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Basics

CL = the variety of all closure algebras (B,C )

X ∗ = (PX ,C ) where X is a topological space

View subvarieties of CL as extensions of Lewis’ S4

• S4 ↔ CL

• S4.1↔ CL + ICx ≤ CIx

• S4.2↔ CL + CIx ≤ ICx

• etc.

Theorem (McKinsey-Tarski) If X is metrizable and has no isolated
points, then X ∗ generates CL.
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Aim

For a Boolean algebra B with Stone space X , to determine the
subvariety of CL generated by X ∗, i.e. the modal logic of X . We
can do this if B is complete or if B is countable.

Note For B countable and free, X is the Cantor space, so by the
McKinsey-Tarski theorem its logic is S4.
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Tools
Each quasiorder Q is a topological space where opens := upsets.

Many subvarieties of CL are generated by classes of quasiorders.

• S4 by finite quasitrees.

• S4.1 by finite quasitrees with top level simple nodes.

• S4.2 by the Q ⊕ C with Q finite quasitree and C cluster.

X
f−→→ Y cont + open︸ ︷︷ ︸

interior

+ onto ⇒ Y ∗ f −1

7−→ X ∗ CL-embedding.

Example To show the logic of X is S4

Enough to find an onto interior X
f→ Q for each finite quasitree Q

as X ∗ will contain a generating set for S4.

4 / 17



Tools
Each quasiorder Q is a topological space where opens := upsets.

Many subvarieties of CL are generated by classes of quasiorders.

• S4 by finite quasitrees.

• S4.1 by finite quasitrees with top level simple nodes.

• S4.2 by the Q ⊕ C with Q finite quasitree and C cluster.

X
f−→→ Y cont + open︸ ︷︷ ︸

interior

+ onto ⇒ Y ∗ f −1

7−→ X ∗ CL-embedding.

Example To show the logic of X is S4

Enough to find an onto interior X
f→ Q for each finite quasitree Q

as X ∗ will contain a generating set for S4.

5 / 17



Tools

Our job amounts to finding interior onto maps X
f−→ Q.

Lets look at some easy examples ...
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Easiest example

For X the Stone space of B, when is there an interior onto map
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When X has a proper dense open set U (= f −1[top]).

When B has a proper ideal whose join is 1.

When B is infinite.

7 / 17



Easiest example

For X the Stone space of B, when is there an interior onto map

&%
'$

t
t

-

X Q

f

When X has a proper dense open set U (= f −1[top]).

When B has a proper ideal whose join is 1.

When B is infinite.

8 / 17



Next easiest example

For X the Stone space of B, when is there an interior onto map
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When X has disjoint regular open U,V with U ∪ V proper dense.

When B has a non-principal normal ideal.

When B is incomplete.
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The logic of ω∗

βω = the Stone Cech compactification of ω

ω∗ = the remainder βω − ω
ω∗ = the Stone space of Pω/Fin.

Theorem The logic of ω∗ is S4.

Proof. We need an interior onto map ω∗
f−→→ Q for each finite

quasitree Q. For this we need a technical result to recursively build
a tree of ideals in our Boolean algebra.
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Lemma (a = 2ω). For P a partition of b ∈ Pω/Fin and m ≥ 1,
there are sets P1, . . . ,Pm and maps f1, . . . , fm with

1. P1 ∪ · · · ∪ Pm = P and Pi ∩ Pj = ∅ for each i 6= j .

2. fi : Infinite(P)→ Pi is 1-1 for each i ≤ m.

3. fi (c) ∈ SupportP(c) for each c ∈ Infinite(P) and each i ≤ m.

Note (a = 2ω) is an additional assumption of set theory.

Note We use this to recursively build a tree of ideals.
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Corollaries

Theorem The logic of βω is S4.1.2.

Proof. Any interior ω∗ −→→ Q lifts to an interior βω −→→ Q ⊕ 1
and this is exactly what we need.

Theorem For B a complete Boolean algebra with Stone space X .

1. If B is finite, the logic of X is classical.

2. If B is infinite and atomic, the logic of X is S4.1.2.

3. Otherwise the logic of X is S4.2.

Proof. Such X has a closed subspace homeomorphic to βω. We
use this to build our map X −→→ Q ⊕ C for the difficult case 3.
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Countable Boolean algebras

For B Boolean with Stone space X the following are equivalent

• B is countable

• B is generated by a countable chain C

• X is metrizable

The atomless case gives S4 by McKinsey-Tarski.

The scattered case gives Grzn for some n ≤ ω by old results.

So we may assume B is generated by a chain C where each
interval contains a cover, and the condensation D of C is Q. We
will show S4.1 is the logic in this case.
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Our setup ...

D = condensation of C

Y = Stone space of free Boolean ext of D (so Y ' Cantor)

Y ≤ X

Lets sketch the idea ...
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We get this as Y ' Cantor
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The hard part is to use the way Y sits in X to extend to ...
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As squishing the top parts is interior we get
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The Q we can get on the right are the ones we need to show S4.1.
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Questions

Is the assumption (a = 2ω) necessary for the ω∗ result?

Extend countable results to any B generated by a chain, or tree.

Conjecture

The varieties generated by X ∗ for a Stone space X are exactly the
finite joins of the ones above.

Little question

Does every atomless B have a dense ideal I with B/I atomless?
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