire space iff E has no winning strategy in BM(X).

If G(X) is a game on X, we'll write "I \uparrow G(X) " to mean "Player I has a winning strategy in G(X) "

イロト 不得下 イヨト イヨト 二日

Players E and NE alternately choose nonempty open sets in X: E: $U_0 = U_1$

NE: $V_0 \quad V_1$

such that $U_0 \supset V_0 \supset U_1 \supset V_1...$

E wins if $\bigcap_{n \in \omega} U_n = \emptyset$.

Theorem (Oxtoby)

A space X is a Baire space iff E has no winning strategy in BM(X).

If G(X) is a game on X, we'll write "I \uparrow G(X)" to mean "Player I has a winning strategy in G(X)" So: X is Baire iff E \uparrow BM(X)

イロト イポト イヨト イヨト

A space X in which NE \uparrow BM(X) is called *weakly* α -favorable

A space X in which NE \uparrow BM(X) is called *weakly* α -*favorable* X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire NE \uparrow BM(X_{α}) for each $\alpha \Rightarrow$ NE \uparrow BM($\Pi_{\alpha \in \kappa} X_{\alpha}$) A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire NE \uparrow BM(X_{α}) for each $\alpha \Rightarrow$ NE \uparrow BM($\Pi_{\alpha \in \kappa} X_{\alpha}$) A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire NE \uparrow BM(X_{α}) for each $\alpha \Rightarrow$ NE \uparrow BM($\Pi_{\alpha \in \kappa} X_{\alpha}$) Easy: NE \uparrow BM(X) $\Rightarrow X^{\kappa}$ with box topology Baire $\forall \kappa$ A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire NE \uparrow BM(X_{α}) for each $\alpha \Rightarrow$ NE \uparrow BM($\Pi_{\alpha \in \kappa} X_{\alpha}$) Easy: NE \uparrow BM(X) \Rightarrow X^{κ} with box topology Baire $\forall \kappa$

Conjecture (Galvin)

Converse is true: NE $\uparrow BM(X) \iff X^{\kappa}$ with box topology Baire $\forall \kappa$

A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire NE \uparrow BM(X_{α}) for each $\alpha \Rightarrow$ NE \uparrow BM($\Pi_{\alpha \in \kappa} X_{\alpha}$) Easy: NE \uparrow BM(X) \Rightarrow X^{κ} with box topology Baire $\forall \kappa$

Conjecture (Galvin)

Converse is true: NE $\uparrow BM(X) \iff X^{\kappa}$ with box topology Baire $\forall \kappa$

Conjecture is consistent if there is a proper class of measurables;

A space X in which NE \uparrow BM(X) is called *weakly* α -favorable X completely metrizable (or Čech complete) \Rightarrow NE \uparrow BM(X) \Rightarrow Baire There are metric Baire spaces X, Y with X \times Y not Baire NE \uparrow BM(X_{α}) for each $\alpha \Rightarrow$ NE \uparrow BM($\Pi_{\alpha \in \kappa} X_{\alpha}$) Easy: NE \uparrow BM(X) \Rightarrow X^{κ} with box topology Baire $\forall \kappa$

Conjecture (Galvin)

Converse is true: NE $\uparrow BM(X) \iff X^{\kappa}$ with box topology Baire $\forall \kappa$

Conjecture is consistent if there is a proper class of measurables; true in ZFC?

A strategy of a player is *stationary* if that players next move depends only on the previous move of his opponent.

- A strategy of a player is *stationary* if that players next move depends only on the previous move of his opponent.
- Galvin and Telgarsky obtained a result which says that for games in a certain class, call it *STAT*, if Player I has a winning strategy, then she has a stationary winning strategy.

- A strategy of a player is *stationary* if that players next move depends only on the previous move of his opponent.
- Galvin and Telgarsky obtained a result which says that for games in a certain class, call it *STAT*, if Player I has a winning strategy, then she has a stationary winning strategy.
- BM(X) in this class. If E has a winning strategy in the BM(X), then E has a stationary winning strategy.

Idea of proof:

(日) (日) (日) (日)

Idea of proof: Let σ be a winning strategy for E.

Idea of proof:

Let σ be a winning strategy for E.

Fix a well-order \prec of the collection of all open sets.
Let σ be a winning strategy for E.

Fix a well-order \prec of the collection of all open sets.

Suppose NE plays $V_n = V$ in round n.

Let σ be a winning strategy for E.

Fix a well-order \prec of the collection of all open sets.

Suppose NE plays $V_n = V$ in round n.

Look at the set $\mathcal{P}(V)$ of all partial legal plays $(U_0, V_0, ..., U_k, V_k)$ of the game with E using σ and with $V_k = V$.

Let σ be a winning strategy for E.

Fix a well-order \prec of the collection of all open sets.

Suppose NE plays $V_n = V$ in round n.

Look at the set $\mathcal{P}(V)$ of all partial legal plays $(U_0, V_0, ..., U_k, V_k)$ of the game with E using σ and with $V_k = V$.

One may check:

(i)The lexicographic order on $\mathcal{P}(V)$ is a well-order.

Let σ be a winning strategy for E.

Fix a well-order \prec of the collection of all open sets.

Suppose NE plays $V_n = V$ in round n. Look at the set $\mathcal{P}(V)$ of all partial legal plays $(U_0, V_0, ..., U_k, V_k)$ of the game with E using σ and with $V_k = V$. One may check: (i) The lexicographic order on $\mathcal{P}(V)$ is a well-order. (ii) Given $V_n = V$ is NE's move in round n, let $\tau(V) = \sigma(V_0, V_1, ..., V_k = V)$, where $(V_0, V_1, ..., V_k = V)$ is the least element of $\mathcal{P}(V)$ ending in V. Then τ defines a stationary winning strategy for E.

$\exists X \text{ with NE} \upharpoonright BM(X) \text{ but NE has no stationary winning strategy.}$

$\exists X \text{ with } NE \uparrow BM(X) \text{ but } NE \text{ has no stationary winning strategy.}$

NE has strategy depending on last two moves of E.

$\exists X \text{ with } NE \uparrow BM(X) \text{ but } NE \text{ has no stationary winning strategy.}$

NE has strategy depending on last two moves of E. Open: must they all?

$\exists X \text{ with } NE \uparrow BM(X) \text{ but } NE \text{ has no stationary winning strategy.}$

NE has strategy depending on last two moves of E. Open: must they all?

Question (Telgarsky)

 $\exists X \text{ with NE having winning strategy based on last 3 moves of E but not last 2?}$

$\exists X \text{ with } NE \uparrow BM(X) \text{ but } NE \text{ has no stationary winning strategy.}$

NE has strategy depending on last two moves of E. Open: must they all?

Question (Telgarsky)

 $\exists X \text{ with NE having winning strategy based on last 3 moves of E but not last 2?}$

Remark: Galvin and Telgarsky, Debs: NE \uparrow BM(X) \Rightarrow NE has winning strategy based on last move of opponent and his own last move.

Let X be a space, and let \mathbb{K} be a closed hereditary class of spaces.

Let X be a space, and let \mathbb{K} be a closed hereditary class of spaces. We define the game $G(\mathbb{K}, X)$. There are two players, I and II.

Il responds by choosing a closed set $B_0 \subset X \setminus A_0$.

Il responds by choosing a closed set $B_0 \subset X \setminus A_0$.

Player I then chooses a nonempty closed $A_1 \subset B_0$ with $A_1 \in \mathbb{K}$.

Il responds by choosing a closed set $B_0 \subset X \setminus A_0$.

Player I then chooses a nonempty closed $A_1 \subset B_0$ with $A_1 \in \mathbb{K}$. II chooses a closed $B_1 \subset B_0 \setminus A_1$

etc.

э.

Image: A matrix and A matrix

3

We say I wins the game if $\bigcap_{n \in \omega} B_n = \emptyset$; otherwise II wins.

We say I wins the game if $\bigcap_{n \in \omega} B_n = \emptyset$; otherwise II wins.

The space X is said to be \mathbb{K} -*like* if Player I has a winning strategy in $G(\mathbb{K}, X)$ (i.e., if $I \uparrow G(\mathbb{K}, X)$).

We say I wins the game if $\bigcap_{n \in \omega} B_n = \emptyset$; otherwise II wins.

The space X is said to be \mathbb{K} -*like* if Player I has a winning strategy in $G(\mathbb{K}, X)$ (i.e., if $I \uparrow G(\mathbb{K}, X)$).

Trivially, \mathbb{K} is contained in the class of \mathbb{K} -like spaces.

If $X \in \mathbb{DC}$, then $X \times Y$ is paracompact \forall paracompact Y

If $X \in \mathbb{DC}$, then $X \times Y$ is paracompact \forall paracompact Y (because compact \times paracompact is paracompact)

If $X \in \mathbb{DC}$, then $X \times Y$ is paracompact \forall paracompact Y (because compact \times paracompact is paracompact)

Theorem (Telgarsky)

If X is paracompact and \mathbb{DC} -like, then $X \times Y$ is paracompact for all paracompact spaces Y.

If $X \in \mathbb{DC}$, then $X \times Y$ is paracompact \forall paracompact Y (because compact \times paracompact is paracompact)

Theorem (Telgarsky)

If X is paracompact and \mathbb{DC} -like, then $X \times Y$ is paracompact for all paracompact spaces Y.

(Sub)paracompact scattered spaces, more generally \mathbb{C} -scattered (every closed subspace has a point of local compactness), and spaces with a σ -closure-preserving cover by compact sets, are \mathbb{DC} -like.

Telgarsky's Conjecture

$X \times Y$ is paracompact \forall paracompact Y iff I has a winning strategy in $G(\mathbb{DC}, X)$ (i.e., X is \mathbb{DC} -like)

Telgarsky's Conjecture

 $X \times Y$ is paracompact \forall paracompact Y iff I has a winning strategy in $G(\mathbb{DC}, X)$ (i.e., X is \mathbb{DC} -like)

Theorem(Alster, 2006)

Telgärsky's Conjecture holds if X has a base of cardinality $\leq \aleph_1$

Thus, X is \mathbb{K} -like iff there is a function $\sigma : \mathcal{C}(X) \to \mathbb{K}$, where $\mathcal{C}(X)$ is the collection of nonempty closed subsets of X, such that

Thus, X is \mathbb{K} -like iff there is a function $\sigma : \mathcal{C}(X) \to \mathbb{K}$, where $\mathcal{C}(X)$ is the collection of nonempty closed subsets of X, such that

• $\sigma(C) \subset C;$

Thus, X is \mathbb{K} -like iff there is a function $\sigma : \mathcal{C}(X) \to \mathbb{K}$, where $\mathcal{C}(X)$ is the collection of nonempty closed subsets of X, such that

Thus, X is \mathbb{K} -like iff there is a function $\sigma : \mathcal{C}(X) \to \mathbb{K}$, where $\mathcal{C}(X)$ is the collection of nonempty closed subsets of X, such that

•
$$\sigma(C) \subset C;$$

• $\sigma(C) \in \mathbb{K};$
• If

$$X = B_{-1} \supset B_0 \supset B_1 \cdots \supset B_n \supset \ldots$$

is a decreasing sequence of closed sets such that for each $n \in \omega$, $B_n \cap \sigma(B_{n-1}) = \emptyset$, then $\bigcap_{n \in \omega} B_n = \emptyset$.

A space X is a *D*-space if, given an open nbhd N(x) for each $x \in X$, there is a closed discrete $D \subset X$ such that $N(D) = \{N(x) : x \in D\}$ covers X.

A space X is a *D*-space if, given an open nbhd N(x) for each $x \in X$, there is a closed discrete $D \subset X$ such that $N(D) = \{N(x) : x \in D\}$ covers X.

Compact or σ -compact implies D.

A space X is a *D*-space if, given an open nbhd N(x) for each $x \in X$, there is a closed discrete $D \subset X$ such that $N(D) = \{N(x) : x \in D\}$ covers X.

Compact or σ -compact implies D.

Open question:

Do any of the other standard covering properties (e.g., (Lindelöf, paracompact, metacompact, submetacompact,...) imply *D*?

X is said to be *Menger* if, given open covers U_0, U_1, \ldots , there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

X is said to be *Menger* if, given open covers $\mathcal{U}_0, \mathcal{U}_1, \ldots$, there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

 $\sigma\text{-compact} \Rightarrow \mathsf{Menger} \Rightarrow \mathsf{Lindel\"of}$
X is said to be *Menger* if, given open covers $\mathcal{U}_0, \mathcal{U}_1, \ldots$, there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X. σ -compact \Rightarrow Menger \Rightarrow Lindelöf Irrationals are not Menger. X is said to be *Menger* if, given open covers $\mathcal{U}_0, \mathcal{U}_1, \ldots$, there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

 $\sigma\text{-compact} \Rightarrow \mathsf{Menger} \Rightarrow \mathsf{Lindel\"of}$

Irrationals are not Menger.

 $MA(\kappa) \Rightarrow \text{any } X \subset \mathbb{R} \text{ with } |X| \leq \kappa \text{ is Menger.}$

X is said to be *Menger* if, given open covers $\mathcal{U}_0, \mathcal{U}_1, \ldots$, there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

 $\sigma\text{-compact} \Rightarrow \mathsf{Menger} \Rightarrow \mathsf{Lindel\"of}$

Irrationals are not Menger.

 $MA(\kappa) \Rightarrow \text{any } X \subset \mathbb{R} \text{ with } |X| \leq \kappa \text{ is Menger.}$

Hurewicz: analytic + Menger $\Rightarrow \sigma$ -compact

X is said to be *Menger* if, given open covers U_0, U_1, \ldots , there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

 $\sigma\text{-compact} \Rightarrow \mathsf{Menger} \Rightarrow \mathsf{Lindel\"of}$

Irrationals are not Menger.

 $MA(\kappa) \Rightarrow \text{any } X \subset \mathbb{R} \text{ with } |X| \leq \kappa \text{ is Menger.}$

Hurewicz: analytic + Menger $\Rightarrow \sigma$ -compact

 $(\mathsf{Fremlin-Miller})\mathsf{ZFC} \Rightarrow \exists \mathsf{ non-}\sigma\mathsf{-}\mathsf{compact} \mathsf{ Menger} \ X \subset \mathbb{R}$

X is said to be *Menger* if, given open covers U_0, U_1, \ldots , there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

 $\sigma\text{-compact} \Rightarrow \mathsf{Menger} \Rightarrow \mathsf{Lindel\"of}$

Irrationals are not Menger.

 $MA(\kappa) \Rightarrow \text{any } X \subset \mathbb{R} \text{ with } |X| \leq \kappa \text{ is Menger.}$

Hurewicz: analytic + Menger $\Rightarrow \sigma$ -compact

 $(\mathsf{Fremlin-Miller})\mathsf{ZFC} \Rightarrow \exists \mathsf{ non-}\sigma\mathsf{-}\mathsf{compact} \mathsf{ Menger} \ X \subset \mathbb{R}$

Theorem(Aurichi)

Menger spaces are *D*-spaces.

X is said to be *Menger* if, given open covers U_0, U_1, \ldots , there are finite $\mathcal{F}_n \subset \mathcal{U}_n$ such that $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

 $\sigma\text{-compact} \Rightarrow \mathsf{Menger} \Rightarrow \mathsf{Lindel\"of}$

Irrationals are not Menger.

 $MA(\kappa) \Rightarrow \text{any } X \subset \mathbb{R} \text{ with } |X| \leq \kappa \text{ is Menger.}$

Hurewicz: analytic + Menger $\Rightarrow \sigma$ -compact

 $(\mathsf{Fremlin-Miller})\mathsf{ZFC} \Rightarrow \exists \mathsf{ non-}\sigma\mathsf{-}\mathsf{compact} \mathsf{ Menger} \ X \subset \mathbb{R}$

Theorem(Aurichi)

Menger spaces are D-spaces.

Not clear how to do a direct proof. A game characterization of Menger, due to Hurewicz, provides an easy proof.

∃ →

・ロト ・回ト ・目と

2

In round *n*, Player I chooses open cover \mathcal{U}_n of *X*.

In round *n*, Player I chooses open cover U_n of *X*. II responds with finite $\mathcal{F}_n \subset U_n$.

In round *n*, Player I chooses open cover U_n of *X*. Il responds with finite $\mathcal{F}_n \subset U_n$.

If wins if $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

In round *n*, Player I chooses open cover U_n of *X*. Il responds with finite $\mathcal{F}_n \subset U_n$.

II wins if $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X.

Equivalently, I's cover is closed under finite unions, and II chooses $U_n \in \mathcal{U}_n$. II wins if $\bigcup_{n \in \omega} U_n = X$.

In round *n*, Player I chooses open cover U_n of *X*. Il responds with finite $\mathcal{F}_n \subset U_n$.

Il wins if $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X. Equivalently, l's cover is closed under finite unions, and II chooses $U_n \in \mathcal{U}_n$. Il wins if $\bigcup_{n \in \omega} U_n = X$.

Easy: I $\gamma M(X) \Rightarrow X$ Menger

In round *n*, Player I chooses open cover U_n of *X*. Il responds with finite $\mathcal{F}_n \subset U_n$.

Il wins if $\bigcup_{n \in \omega} \mathcal{F}_n$ covers X. Equivalently, l's cover is closed under finite unions, and II chooses $U_n \in \mathcal{U}_n$. Il wins if $\bigcup_{n \in \omega} U_n = X$.

Easy: I $\uparrow M(X) \Rightarrow X$ Menger

Theorem (Hurewicz)

X is Menger iff I $\gamma M(X)$

- ∢ ≣ →

・ロト ・日本・ ・ 日本

Proof of Aurichi's theorem Assume X Menger.

Image: A math a math

Proof of Aurichi's theorem Assume X Menger. Let N be a neighborhood assignment on X.

Proof of Aurichi's theorem Assume X Menger. Let N be a neighborhood assignment on X. Let Player I's first play be $\{N(x) : x \in X\}$. Proof of Aurichi's theorem Assume X Menger. Let N be a neighborhood assignment on X. Let Player I's first play be $\{N(x) : x \in X\}$. Player II responds with $\{N(x) : x \in F_0\}, F_0 \in [X]^{<\omega}$.

Assume X Menger.

Let N be a neighborhood assignment on X.

Let Player I's first play be $\{N(x) : x \in X\}$. Player II responds with $\{N(x) : x \in F_0\}$, $F_0 \in [X]^{<\omega}$. Let $V_0 = \bigcup \{N(x) : x \in F_0\}$, and let I then play

 $\{V_0\cup N(x): x\in X\setminus V_0\}.$

Assume X Menger.

Let N be a neighborhood assignment on X.

Let Player I's first play be $\{N(x) : x \in X\}$. Player II responds with $\{N(x) : x \in F_0\}$, $F_0 \in [X]^{<\omega}$. Let $V_0 = \bigcup \{N(x) : x \in F_0\}$, and let I then play

 $\{V_0\cup N(x):x\in X\setminus V_0\}.$

Then similarly, if II's reply is $\{V_0 \cup N(x) : x \in F_1\}$, where $F_1 \in [X \setminus V_0]^{<\omega}$,

Assume X Menger.

Let N be a neighborhood assignment on X.

Let Player I's first play be $\{N(x) : x \in X\}$. Player II responds with $\{N(x) : x \in F_0\}$, $F_0 \in [X]^{<\omega}$. Let $V_0 = \bigcup \{N(x) : x \in F_0\}$, and let I then play

 $\{V_0\cup N(x):x\in X\setminus V_0\}.$

Then similarly, if II's reply is $\{V_0 \cup N(x) : x \in F_1\}$, where $F_1 \in [X \setminus V_0]^{<\omega}$, let $V_1 = V_0 \cup \bigcup \{N(x) : x \in F_1\}$ and let I play

 $\{V_1 \cup N(x) : x \in X \setminus V_1\},\$

Assume X Menger.

Let N be a neighborhood assignment on X.

Let Player I's first play be $\{N(x) : x \in X\}$. Player II responds with $\{N(x) : x \in F_0\}$, $F_0 \in [X]^{<\omega}$. Let $V_0 = \bigcup \{N(x) : x \in F_0\}$, and let I then play

 $\{V_0\cup N(x):x\in X\setminus V_0\}.$

Then similarly, if II's reply is $\{V_0 \cup N(x) : x \in F_1\}$, where $F_1 \in [X \setminus V_0]^{<\omega}$, let $V_1 = V_0 \cup \bigcup \{N(x) : x \in F_1\}$ and let I play

$$\{V_1 \cup N(x) : x \in X \setminus V_1\},\$$

and so on.

Assume X Menger.

Let N be a neighborhood assignment on X.

Let Player I's first play be $\{N(x) : x \in X\}$. Player II responds with $\{N(x) : x \in F_0\}$, $F_0 \in [X]^{<\omega}$. Let $V_0 = \bigcup \{N(x) : x \in F_0\}$, and let I then play

 $\{V_0\cup N(x):x\in X\setminus V_0\}.$

Then similarly, if II's reply is $\{V_0 \cup N(x) : x \in F_1\}$, where $F_1 \in [X \setminus V_0]^{<\omega}$, let $V_1 = V_0 \cup \bigcup \{N(x) : x \in F_1\}$ and let I play

$$\{V_1\cup N(x): x\in X\setminus V_1\},\$$

and so on.

This defines a strategy for Player I.

Therefore there is some play of the game with I using this strategy such that, if F_0, F_1, \ldots code the plays of II, then $X = \bigcup_{n \in \omega} V_n = \bigcup \{N(x) : x \in \bigcup_{n \in \omega} F_n\}.$

Therefore there is some play of the game with I using this strategy such that, if F_0, F_1, \ldots code the plays of II, then $X = \bigcup_{n \in \omega} V_n = \bigcup \{N(x) : x \in \bigcup_{n \in \omega} F_n\}.$

Let $D = \bigcup_{n \in \omega} F_n$. Then N(D) covers X.

Therefore there is some play of the game with I using this strategy such that, if F_0, F_1, \ldots code the plays of II, then $X = \bigcup_{n \in \omega} V_n = \bigcup \{N(x) : x \in \bigcup_{n \in \omega} F_n\}.$

Let $D = \bigcup_{n \in \omega} F_n$. Then N(D) covers X. Since for each n, we have $F_n \subset V_n$ and $F_{n+1} \cap V_n = \emptyset$, it is easy to check that D is a closed discrete subset of X. Hence X is a D-space.

Proof of Hurewicz's theorem

To show: Menger $\Rightarrow I \not \upharpoonright M(X)$

Image: Image:

э

To show: Menger $\Rightarrow I \not \upharpoonright M(X)$

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

To show: Menger $\Rightarrow I \ncong M(X)$

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

X is Lindelöf, so wlog, I always chooses a countable open cover.

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

X is Lindelöf, so wlog, I always chooses a countable open cover.

Since II is choosing a finite subcollection, it doesn't hurt I to be restricted to increasing open covers.

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

X is Lindelöf, so wlog, I always chooses a countable open cover.

Since II is choosing a finite subcollection, it doesn't hurt I to be restricted to increasing open covers.

In this case, it doesn't harm II to be restricted to choosing a single element of the cover.

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

X is Lindelöf, so wlog, I always chooses a countable open cover.

Since II is choosing a finite subcollection, it doesn't hurt I to be restricted to increasing open covers.

In this case, it doesn't harm II to be restricted to choosing a single element of the cover.

Finally, if II chooses U, I may as well make the first member of the increasing open cover that is his response contain U.

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

X is Lindelöf, so wlog, I always chooses a countable open cover.

Since II is choosing a finite subcollection, it doesn't hurt I to be restricted to increasing open covers.

In this case, it doesn't harm II to be restricted to choosing a single element of the cover.

Finally, if II chooses U, I may as well make the first member of the increasing open cover that is his response contain U.

To summarize: I chooses countable increasing open cover, each member of which contains II's previous move. II chooses a member of I's cover.

To show: Menger $\Rightarrow I \ncong M(X)$

Suppose X Menger, and consider any fixed strategy by I. We show it can be defeated.

X is Lindelöf, so wlog, I always chooses a countable open cover.

Since II is choosing a finite subcollection, it doesn't hurt I to be restricted to increasing open covers.

In this case, it doesn't harm II to be restricted to choosing a single element of the cover.

Finally, if II chooses U, I may as well make the first member of the increasing open cover that is his response contain U.

To summarize: I chooses countable increasing open cover, each member of which contains II's previous move. II chooses a member of I's cover. Want to show that II can defeat I's strategy.

 $\{U_n\}_n$ $\{U_{0m}\}_m \qquad \{U_{1m}\}_m \qquad \dots \qquad \{U_{nm}\}_m \qquad \dots \qquad$ $\{U_{n0k}\}_k \quad \{U_{n1k}\}_k \quad \dots \quad \{U_{nmk}\}_k$

Let $\{U_n\}_n$ be l's first move using the strategy.

Let $\{U_n\}_n$ be l's first move using the strategy. If II responds with U_n , let $\{U_{nm}\}_m$ be l's next move.

Let $\{U_n\}_n$ be l's first move using the strategy. If II responds with U_n , let $\{U_{nm}\}_m$ be l's next move. Then if II plays U_{nm} , let $\{U_{nmk}\}_k$ be l's reply.

Let $\{U_n\}_n$ be l's first move using the strategy. If II responds with U_n , let $\{U_{nm}\}_m$ be l's next move. Then if II plays U_{nm} , let $\{U_{nmk}\}_k$ be l's reply.

In this way we define a "game tree" $\{U_{\sigma}\}_{\sigma \in \omega^{<\omega}}$. (Let $U_{\emptyset} = \emptyset$.) We need to show that there is a play of the game, i.e., a branch of the game tree, for which the corresponding open sets cover.

Let $\{U_n\}_n$ be l's first move using the strategy. If II responds with U_n , let $\{U_{nm}\}_m$ be l's next move. Then if II plays U_{nm} , let $\{U_{nmk}\}_k$ be l's reply.

In this way we define a "game tree" $\{U_{\sigma}\}_{\sigma \in \omega^{<\omega}}$. (Let $U_{\emptyset} = \emptyset$.) We need to show that there is a play of the game, i.e., a branch of the game tree, for which the corresponding open sets cover. That is, we want $f : \omega \to \omega$ such that $X = \bigcup_{n \in \omega} U_{f \upharpoonright n}$.

Let $\{U_n\}_n$ be l's first move using the strategy. If II responds with U_n , let $\{U_{nm}\}_m$ be l's next move. Then if II plays U_{nm} , let $\{U_{nmk}\}_k$ be l's reply.

In this way we define a "game tree" $\{U_{\sigma}\}_{\sigma \in \omega^{<\omega}}$. (Let $U_{\emptyset} = \emptyset$.) We need to show that there is a play of the game, i.e., a branch of the game tree, for which the corresponding open sets cover. That is, we want $f : \omega \to \omega$ such that $X = \bigcup_{n \in \omega} U_{f \upharpoonright n}$. A naive idea is to apply the Menger property to the countably many covers $\{U_{\sigma \frown n}\}_n$. There is a choice of one member of each that covers. But this doesn't get you a branch that covers! Instead, we use the game tree to define covers $\{V_k^n\}_k$ as follows.

< A

э

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

э

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega \leq 1} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1 *Claim.* $\{V_k^1\}_k$ is an increasing open cover.

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega \leq 1} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1 *Claim.* $\{V_k^1\}_k$ is an increasing open cover.

Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1}$

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1 *Claim.* $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \leq k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i \leq k} U_{ik}) \cap U_{k,k+1} =$

 $U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1.$

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$.

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is I_i such that $x \in U_{il_i}$.

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's.

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ;

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ; (ii) $\bigcap_{i < k_0} U_{ik}$,

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ; (ii) $\bigcap_{i < k_0} U_{ik}$, and (iii) $\bigcap_{k_0 < i < k} U_{ik}$.

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ; (ii) $\bigcap_{i < k_0} U_{ik}$, and (iii) $\bigcap_{k_0 \le i < k} U_{ik}$. Now x is in (i) since $k \ge k_0$,

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ; (ii) $\bigcap_{i < k_0} U_{ik}$, and (iii) $\bigcap_{k_0 \le i < k} U_{ik}$. Now x is in (i) since $k \ge k_0$, x is in (ii) since $k \ge l_i$ for all $i < k_0$, and

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ; (ii) $\bigcap_{i < k_0} U_{ik}$, and (iii) $\bigcap_{k_0 \le i < k} U_{ik}$. Now x is in (i) since $k \ge k_0$, x is in (ii) since $k \ge l_i$ for all $i < k_0$, and x is in (iii) since $U_{ik} \supseteq U_{k_0}$ for all $i \ge k_0$.

$$V_k^1 = U_k \cap U_{0k} \cap U_{1k} \cap \ldots \cap U_{k-1,k}.$$

Since we have assumed $U_{ik} \supset U_i$, note that $V_k^1 = \bigcap_{\sigma \in \omega^{\leq 1}} U_{\sigma k}$, i.e., $V_k^1 =$ intersection of all k^{th} terms of all of I's plays from rounds 0 and 1

Claim. $\{V_k^1\}_k$ is an increasing open cover. Increasing: $V_{k+1}^1 = U_{k+1} \cap \bigcap_{i \le k} U_{i,k+1} \supseteq U_k \cap (\bigcap_{i < k} U_{ik}) \cap U_{k,k+1} = U_k \cap (\bigcap_{i < k} U_{ik}) = V_k^1$.

Cover: Let $x \in X$. There is k_0 with $x \in U_{k_0}$. For each $i < k_0$, there is l_i such that $x \in U_{il_i}$. Let k be greater than k_0 and the l_i 's. Then V_k^1 is the intersection of (i) U_k ; (ii) $\bigcap_{i < k_0} U_{ik}$, and (iii) $\bigcap_{k_0 \le i < k} U_{ik}$. Now x is in (i) since $k \ge k_0$, x is in (ii) since $k \ge l_i$ for all $i < k_0$, and x is in (iii) since $U_{ik} \supseteq U_{k_0}$ for all $i \ge k_0$. So $x \in V_k^1$.

$$V_k^n = \bigcap_{\sigma \in \omega^{\leq n}} U_{\sigma \frown k}$$

э

$$V_k^n = \bigcap_{\sigma \in \omega^{\leq n}} U_{\sigma \frown k}$$

Since X is Menger, there is $f : \omega \to \omega$ such that $X = \bigcup_{n \in \omega} V_{f(n)}^n$.

$$V_k^n = \bigcap_{\sigma \in \omega^{\leq n}} U_{\sigma \frown k}$$

Since X is Menger, there is $f : \omega \to \omega$ such that $X = \bigcup_{n \in \omega} V_{f(n)}^n$. But $V_{f(n)}^n \subset U_{(f \upharpoonright n) \frown f(n)} = U_{f \upharpoonright n+1}$.

$$V_k^n = \bigcap_{\sigma \in \omega^{\leq n}} U_{\sigma \frown k}$$

Since X is Menger, there is $f : \omega \to \omega$ such that $X = \bigcup_{n \in \omega} V_{f(n)}^n$.

But $V_{f(n)}^n \subset U_{(f \upharpoonright n)^{\frown} f(n)} = U_{f \upharpoonright n+1}$.

So $X = \bigcup_{n \in \omega} U_{f \upharpoonright n+1}$, which corresponds to a play of the game in which I's strategy has been defeated.

TUTORIAL: Topological games, lecture II

Let X be a space, and H a closed subset of X. Define G(H, X) as follows:

Let X be a space, and H a closed subset of X. Define G(H, X) as follows: There are two players, O and P. Let X be a space, and H a closed subset of X. Define G(H, X) as follows: There are two players, O and P. In the *n*th round, O chooses an open $O_n \supset H$, and P chooses a point $p_n \in O_n$. Let X be a space, and H a closed subset of X. Define G(H, X) as follows: There are two players, O and P. In the *n*th round, O chooses an open $O_n \supset H$, and P chooses a point $p_n \in O_n$.

We say *O* wins the game if $p_n \rightarrow H$ in the sense that every open superset of *H* contains p_n for all but finitely many $n \in \omega$.

Let X be a space, and H a closed subset of X. Define G(H, X) as follows: There are two players, O and P. In the *n*th round, O chooses an open $O_n \supset H$, and P chooses a point $p_n \in O_n$.

We say *O* wins the game if $p_n \rightarrow H$ in the sense that every open superset of *H* contains p_n for all but finitely many $n \in \omega$.

If $O \uparrow G(H, X)$, we call $H \neq W$ -set in X.

Clearly X first countable implies every point of X is a W-set in X.

Clearly X first countable implies every point of X is a W-set in X. Spaces in which O has a winning strategy at every point are called W-spaces. Clearly X first countable implies every point of X is a W-set in X. Spaces in which O has a winning strategy at every point are called W-spaces.

A *W*-space which is not first countable:
A W-space which is not first countable:

The one-point compactification of uncountable discrete space

A *W*-space which is not first countable:

The one-point compactification of uncountable discrete space

I called spaces in which P does not have a winning strategy w-spaces.

A W-space which is not first countable:

The one-point compactification of uncountable discrete space

I called spaces in which P does not have a winning strategy w-spaces.

P. Sharma proved X is a w-space iff for each $x \in X$: if $x \in \overline{A}_n$ for each $n \in \omega$, then there are $x_n \in A_n$ with $x_n \to x$.

A W-space which is not first countable:

The one-point compactification of uncountable discrete space

I called spaces in which P does not have a winning strategy w-spaces.

P. Sharma proved X is a w-space iff for each $x \in X$: if $x \in \overline{A}_n$ for each $n \in \omega$, then there are $x_n \in A_n$ with $x_n \to x$.

This showed the class of *w*-spaces equivalent to a class introduced by Arhangel'skii (Fréchet α_2 -spaces).

• First-countable \Rightarrow W-space \Rightarrow w-space \Rightarrow Fréchet;

 W-spaces are hereditary and countably productive (closed under Σ-products, even).

• First-countable \Rightarrow W-space \Rightarrow w-space \Rightarrow Fréchet;

 W-spaces are hereditary and countably productive (closed under Σ-products, even).

Consider the game G(H, X) played in a compact Hausdorff space X, where $H \subset X$ is closed.

1 First-countable \Rightarrow W-space \Rightarrow w-space \Rightarrow Fréchet;

 W-spaces are hereditary and countably productive (closed under Σ-products, even).

Consider the game G(H, X) played in a compact Hausdorff space X, where $H \subset X$ is closed.

O will have a winning strategy if H has a countable "outer base", i.e., there is a countable collection of open supersets of H such that every open superset of H contains one. By compactness, H has a countable outer base iff H is G_{δ} .

1 First-countable \Rightarrow W-space \Rightarrow w-space \Rightarrow Fréchet;

 W-spaces are hereditary and countably productive (closed under Σ-products, even).

Consider the game G(H, X) played in a compact Hausdorff space X, where $H \subset X$ is closed.

O will have a winning strategy if H has a countable "outer base", i.e., there is a countable collection of open supersets of H such that every open superset of H contains one. By compactness, H has a countable outer base iff H is G_{δ} .

A classical result:

Theorem (Schneider)

A compact Hausdorff space X is metrizable iff the diagonal Δ of X is G_{δ} in X^2 .

(日) (同) (三) (三)

- < A

consider one-point compactification of uncountable discrete space.

consider one-point compactification of uncountable discrete space.

To say that O has winning strategy in $G(\Delta, X^2)$ is weaker than to say the diagonal is G_{δ} in X^2 .

consider one-point compactification of uncountable discrete space.

To say that O has winning strategy in $G(\Delta, X^2)$ is weaker than to say the diagonal is G_{δ} in X^2 .

Definition. Compact X is Corson compact iff

consider one-point compactification of uncountable discrete space.

To say that O has winning strategy in $G(\Delta, X^2)$ is weaker than to say the diagonal is G_{δ} in X^2 .

Definition. Compact X is Corson compact iff

• X is homeo to subspace of

$$\Sigma \mathbb{R}^{\kappa} = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha < \kappa : x(\alpha) \neq 0 \}| \le \omega \}$$

or equivalently

consider one-point compactification of uncountable discrete space.

To say that O has winning strategy in $G(\Delta, X^2)$ is weaker than to say the diagonal is G_{δ} in X^2 .

Definition. Compact X is Corson compact iff

• X is homeo to subspace of

$$\Sigma \mathbb{R}^{\kappa} = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha < \kappa : x(\alpha) \neq 0 \}| \le \omega \}$$

or equivalently

• X has a point-countable T_0 -separating cover by open F_{σ} 's.

consider one-point compactification of uncountable discrete space.

To say that O has winning strategy in $G(\Delta, X^2)$ is weaker than to say the diagonal is G_{δ} in X^2 .

Definition. Compact X is Corson compact iff

• X is homeo to subspace of

$$\Sigma \mathbb{R}^{\kappa} = \{ x \in \mathbb{R}^{\kappa} : |\{ \alpha < \kappa : x(\alpha) \neq 0 \}| \le \omega \}$$

or equivalently

• X has a point-countable T_0 -separating cover by open F_{σ} 's.

Theorem(G.G., 1984)

A compact space X is Corson compact iff $O \uparrow G(\Delta, X^2)$.

Gary Gruenhage Auburn University ()

▲口> ▲圖> ▲国> ▲国>

Eberlein compact: homeo to weakly compact subset of Banach space

Eberlein compact: homeo to weakly compact subset of Banach space Eberlein \Rightarrow Corson

Eberlein compact: homeo to weakly compact subset of Banach space Eberlein \Rightarrow Corson

Theorem(G.G., 1986)

A compact X is Eberlein compact iff O has a winning strategy in $G(\Delta, X^2)$ which depends only on P's last move and the number of the move (i.e., a Markov strategy).

Eberlein compact: homeo to weakly compact subset of Banach space Eberlein \Rightarrow Corson

Theorem(G.G., 1986)

A compact X is Eberlein compact iff O has a winning strategy in $G(\Delta, X^2)$ which depends only on P's last move and the number of the move (i.e., a Markov strategy).

Strong Eberlein = scattered Eberlein

Eberlein compact: homeo to weakly compact subset of Banach space Eberlein \Rightarrow Corson

Theorem(G.G., 1986)

A compact X is Eberlein compact iff O has a winning strategy in $G(\Delta, X^2)$ which depends only on P's last move and the number of the move (i.e., a Markov strategy).

Strong Eberlein = scattered Eberlein

Theorem(G.G., 1984)

A compact scattered space X is strong Eberlein compact iff X is a W-space.

э

Image: A math a math

э

DEF (Tkachuk): A space X is monotonically monolithic if one can assign to each $F \in [X]^{<\omega}$ a countable collection $\mathcal{N}(F)$ of subsets of X such that

DEF (Tkachuk): A space X is monotonically monolithic if one can assign to each $F \in [X]^{<\omega}$ a countable collection $\mathcal{N}(F)$ of subsets of X such that

DEF (Tkachuk): A space X is monotonically monolithic if one can assign to each $F \in [X]^{<\omega}$ a countable collection $\mathcal{N}(F)$ of subsets of X such that

② If *U* open and *x* ∈ \overline{A} ∩ *U* there is *F* ∈ [*A*]^{< ω} and *N* ∈ $\mathcal{N}(F)$ with *x* ∈ *N* ⊂ *U*.

DEF (Tkachuk): A space X is monotonically monolithic if one can assign to each $F \in [X]^{<\omega}$ a countable collection $\mathcal{N}(F)$ of subsets of X such that

② If *U* open and *x* ∈ \overline{A} ∩ *U* there is *F* ∈ [*A*]^{< ω} and *N* ∈ $\mathcal{N}(F)$ with *x* ∈ *N* ⊂ *U*.

(That is, $\bigcup_{F \in [A]^{<\omega}} \mathcal{N}(F)$ includes a network at every point of \overline{A} .)

- < A

- $\begin{tabular}{ll} 0 Point-countable base \Rightarrow monotonically monolithic $$$
- **2** X Lindelöf $\Sigma \Rightarrow C_p(X)$ monotonically monolithic

- $\begin{tabular}{ll} 0 Point-countable base \Rightarrow monotonically monolithic $$$
- **2** X Lindelöf $\Sigma \Rightarrow C_p(X)$ monotonically monolithic (Lindelöf $\Sigma =$ continuous image of closed subspace of separable metric \times compact)

- $\begin{tabular}{ll} \label{eq:point-countable} 0 \end{tabular} Point-countable base \Rightarrow monotonically monolithic $$$
- X Lindelöf Σ ⇒ C_p(X) monotonically monolithic (Lindelöf Σ = continuous image of closed subspace of separable metric × compact)
- Monotonically monolithic \Rightarrow hereditarily *D*.

D-space: $x \in N(x)^o \ \forall x \in X \Rightarrow \exists$ closed discrete D with $\{N(x) : x \in D\}$ covering X

- $\begin{tabular}{ll} \label{eq:point-countable} 0 \end{tabular} Point-countable base \Rightarrow monotonically monolithic $$$
- X Lindelöf Σ ⇒ C_p(X) monotonically monolithic (Lindelöf Σ = continuous image of closed subspace of separable metric × compact)
- Monotonically monolithic \Rightarrow hereditarily *D*.

D-space: $x \in N(x)^o \ \forall x \in X \Rightarrow \exists$ closed discrete D with $\{N(x) : x \in D\}$ covering X

X is Gul'ko compact iff X compact and $C_p(X)$ is Lindelöf Σ . It follows that:

- $\begin{tabular}{ll} \label{eq:point-countable} 0 \end{tabular} Point-countable base \Rightarrow monotonically monolithic $$$
- X Lindelöf Σ ⇒ C_p(X) monotonically monolithic (Lindelöf Σ = continuous image of closed subspace of separable metric × compact)
- Solution Monotonically monolithic \Rightarrow hereditarily D.

D-space: $x \in N(x)^o \ \forall x \in X \Rightarrow \exists$ closed discrete D with $\{N(x) : x \in D\}$ covering X

X is Gul'ko compact iff X compact and $C_p(X)$ is Lindelöf Σ . It follows that:

Gul'ko compact \Rightarrow monotonically monolithic

- $\begin{tabular}{ll} \label{eq:point-countable} 0 \end{tabular} Point-countable base \Rightarrow monotonically monolithic $$$
- X Lindelöf Σ ⇒ C_p(X) monotonically monolithic (Lindelöf Σ = continuous image of closed subspace of separable metric × compact)
- Solution Monotonically monolithic \Rightarrow hereditarily D.

D-space: $x \in N(x)^o \ \forall x \in X \Rightarrow \exists$ closed discrete D with $\{N(x) : x \in D\}$ covering X

X is Gul'ko compact iff X compact and $C_p(X)$ is Lindelöf Σ . It follows that:

Gul'ko compact \Rightarrow monotonically monolithic

 $\mathsf{Eberlein}\ \mathsf{compact} \Rightarrow \mathsf{Gul'ko}\ \mathsf{compact} \Rightarrow \mathsf{Corson}\ \mathsf{compact}$

- $\begin{tabular}{ll} \label{eq:point-countable} 0 \end{tabular} Point-countable base \Rightarrow monotonically monolithic $$$
- X Lindelöf Σ ⇒ C_p(X) monotonically monolithic (Lindelöf Σ = continuous image of closed subspace of separable metric × compact)
- Solution Monotonically monolithic \Rightarrow hereditarily D.

D-space: $x \in N(x)^o \ \forall x \in X \Rightarrow \exists$ closed discrete D with $\{N(x) : x \in D\}$ covering X

X is Gul'ko compact iff X compact and $C_p(X)$ is Lindelöf Σ . It follows that:

Gul'ko compact \Rightarrow monotonically monolithic

 $\begin{array}{l} \mbox{Eberlein compact} \Rightarrow \mbox{Gul'ko compact} \Rightarrow \mbox{Corson compact} \\ \Rightarrow \mbox{hereditarily D} \end{array}$

Question(Tkachuk)

• Monotonically monolithic compact \Rightarrow Corson compact?

Question(Tkachuk)

• Monotonically monolithic compact \Rightarrow Corson compact?

Yes:

Theorem (G.G., 2010)

If X is compact and monotonically monolithic, then X is Corson compact.
Lemma

Suppose X is compact and monotonically monolithic. Then O has a winning strategy in G(H, X) for any closed $H \subset X$.

→ Ξ →

Image: Image:

Lemma

Suppose X is compact and monotonically monolithic. Then O has a winning strategy in G(H, X) for any closed $H \subset X$.

To prove the Theorem from the Lemma:

Lemma

Suppose X is compact and monotonically monolithic. Then O has a winning strategy in G(H, X) for any closed $H \subset X$.

To prove the Theorem from the Lemma:

X compact monotonically monolithic \Rightarrow ditto for $X^2 \Rightarrow 0$ has winning strategy in $G(\Delta, X^2) \Rightarrow X$ Corson compact

Proof of lemma

- ∢ ≣ →

・ロト ・日本・ ・ 日本

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic.

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed O plays $O_0 = X$, P plays $p_0 \in X$.

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed O plays $O_0 = X$, P plays $p_0 \in X$. O looks at $\mathcal{N}(\{p_0\}) = \{N_{00}, N_{01}, \dots\}$

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed O plays $O_0 = X$, P plays $p_0 \in X$. O looks at $\mathcal{N}(\{p_0\}) = \{N_{00}, N_{01}, \dots\}$

O chooses open $O_1 \supset H$ s.t. $\overline{O}_1 \cap N_{00} = \emptyset$ if such O_1 exists; else $O_1 = X$.

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed O plays $O_0 = X$, P plays $p_0 \in X$. O looks at $\mathcal{N}(\{p_0\}) = \{N_{00}, N_{01}, \dots\}$ O chooses open $O_1 \supset H$ s.t. $\overline{O}_1 \cap N_{00} = \emptyset$ if such O_1 exists; else $O_1 = X$.

P chooses $p_1 \in O_1$. Let $\mathcal{N}(\{p_0, p_1\}) = \{N_{10}, N_{11}, \dots\}$

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed O plays $O_0 = X$, P plays $p_0 \in X$. O looks at $\mathcal{N}(\{p_0\}) = \{N_{00}, N_{01}, \dots\}$ O chooses open $O_1 \supset H$ s.t. $\overline{O}_1 \cap N_{00} = \emptyset$ if such O_1 exists; else $O_1 = X$. P chooses $p_1 \in O_1$. Let $\mathcal{N}(\{p_0, p_1\}) = \{N_{10}, N_{11}, \dots\}$ O chooses $O_2 \subset O_1$ s.t., whenever possible for i, j < 2, $\overline{O}_2 \cap N_{ii} = \emptyset$.

Proof of lemma X compact, \mathcal{N} witnesses monotonically monolithic. $H \subset X$ closed O plays $O_0 = X$, P plays $p_0 \in X$. O looks at $\mathcal{N}(\{p_0\}) = \{N_{00}, N_{01}, \dots\}$ O chooses open $O_1 \supset H$ s.t. $\overline{O}_1 \cap N_{00} = \emptyset$ if such O_1 exists; else $O_1 = X$. P chooses $p_1 \in O_1$. Let $\mathcal{N}(\{p_0, p_1\}) = \{N_{10}, N_{11}, \dots\}$ O chooses $O_2 \subset O_1$ s.t., whenever possible for i, j < 2, $\overline{O}_2 \cap N_{ij} = \emptyset$. Etc Claim. This wins for O.

- ∢ ≣ →

(日) (日) (日) (日)

Claim. This wins for O. Suppose $p_n \not\rightarrow H$. Then $\{p_n\}_n$ has limit point $q \notin H$

< 4 **₽** ► <

Claim. This wins for O. Suppose $p_n \not\rightarrow H$. Then $\{p_n\}_n$ has limit point $q \notin H$ Let $q \in U$ open, $\overline{U} \cap H = \emptyset$. Claim. This wins for O. Suppose $p_n \nleftrightarrow H$. Then $\{p_n\}_n$ has limit point $q \notin H$ Let $q \in U$ open, $\overline{U} \cap H = \emptyset$. $\exists k \in \omega$ with $N \in \mathcal{N}(\{p_i\}_{i \le k})$ and $q \in N \subset U$ Claim. This wins for O. Suppose $p_n \not\rightarrow H$. Then $\{p_n\}_n$ has limit point $q \notin H$ Let $q \in U$ open, $\overline{U} \cap H = \emptyset$. $\exists k \in \omega$ with $N \in \mathcal{N}(\{p_i\}_{i \leq k})$ and $q \in N \subset U$ $N = N_{kj}$ for some k, j Claim. This wins for O. Suppose $p_n \not\rightarrow H$. Then $\{p_n\}_n$ has limit point $q \notin H$ Let $q \in U$ open, $\overline{U} \cap H = \emptyset$. $\exists k \in \omega$ with $N \in \mathcal{N}(\{p_i\}_{i \leq k})$ and $q \in N \subset U$ $N = N_{kj}$ for some k, j $\overline{O}_n \cap N = \emptyset$ for $n > max\{j, k\}$ Claim. This wins for O. Suppose $p_n \not\rightarrow H$. Then $\{p_n\}_n$ has limit point $q \notin H$ Let $q \in U$ open, $\overline{U} \cap H = \emptyset$. $\exists k \in \omega$ with $N \in \mathcal{N}(\{p_i\}_{i \leq k})$ and $q \in N \subset U$ $N = N_{kj}$ for some k, j $\overline{O}_n \cap N = \emptyset$ for $n > max\{j, k\}$ $q \notin \overline{O}_n \Rightarrow q$ not limit of $\{p_n\}_n$. Contradiction.

э

First, easy to get from this that O wins in G(x, X) for every $x \in X$; i.e., X is a W-space hence Fréchet (and so is X^2).

First, easy to get from this that O wins in G(x, X) for every $x \in X$; i.e., X is a W-space hence Fréchet (and so is X^2).

Use the point-countable T_0 -separating open cover characterization. Can get such if can show $X^2 \setminus \Delta$ is metalindelöf, i.e., every open cover has a point-countable open refinement.

First, easy to get from this that O wins in G(x, X) for every $x \in X$; i.e., X is a W-space hence Fréchet (and so is X^2).

Use the point-countable T_0 -separating open cover characterization. Can get such if can show $X^2 \setminus \Delta$ is metalindelöf, i.e., every open cover has a point-countable open refinement.

Then we have:

Theorem

Let X be compact and countably tight, and H closed. Then O has a winning strategy in G(H, X) iff $X \setminus H$ is metalindelöf.

It is useful to view the game as a game in $X \setminus H$, with players K and P.

It is useful to view the game as a game in $X \setminus H$, with players K and P. In the n^{th} round, K chooses a compact $K_n \subset X \setminus H$ (the complement of a play by O), and P responds with a point $p_n \notin K_n$. It is useful to view the game as a game in $X \setminus H$, with players K and P. In the n^{th} round, K chooses a compact $K_n \subset X \setminus H$ (the complement of a play by O), and P responds with a point $p_n \notin K_n$.

K wins if $p_n \to \infty$ (i.e., $\{p_n : n \in \omega\}$ is closed discrete in $X \setminus H$). Replacing $X \setminus H$ with X, let us denote this game by $G_{K,P}(X)$. It is useful to view the game as a game in $X \setminus H$, with players K and P. In the n^{th} round, K chooses a compact $K_n \subset X \setminus H$ (the complement of a

play by O), and P responds with a point $p_n \notin K_n$.

K wins if $p_n \to \infty$ (i.e., $\{p_n : n \in \omega\}$ is closed discrete in $X \setminus H$). Replacing $X \setminus H$ with X, let us denote this game by $G_{K,P}(X)$.

Then the result becomes:

Theorem

Let X be locally compact and countably tight. Then K has a winning strategy in $G_{K,P}(X)$ iff X is metalindelöf.

(I don't know if the countable tightness assumption is necessary.)

Proof. If X is metalindelöf, then there is a point-countable cover \mathcal{U} of X by open sets with compact closures .

Proof. If X is metalindelöf, then there is a point-countable cover \mathcal{U} of X by open sets with compact closures .

K wins by looking at the countably many members of \mathcal{U} containing P's chosen point at each round, and choosing an increasing sequence of compact sets that eventually cover every one of these members of \mathcal{U} . It is easy to check that this wins for K.

Proof. If X is metalindelöf, then there is a point-countable cover \mathcal{U} of X by open sets with compact closures .

K wins by looking at the countably many members of \mathcal{U} containing P's chosen point at each round, and choosing an increasing sequence of compact sets that eventually cover every one of these members of \mathcal{U} . It is easy to check that this wins for K.

Now suppose K has a winning strategy σ , and let \mathcal{U} be a cover of X by open sets with compact closures. Let M be an elementary submodel (of some sufficiently large $H(\theta)$) with $X, \mathcal{U}, \sigma \in M$.

Key Claim. $\overline{M \cap X} \subset \bigcup (M \cap \mathcal{U}).$

э

2

Key Claim. $\overline{M \cap X} \subset \bigcup (M \cap \mathcal{U})$. Proof of Key Claim. Suppose $p \in \overline{M \cap X} \setminus \bigcup (M \cap \mathcal{U})$. Let $p \in U_p \in \mathcal{U}$.

э

Key Claim. $\overline{M \cap X} \subset \bigcup (M \cap U)$. Proof of Key Claim. Suppose $p \in \overline{M \cap X} \setminus \bigcup (M \cap U)$. Let $p \in U_p \in U$. Suppose $F = \{p_0, p_1, \dots, p_n\} \subset U_p \cap (M \cap X)$. Then $\sigma(F)$ is compact and in M so there exists a finite $U_0 \subset U$ in M covering $\sigma(F)$. Key Claim. $\overline{M \cap X} \subset \bigcup (M \cap U)$. Proof of Key Claim. Suppose $p \in \overline{M \cap X} \setminus \bigcup (M \cap U)$. Let $p \in U_p \in U$. Suppose $F = \{p_0, p_1, \dots, p_n\} \subset U_p \cap (M \cap X)$. Then $\sigma(F)$ is compact and in M so there exists a finite $U_0 \subset U$ in M covering $\sigma(F)$.

Since *M* also contains a finite subset of \mathcal{U} covering $\overline{\cup \mathcal{U}}_0$, we have $p \notin \overline{\cup \mathcal{U}}_0$. So there exists $p_{n+1} \in U_p \cap (M \cap X) \setminus \overline{\cup \mathcal{U}}_0$.

Key Claim. $\overline{M \cap X} \subset \bigcup (M \cap U)$. Proof of Key Claim. Suppose $p \in \overline{M \cap X} \setminus \bigcup (M \cap U)$. Let $p \in U_p \in U$. Suppose $F = \{p_0, p_1, \dots, p_n\} \subset U_p \cap (M \cap X)$. Then $\sigma(F)$ is compact and in M so there exists a finite $U_0 \subset U$ in M covering $\sigma(F)$.

Since *M* also contains a finite subset of \mathcal{U} covering $\overline{\cup \mathcal{U}}_0$, we have $p \notin \overline{\cup \mathcal{U}}_0$. So there exists $p_{n+1} \in U_p \cap (M \cap X) \setminus \overline{\cup \mathcal{U}}_0$.

It follows that if K uses the strategy σ , P can always choose a point in $U_p \cap (M \cap X)$. But then K loses the game, a contradiction which completes the proof of Key Claim.
Since there is an M with $\mathcal{U} \subset M$, the next claim completes the proof of the theorem.

Since there is an M with $\mathcal{U} \subset M$, the next claim completes the proof of the theorem.

Claim 2. There is a point-countable open refinement \mathcal{V}_M of $M \cap \mathcal{U}$ covering $\cup (M \cap \mathcal{U})$.

Since there is an M with $\mathcal{U} \subset M$, the next claim completes the proof of the theorem.

Claim 2. There is a point-countable open refinement \mathcal{V}_M of $M \cap \mathcal{U}$ covering $\cup (M \cap \mathcal{U})$.

Proof of Claim 2. By induction on $|M| = \kappa$. Write $M = \bigcup \{M_{\alpha} : \alpha < \kappa\}$ and use Key Claim to put together point-countable refinements of $M_{\alpha} \cap U$.

K wins iff $\{L_i\}_{i \in \omega}$ is a discrete collection.

K wins iff $\{L_i\}_{i \in \omega}$ is a discrete collection.

 $G^{o}_{K,L}(X)$ is the same as $G_{K,L}(X)$, except that K wins iff $\{L_i\}_{i \in \omega}$ has a discrete open expansion.

K wins iff $\{L_i\}_{i \in \omega}$ is a discrete collection.

 $G^{o}_{K,L}(X)$ is the same as $G_{K,L}(X)$, except that K wins iff $\{L_i\}_{i \in \omega}$ has a discrete open expansion.

It is easy to see that K has a winning strategy in any locally compact σ -compact space: K simply chooses at the n^{th} play the n^{th} set in an increasing sequence of compact sets whose interiors cover the space.

K wins iff $\{L_i\}_{i \in \omega}$ is a discrete collection.

 $G^{o}_{K,L}(X)$ is the same as $G_{K,L}(X)$, except that K wins iff $\{L_i\}_{i \in \omega}$ has a discrete open expansion.

It is easy to see that K has a winning strategy in any locally compact σ -compact space: K simply chooses at the n^{th} play the n^{th} set in an increasing sequence of compact sets whose interiors cover the space.

It is nearly as easy to see that K wins if X is a topological sum of locally compact σ -compact spaces, i.e., whenever X is locally compact and paracompact. The next theorem shows we have an equivalence:

Theorem

Let X be a locally compact space. Then the following are equivalent: $\bullet K \uparrow G_{K,L}(X);$ $K \uparrow G^o_{K,L}(X);$ 3 X is paracompact.

-

Why $G^{o}_{K,L}(X)$? Because it is the most natural one for attacking the following open problem:

Why $G^{o}_{K,L}(X)$? Because it is the most natural one for attacking the following open problem:

Question

For what (completely regular) spaces X is $C_k(X)$ a Baire space?

 $(C_k(X)$ is the space of continuous real-valued functions on X with the compact-open topology.)

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- ② If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L \uparrow $G^o_{K,L}(X)$

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G^{\circ}_{K,L}(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction).

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G_{K,L}^o(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction). W.I.o.g., in the n^{th} round, Non-empty chooses a basic open set of the form $B(K_n, f_n, \epsilon_n) = \{g \in C_k(X) : \forall x \in K_n(|g(x) - f_n(x)| < \epsilon_n\}$, where K_n is compact.

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G_{K,L}^o(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction). W.I.o.g., in the n^{th} round, Non-empty chooses a basic open set of the form $B(K_n, f_n, \epsilon_n) = \{g \in C_k(X) : \forall x \in K_n(|g(x) - f_n(x)| < \epsilon_n\}$, where K_n is compact.

Let L_n be L's response to K_n in $G^o_{K,L}(X)$ using a winning strategy.

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G_{K,L}^o(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction). W.I.o.g., in the n^{th} round, Non-empty chooses a basic open set of the form $B(K_n, f_n, \epsilon_n) = \{g \in C_k(X) : \forall x \in K_n(|g(x) - f_n(x)| < \epsilon_n\}$, where K_n is compact.

Let L_n be L's response to K_n in $G^o_{K,L}(X)$ using a winning strategy.

Then *Empty* plays $B(K_n, f_n, \epsilon_n) \cap B(L_n, c_n, 1/3)$, where $c_n = \text{constant } n$

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G_{K,L}^o(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction). W.I.o.g., in the n^{th} round, Non-empty chooses a basic open set of the form $B(K_n, f_n, \epsilon_n) = \{g \in C_k(X) : \forall x \in K_n(|g(x) - f_n(x)| < \epsilon_n\}$, where K_n is compact.

Let L_n be L's response to K_n in $G^o_{K,L}(X)$ using a winning strategy.

Then *Empty* plays $B(K_n, f_n, \epsilon_n) \cap B(L_n, c_n, 1/3)$, where $c_n = \text{constant n}$ Suppose $\phi \in \bigcap_{n \in \omega} B(L_n, c_n, 1/3)$.

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G_{K,L}^o(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction). W.l.o.g., in the n^{th} round, Non-empty chooses a basic open set of the form $B(K_n, f_n, \epsilon_n) = \{g \in C_k(X) : \forall x \in K_n(|g(x) - f_n(x)| < \epsilon_n\}$, where K_n is compact.

Let L_n be L's response to K_n in $G^o_{K,L}(X)$ using a winning strategy.

Then *Empty* plays $B(K_n, f_n, \epsilon_n) \cap B(L_n, c_n, 1/3)$, where $c_n = \text{constant n}$ Suppose $\phi \in \bigcap_{n \in \omega} B(L_n, c_n, 1/3)$. Then $\phi(L_n) \subset (n - 1/3, n + 1/3)$ for all n.

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

- If NE \uparrow BM($C_k(X)$) then K \uparrow $G^o_{K,L}(X)$;
- If $C_k(X)$ is Baire, then L $\uparrow G^o_{K,L}(X)$;
- **③** If X is locally compact, then NE ↑ BM($C_k(X)$) iff K ↑ $G^o_{K,L}(X)$.

Proof of(2) Suppose L $\uparrow G_{K,L}^o(X)$ Claim. E \uparrow BM($C_k(X)$) (so $C_k(X)$ not Baire, contradiction). W.l.o.g., in the n^{th} round, Non-empty chooses a basic open set of the form $B(K_n, f_n, \epsilon_n) = \{g \in C_k(X) : \forall x \in K_n(|g(x) - f_n(x)| < \epsilon_n\}$, where K_n is compact.

Let L_n be L's response to K_n in $G^o_{K,L}(X)$ using a winning strategy.

Then *Empty* plays $B(K_n, f_n, \epsilon_n) \cap B(L_n, c_n, 1/3)$, where $c_n = \text{constant n}$ Suppose $\phi \in \bigcap_{n \in \omega} B(L_n, c_n, 1/3)$. Then $\phi(L_n) \subset (n - 1/3, n + 1/3)$ for all n. Thus $\{L_n : n \in \omega\}$ has a discrete open expansion, contradiction.

・ロト ・聞 ト ・ 国 ト ・ 国 ト … 国

Theorem (Ma, GG)

If X is locally compact, then $C_k(X)$ is Baire iff L $\not \subset G^o_{K,L}(X)$.

3 ×

Theorem (Ma, GG)

If X is locally compact, then $C_k(X)$ is Baire iff L $\uparrow G^o_{K,L}(X)$.

Question

Is it true that for any completely regular space X, $C_k(X)$ is Baire iff L \uparrow $G^o_{K,L}(X)$? That $NE \uparrow BM(C_k(X))$ iff $K \uparrow G^o_{K,L}(X)$?

Image: A matrix

Definition. A collection \mathcal{L} of non-empty compact subsets of X is said to *move off* the compact sets if for every compact subset K of X, there is some $L \in \mathcal{L}$ with $K \cap L = \emptyset$.

Definition. A collection \mathcal{L} of non-empty compact subsets of X is said to *move off* the compact sets if for every compact subset K of X, there is some $L \in \mathcal{L}$ with $K \cap L = \emptyset$.

The space X is said to have the *Moving Off Property (MOP)* iff every collection \mathcal{L} which moves off the compact sets contains an infinite subcollection which has a discrete open expansion.

Definition. A collection \mathcal{L} of non-empty compact subsets of X is said to *move off* the compact sets if for every compact subset K of X, there is some $L \in \mathcal{L}$ with $K \cap L = \emptyset$.

The space X is said to have the *Moving Off Property (MOP)* iff every collection \mathcal{L} which moves off the compact sets contains an infinite subcollection which has a discrete open expansion.

Theorem
TFAE:
A has the MOP;
$ L \not \lor G^o_{\mathcal{K},\mathcal{L}}(X). $

Definition. A collection \mathcal{L} of non-empty compact subsets of X is said to *move off* the compact sets if for every compact subset K of X, there is some $L \in \mathcal{L}$ with $K \cap L = \emptyset$.

The space X is said to have the *Moving Off Property (MOP)* iff every collection \mathcal{L} which moves off the compact sets contains an infinite subcollection which has a discrete open expansion.

Theorem TFAE: • X has the MOP; • L $\gamma G^{o}_{K,L}(X)$. Question Does X have MOP iff $C_k(X)$ Baire?

There is some subtlety in determining when X (even locally compact X) has the property "L has no winning strategy in $G_{K,L}(X)$ ":

There is some subtlety in determining when X (even locally compact X) has the property "L has no winning strategy in $G_{K,L}(X)$ ": Consider spaces $T \cup A$, where T is the Cantor tree and A is a subset of the Cantor set. There is some subtlety in determining when X (even locally compact X) has the property "L has no winning strategy in $G_{K,L}(X)$ ": Consider spaces $T \cup A$, where T is the Cantor tree and A is a subset of the Cantor set.

Theorem (Ma)

The following are equivalent:

- $C_k(T \cup A)$ is a Baire space;
- ② L ↑ G_{K,L}(X)
- A is a γ -set.

There is some subtlety in determining when X (even locally compact X) has the property "L has no winning strategy in $G_{K,L}(X)$ ": Consider spaces $T \cup A$, where T is the Cantor tree and A is a subset of the Cantor set.

Theorem (Ma) The following are equivalent: • $C_k(T \cup A)$ is a Baire space; • L $\gamma G_{K,L}(X)$ • A is a γ -set.

 $A \subset \mathbb{R}$ is a γ -set if, given any collection \mathcal{U} of open sets such that any finite subset of A is contained in some member of \mathcal{U} , there are U_0, U_1, \ldots in \mathcal{U} such that $A \subset \bigcup_{n \in \omega} \bigcap_{i \ge n} U_i$.

Gary Gruenhage Auburn University ()

◆□> ◆圖> ◆臣> ◆臣>

Todorcevic showed that it is consistent for there to be two γ -sets A_0 and A_1 whose topological sum is not a γ -set.

Todorcevic showed that it is consistent for there to be two γ -sets A_0 and A_1 whose topological sum is not a γ -set. Since $C_k(X_0 \oplus X_1) \cong C_k(X_0) \times C_k(X_1)$, Ma obtained the following corollary. Todorcevic showed that it is consistent for there to be two γ -sets A_0 and A_1 whose topological sum is not a γ -set. Since $C_k(X_0 \oplus X_1) \cong C_k(X_0) \times C_k(X_1)$, Ma obtained the following corollary.

Corollary

There are, consistently, two function spaces with the compact-open topology which are Baire but whose product is not. Todorcevic showed that it is consistent for there to be two γ -sets A_0 and A_1 whose topological sum is not a γ -set. Since $C_k(X_0 \oplus X_1) \cong C_k(X_0) \times C_k(X_1)$, Ma obtained the following corollary.

Corollary

There are, consistently, two function spaces with the compact-open topology which are Baire but whose product is not.

But we don't know about ZFC examples.

Question

Are there examples in ZFC of two Baire function spaces whose product is not Baire?
Tel'garsky(1975) The countably metacompact game CM(X)

Tel'garsky(1975) The countably metacompact game CM(X)In the n^{th} round, I chooses closed $C_n \subset C_{n-1}$

- Tel'garsky(1975) The countably metacompact game CM(X)In the n^{th} round, I chooses closed $C_n \subset C_{n-1}$
- II chooses open $U_n \supset C_n$

Tel'garsky(1975) The countably metacompact game CM(X)In the n^{th} round, I chooses closed $C_n \subset C_{n-1}$ II chooses open $U_n \supset C_n$

I wins if
$$\bigcap_{n\in\omega} C_n = \emptyset$$
 but $\bigcap_{n\in\omega} U_n \neq \emptyset$

- Tel'garsky(1975) The countably metacompact game CM(X)In the n^{th} round, I chooses closed $C_n \subset C_{n-1}$
- II chooses open $U_n \supset C_n$
- I wins if $\bigcap_{n\in\omega} C_n = \emptyset$ but $\bigcap_{n\in\omega} U_n \neq \emptyset$
- X not countably metacompact \Rightarrow I \uparrow *CM*(X)

- Tel'garsky(1975) The countably metacompact game CM(X)In the n^{th} round, I chooses closed $C_n \subset C_{n-1}$
- II chooses open $U_n \supset C_n$
- I wins if $\bigcap_{n\in\omega} C_n = \emptyset$ but $\bigcap_{n\in\omega} U_n \neq \emptyset$
- X not countably metacompact $\Rightarrow I \uparrow CM(X)$

Theorem

 $X \times M$ is normal for every metrizable space M iff X is normal and II $\uparrow CM(X)$.

II chooses disjoint open refinement \mathcal{V}_n of \mathcal{U}_n

- II chooses disjoint open refinement \mathcal{V}_n of \mathcal{U}_n
- $\mathsf{II} \uparrow S(X) \text{ if } \bigcup_{n \in \omega} \mathcal{V}_n \text{ covers } X$

II chooses disjoint open refinement \mathcal{V}_n of \mathcal{U}_n

 $\mathsf{II} \uparrow S(X) \text{ if } \bigcup_{n \in \omega} \mathcal{V}_n \text{ covers } X$

Theorem

(Babinkostova)

• II \uparrow S(X) iff X is countable dimensional;

② II has winning strategy in game of length k + 1 iff X is $\leq k$ dimensional.

The game SS(X) (Dow, Barman): In round *n*, I chooses dense D_n , II chooses finite $F_n \subset D_n$. II wins if $\bigcup_{n \in \omega} F_n$ is dense.

The game SS(X) (Dow, Barman): In round *n*, I chooses dense D_n , II chooses finite $F_n \subset D_n$. II wins if $\bigcup_{n \in \omega} F_n$ is dense. X is SS^+ if II $\uparrow SS(X)$.

The game SS(X) (Dow, Barman): In round *n*, I chooses dense D_n , II chooses finite $F_n \subset D_n$. II wins if $\bigcup_{n \in \omega} F_n$ is dense. X is SS^+ if II $\uparrow SS(X)$.

Countable π -base \Rightarrow $SS^+ \Rightarrow SS$

The game SS(X) (Dow, Barman): In round *n*, I chooses dense D_n , II chooses finite $F_n \subset D_n$. II wins if $\bigcup_{n \in \omega} F_n$ is dense. X is SS^+ if II $\uparrow SS(X)$.

Countable π -base $\Rightarrow SS^+ \Rightarrow SS$ Separable Fréchet \Rightarrow SS

The game SS(X) (Dow, Barman): In round *n*, I chooses dense D_n , II chooses finite $F_n \subset D_n$. II wins if $\bigcup_{n \in \omega} F_n$ is dense. X is SS^+ if II $\uparrow SS(X)$.

Countable π -base $\Rightarrow SS^+ \Rightarrow SS$ Separable Fréchet \Rightarrow SS $SS \neq SS^+$.

Theorem

(Dow) X countable $SS^+ \Rightarrow II$ has Markov winning strategy in SS(X).

So, for each dense D, for each $n \in \omega$, one can assign finite $F(D, n) \subset D$ such that, if D_0, D_1, \ldots are dense, then $\bigcup_{n \in \omega} F(D_n, n)$ is dense.

Idea of proof. Let σ be winning strategy for II.

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

For each possible first round reply F, choose D(F) dense such that $\sigma(D(F)) = F$.

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

For each possible first round reply F, choose D(F) dense such that $\sigma(D(F)) = F$.

For each possible second round reply F' of II, choose dense D(F, F') such that $\sigma(D(F), D(F, F')) = F'$.

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

For each possible first round reply F, choose D(F) dense such that $\sigma(D(F)) = F$.

For each possible second round reply F' of II, choose dense D(F, F') such that $\sigma(D(F), D(F, F')) = F'$. Etc.

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

For each possible first round reply F, choose D(F) dense such that $\sigma(D(F)) = F$.

For each possible second round reply F' of II, choose dense D(F, F') such that $\sigma(D(F), D(F, F')) = F'$. Etc.

This constructs a (countable) tree of finite sequences of dense sets. Let t_0, t_1, \ldots be the nodes of the tree. The Markov winning strategy for II is:

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

For each possible first round reply F, choose D(F) dense such that $\sigma(D(F)) = F$.

For each possible second round reply F' of II, choose dense D(F, F') such that $\sigma(D(F), D(F, F')) = F'$. Etc.

This constructs a (countable) tree of finite sequences of dense sets. Let t_0, t_1, \ldots be the nodes of the tree. The Markov winning strategy for II is: Given dense D in round n, II plays $\sigma(t_n^{\frown} \langle D \rangle)$.

Let σ be winning strategy for II.

X countable \Rightarrow II has only countably many possible replies

For each possible first round reply F, choose D(F) dense such that $\sigma(D(F)) = F$.

For each possible second round reply F' of II, choose dense D(F, F') such that $\sigma(D(F), D(F, F')) = F'$. Etc.

This constructs a (countable) tree of finite sequences of dense sets. Let t_0, t_1, \ldots be the nodes of the tree. The Markov winning strategy for II is: Given dense D in round n, II plays $\sigma(t_n^{\frown} \langle D \rangle)$.

[Same result for any game with II having only countably many responses, and I's legal plays unchanged during the game.]

イロト イポト イヨト イヨト 二日

SURVEYS

G. Gruenhage, *The story of a topological game*, Rocky Mountain Journal Math. 36 (2006), no. 6, 1885–1914.

M. Scheepers, *Topological games*, in: Encyclopedia of General Topology, K.P. Hart, J. Nagata, and J.E. Vaughan, eds., Elsevier, Amsterdam, 2004, 438-442.

R. Telgarsky, Topological games: On the 50th anniversary of the Banach-Mazur game, Rocky Mountain Journal Math. 17(1987), 227-276.
Y. Yajima, Topological games and applications, in: Topics in general topology, North-Holland, Amsterdam (1989), 523–562.

OTHER REFERENCES

L. Babinkostova, *Selective screenability game and covering dimension*, Top. Proc. 29 (2005), 13-17.

A. Dow and D. Barman, *Selective separability and* SS^+ , Topology Proc., to appear.

F. Galvin and R. Telgarsky, *Stationary strategies in topological games*, Topology Appl. 22(1986), 51-69.

G. Gruenhage, Covering properties on $X^2 \setminus \Delta$, W-sets, and compact subsets of Σ -products, Topology Appl. 17 (1984), no. 3, 287–304.

G. Gruenhage, *Games, covering properties, and Eberlein compacts,* Topology Appl. 23(1986), 291-297.

W. Hurewicz, *Uber eine Verallgemeinerung des Borelschen Theorems*, Math. Zeitschrift 24(1926), 401-421.

J. C. Oxtoby, *The Banach-Mazur game and Banach category theorem, Contribution to the theory of games*, Annals of Math. Studies 39 (1957), 157-163.

R. Telgarsky, Spaces defined by topological games, Fund. Math. 88(1975), 193-223.