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Relation algebras

Definition (Tarski 1941)

Relation algebras are algebras (A,∧,∨,′ ,⊥,>, ·,`, 1) such that

(A,∧,∨,′ ,⊥,>) is a Boolean algebra

(A, ·, 1) is a monoid and

for all x , y , z ∈ A, (x ∨ y)z = xz ∨ yz (x + y)` = x` + y`

x`` = x (xy)` = y`x` x`(xy)′ ≤ y ′

The five identities are equivalent to

xy ≤ z ′ ⇐⇒ x`z ≤ y ′ ⇐⇒ zy` ≤ x ′

so defining conjugates x . z = x`z and z / y = zy` we have

xy ≤ z ′ ⇐⇒ x . z ≤ y ′ ⇐⇒ z / y ≤ x ′
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Residuated Boolean monoids

Definition (Birkhoff 1948, Jónsson 1991)

Residuated Boolean monoids are algebras (A,∧,∨,′ ,⊥,>, ·, ., /, 1) s. t.

(A,∧,∨,′ ,⊥,>) is a Boolean algebra

(A, ·, 1) is a monoid and

for all x , y , z ∈ A, xy ≤ z ′ ⇐⇒ x . z ≤ y ′ ⇐⇒ z / y ≤ x ′

Examples: For any monoid M = (M, ∗, e) the powerset monoid
P(M) = (P(M),∩,∪,′ , ∅,M, ·, ., /, {e}) is a residuated Boolean monoid

where XY = {x ∗ y : x ∈ X , y ∈ Y },
X . Y = {z : x ∗ z = y , x ∈ X , y ∈ Y },
X / Y = {z : z ∗ y = x , x ∈ X , y ∈ Y }

If G = (G , ∗,−1 ) is a group, P(G) is a relation algebra, X` = {x−1:x∈X}
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RM = the variety of residuated Boolean monoids

RA = the variety of relation algebras

Theorem (Jónsson and Tsinakis 1993)

RA is termequivalent to the subvariety of RM defined by (x.y)z = x.(yz)

The termequivalence is given by x . y = x`y, x / y = xy` and x` = x . e

Aim to lift this result to residuated lattices and FL-algebras

RA and RM have undecidable equational theories

Want to find a larger variety ”close to” RA that has a decidable equational
theory, but ...

Kurucz, Nemeti, Sain and Simon [1993] proved that the variety of all
Boolean algebras with an associative operator, as well as a “large number”
of expanded subvarieties have undecidable equational theories

N. Galatos & P. Jipsen (Denver/Chapman) Relation algebras as expanded FL-algebras June 5, 2010 5 / 21



Residuals

The conjugation condition

xy ≤ z ′ ⇐⇒ x . z ≤ y ′ ⇐⇒ z / y ≤ x ′

can be rewritten (replacing z by z ′) as

xy ≤ z ⇐⇒ y ≤ (x . z ′)′ ⇐⇒ x ≤ (z ′ / y)′

so defining residuals x\z = (x . z ′)′ and z/y = (z ′ / y)′ get the equivalent
residuation property

xy ≤ z ⇐⇒ y ≤ x\z ⇐⇒ x ≤ z/y

(this justifies the name residuated Boolean monoids)
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FL-algebras

Definition (Ono 1990)

A Full Lambek (or FL-)algebra is of the form (A,∧,∨, ·, \, /, 1, 0) where

(A,∧,∨) is a lattice

(A, ·, 1) is a monoid

0 is a constant (with no properties assumed about it) and

the residuation property holds, i. e., for all x , y , z ∈ A

x · y ≤ z ⇐⇒ x ≤ z/y ⇐⇒ y ≤ x\z

Examples: Complementation free reducts of residuated Boolean monoids

Symmetric (x` = x) relation algebras with 0 = 1′, x\y = (xy ′)′ and
x/y = (x ′y)′

In this case x ′ = x\0 = 0/x , but for RA in general x\0 = (x`1′′)′ = x`′

so complementation is not recovered by this term
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In an FL-algebra there are two linear negations

−x = 0/x ∼x = x\0

but they need not coincide or be involutive

To interpret relation algebras into FL-algebras we expand FL-algebras with
a unary operation:

Definition

An FL′-algebra is an expansion of an FL-algebra with a unary operation ′

that satisfies x ′′ = x . Also define the following terms:

converses x∪ = (∼x)′ and xt = (−x)′,

conjugates x . y = (x\y ′)′ and y / x = (y ′/x)′

and consider the identities

(In) ∼−x = x = −∼x (involutive law)

(Cy) ∼x = −x (cyclic law)

(Dm) (x ∧ y)′ = x ′ ∨ y ′ (De Morgan, equivalent to (x ∨ y)′ = x ′ ∧ y ′)
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Properties of FL′-algebras

Proposition

In an FL′-algebra the following properties hold:

1 (xy) . z = y . (x . z) and z / (yx) = (z / x) / y

2 (xy)∪ = y . x∪ and (xy)t = yt / x

3 1 . x = x and x / 1 = x

4 ∼x = −x iff x∪ = xt (cyclic/balanced)

If (Dm) (x ∧ y)′ = x ′ ∨ y ′ is assumed then we also have

xy ≤ z ′ ⇔ x . z ≤ y ′ ⇔ z / y ≤ x ′ (conjugation)

(x ∨ y)∪ = x∪ ∨ y∪ and (x ∨ y)t = xt ∨ yt

(x ∨ y) . z = (x . z) ∨ (y . z) and z / (x ∨ y) = (z / x) ∨ (z / y)

(x ∨ y) / z = (x / z) ∨ (y / z) and z . (x ∨ y) = (z . x) ∨ (z . y)
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RL′-algebras

FL-algebras are a subvariety of FL′-algebras if we define x ′ = x

Residuated lattices (RL) are a subvariety of FL if we define 0 = 1

RL′ is the subvariety of FL′ defined by 1′ = 0

Lemma

In an RL′-algebra the following properties hold:

x . 1 = x∪ and 1 / x = xt

1∪ = 1t = 1
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Some subvarieties of FL′

FL′

RL′

RM

RA

SRA

BA

FL

RL

O
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When negation commutes with ′

Proposition

In an FL′-algebra the following are equivalent:

(Ci) ∼(x ′) = (∼x)′ and −(x ′) = (−x)′ (commuting involution)

(ii) x∪′ = x ′∪ and xt′ = x ′t (commuting converses involution)

(iii) x∪t = x = xt∪ (converse involutive)

(iv) −x∪ = x ′ = ∼xt

Moreover, each of these properties implies the following identity:

(In) ∼−x = x = −∼x
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Quasi relation algebras

Define the term x + y = ∼(−y · −x) (= −(∼y · ∼x) if (In) is assumed)

Proposition

In every InFL′-algebra the following are equivalent and they imply 0 = 1′

1 (xy)∪ = y∪x∪

2 (xy)t = ytxt

3 x . y = x∪y

4 y / x = yxt

5 (xy)′ = x ′ + y ′

A quasi relation algebra (qRA) is a CiDmFL′-algebra that satisfies
(xy)′ = x ′ + y ′

Lemma

Every qRA is cyclic, i.e., satisfies ∼x = −x
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Examples of quasi relation algebras

Let G = Aut(C ) be the `-group of all order-automorphisms of a chain C ,
and assume that C has a dual automorphism ∂ : C → C

G is a cyclic involutive FL-algebra with ∼x = −x = x−1, x + y = xy , and
0 = 1

For g ∈ G , define g ′(x) = g(x∂)∂ . Then g ′′ = g , 1’=1

y = g−1′(x) ⇔ y = g−1(x∂)∂ ⇔ y∂ = g−1(x∂)
g(y∂)∂ = x ⇔ g ′(y) = x ⇔ y = g ′−1(x)

(g ∨ h)′(x) = (g(x∂) ∨ h(x∂))∂ = g(x∂)∂ ∧ h(x∂)∂ = (g ′ ∧ h′)(x) and

(gh)′(x) = (g(h(x∂)))∂ = g(h(x∂)∂∂)∂ = (g ′h′)(x) = (g ′ + h′)(x).

Hence G expanded with ′ is a quasi relation algebra.
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For InFL-algebra (A,∧,∨, ·,∼,−, 1, 0) define A∂ = (A,∨,∧,+,−,∼, 0, 1)

A∂ is also an InFL-algebra called the dual of A

Define F : InFL→ InFL′ by F (A) = A×A∂ expanded with (a, b)′ = (b, a)

For a homomorphism h : A→ B define F (h) : F (A)→ F (B) by
F (h)(a, b) = (h(a), h(b)).

Theorem (generalization of Brzozowski 2001)

F is a functor from InFL to InRL′, and the restriction to cyclic
InFL-algebras maps into qRA.
If G is the reduct functor from InRL′ to InFL then for any qRA C, the
map σC : C→ FG (C) given by σC(a) = (a, a′) is an embedding.

Corollary

The equational theory of qRA is a conservative extension of that of
CyInFL; i.e., every equation over the language of CyInFL that holds in
qRA, already holds in CyInFL.
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Lifting the Jónsson-Tsinakis result to qRAs

Theorem

qRA is termequivalent to the subvariety of CiDmRL′ defined by
(x . y)z = x . (yz)

The termequivalence is given by x . y = x∪y, x / y = xy∪ and x∪ = x . 1

We also note that to get from qRA to RA it suffices to add

distributivity : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and

complementation: x ∧ x ′ = ⊥ (= 1 ∧ 1′) and x ∨ x ′ = > (= 1 ∨ 1′)
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qRAs have a decidable equational theory

We make use of the following result:

Theorem (Yetter 1990, Wille 2005)

The variety CyInFL has a decidable equational theory

For an InFL-term t, we define the dual term t∂ inductively by

x∂ = x (s ∧ t)∂ = s∂ ∨ t∂

0∂ = 1 (s ∨ t)∂ = s∂ ∧ t∂

1∂ = 0 (s · t)∂ = s∂ + t∂

(∼s)∂ = −s∂ (s + t)∂ = s∂ · t∂
(−s)∂ = ∼s∂
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We also define (s = t)∂ to be s∂ = t∂ .

Lemma

An equation ε is valid in InFL iff ε∂ is also valid in InFL.

We fix a partition of the denumerable set of variables into two denuberable
sets X and X •, and fix a bijection x 7→ x• from the first set to the second
(hence x•• denotes x).

For a qRA-term t, we define the term t◦ inductively by

x◦ = x (s ′′)◦ = s
0◦ = 0, 1◦ = 1, ((s ∧ t)′)◦ = s ′◦ ∨ t ′◦,

(0′)◦ = 1, (1′)◦ = 0, ((s ∨ t)′)◦ = s ′◦ ∧ t ′◦,
(s � t)◦ = s◦ � t◦, for all � ∈ {∧,∨, ·,+}, ((s · t)′)◦ = s ′◦ + t ′◦,

(∼s)◦ = ∼s◦, (−s)◦ = −s◦, ((s + t)′)◦ = s ′◦ · t ′◦,
((∼s)′)◦ = −(s ′◦), ((−s)′)◦ = −(s ′◦), (x ′)◦ = x•
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Lemma

For every qRA-term t, t◦∂(x1, . . . , xn) = t ′◦(x•1 , . . . , x
•
n ).

For a substitution σ, we define a substitution σ◦ by σ◦(x) = (σ(x))◦, if
x ∈ X , and σ◦(x) = (σ(x)′)◦, if x ∈ X •.

Lemma

For every qRA-term t and qRA-substitution σ, (σ(t))◦ = σ◦(t◦).

Theorem

An equation ε over X holds in qRA iff the equation ε◦ holds in CyInFL.

Corollary

The equational theory of qRA is decidable.
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Conclusion

By expanding FL-algebras with a unary De Morgan operation one can
interpret relation algebras with FL’-algebras

This leads to the variety of quasi relation algebras that has many
properties in common with RA

In addition qRA has a decidable equational theory

Problem: Is qRA generated by its finite members?

Problem: Does the subvariety of distributive qRAs have a decidable
equational theory?
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