INTERPOLATION OF $\kappa\text{-}\mathsf{COMPACTNESS}$ AND PCF

István Juhász

Alfréd Rényi Institute of Mathematics

Boulder, July, 2010

István Juhász (Rényi Institute)

INTERPOLATION

- Basic definitions and results on κ -compactness
- Interpolation results for κ-compactness, using scales from PCF-theory
- Applications to uncountable compactness

→ Ξ →

4 A N

Basic definitions and results on κ-compactness

- Interpolation results for κ-compactness, using scales from PCF-theory
- Applications to uncountable compactness

< 🗇 🕨 < 🖃 🕨

- Basic definitions and results on κ-compactness
- Interpolation results for κ-compactness, using scales from PCF-theory
- Applications to uncountable compactness

.⊒...>

- Basic definitions and results on κ-compactness
- Interpolation results for κ-compactness, using scales from PCF-theory
- Applications to uncountable compactness

x is a complete accumulation point (CAP) of $A \subset X$ iff for every neighbourhood *U* of *x* we have $|U \cap A| = |A|$.

We denote the set of all CAP's of A by A° .

Alexandrov-Urysohn (1920's) : A space is **compact** iff every **infinite** subset has a CAP.

DEFINITION. A space κ -compact if every subset of cardinality κ has a CAP.

EXTRAPOLATION : Assume κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$. If X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact.

COROLLARY. A space is **compact** iff every infinite subset of **regular** cardinality has a CAP.

x is a complete accumulation point (CAP) of $A \subset X$ iff for every neighbourhood *U* of *x* we have $|U \cap A| = |A|$. We denote the set of all CAP's of *A* by A° .

Alexandrov-Urysohn (1920's) : A space is **compact** iff every **infinite** subset has a CAP.

DEFINITION. A space κ -compact if every subset of cardinality κ has a CAP.

EXTRAPOLATION : Assume κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$. If X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact.

COROLLARY. A space is **compact** iff every infinite subset of **regular** cardinality has a CAP.

x is a complete accumulation point (CAP) of $A \subset X$ iff for every neighbourhood *U* of *x* we have $|U \cap A| = |A|$. We denote the set of all CAP's of *A* by A° .

Alexandrov-Urysohn (1920's) : A space is compact iff every infinite subset has a CAP.

DEFINITION. A space κ -compact if every subset of cardinality κ has a CAP.

EXTRAPOLATION : Assume κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$. If X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact.

COROLLARY. A space is **compact** iff every infinite subset of **regular** cardinality has a CAP.

x is a complete accumulation point (CAP) of $A \subset X$ iff for every neighbourhood *U* of *x* we have $|U \cap A| = |A|$. We denote the set of all CAP's of *A* by A° .

Alexandrov-Urysohn (1920's) : A space is compact iff every infinite subset has a CAP.

DEFINITION. A space κ -compact if every subset of cardinality κ has a CAP.

EXTRAPOLATION : Assume κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$. If X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact.

COROLLARY. A space is **compact** iff every infinite subset of **regular** cardinality has a CAP.

x is a complete accumulation point (CAP) of $A \subset X$ iff for every neighbourhood *U* of *x* we have $|U \cap A| = |A|$. We denote the set of all CAP's of *A* by A° .

Alexandrov-Urysohn (1920's) : A space is compact iff every infinite subset has a CAP.

DEFINITION. A space κ -compact if every subset of cardinality κ has a CAP.

EXTRAPOLATION : Assume κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$. If X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact.

COROLLARY. A space is **compact** iff every infinite subset of **regular** cardinality has a CAP.

• • • • • • • • • • • •

x is a complete accumulation point (CAP) of $A \subset X$ iff for every neighbourhood *U* of *x* we have $|U \cap A| = |A|$. We denote the set of all CAP's of *A* by A° .

Alexandrov-Urysohn (1920's) : A space is compact iff every infinite subset has a CAP.

DEFINITION. A space κ -compact if every subset of cardinality κ has a CAP.

EXTRAPOLATION : Assume κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$. If X is both κ_{α} -compact for all $\alpha < cf(\kappa)$ and $cf(\kappa)$ -compact then X is κ -compact.

COROLLARY. A space is compact iff every infinite subset of regular cardinality has a CAP.

< □ > < □ > < □ > < □ >

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$

< ロ > < 同 > < 回 > < 回 > < □ > <

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space X from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$

< ロ > < 同 > < 回 > < 回 > < □ > <

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{\mathbf{S}_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |\mathbf{S}_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$

(4) 医(1) (4) 医(1)

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$.

(4) 医(1) (4) 医(1)

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$

(4) 医(1) (4) 医(1)

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$.

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : $\mu < \kappa < \lambda$ and we deduce κ -compactness of a space *X* from its μ - and λ -compactness.

DEFINITION. $\Phi(\mu, \kappa, \lambda)$ is the statement: $\mu < \kappa < \lambda = cf(\lambda)$ and there is $\{S_{\xi} : \xi < \lambda\} \subset [\kappa]^{\mu}$ s.t. $A \in [\kappa]^{<\kappa}$ implies $|\{\xi : |S_{\xi} \cap A| = \mu\}| < \lambda$.

PROPOSITION

If $\Phi(\mu, \kappa, \lambda)$ holds and X is both μ -compact and λ -compact then X is κ -compact.

Proof. Let $Y \in [X]^{\kappa}$ and $\{S_{\xi} : \xi < \lambda\} \subset [Y]^{\mu}$ witness $\Phi(\mu, \kappa, \lambda)$. Pick $p_{\xi} \in S_{\xi}^{\circ}$ for all $\xi < \lambda$. There is $p \in X$ s.t. for every nbhd U of p, $|\{\xi : |S_{\xi} \cap U| = \mu\}| = \lambda$. By $\Phi(\mu, \kappa, \lambda)$, then $|Y \cap U| = \kappa$, hence $p \in Y^{\circ}$.

(i) If Φ(μ, κ, λ) holds then cf(μ) = cf(κ), hence κ is singular.
(ii) Φ(cf(κ), κ, λ) implies Φ(μ, κ, λ) whenever μ < κ with cf(μ) = cf(κ).

DEFINITION. If κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$,

$$\{f_{\xi}: \xi < \lambda\} \subset \prod \{\kappa_{\alpha}: \alpha < \mathsf{cf}(\kappa)\}$$

is a scale if it is increasing and cofinal w.r.t. eventual dominance <*.

THEOREM

If there is a scale of length $\lambda = cf(\lambda)$ in $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ then $\Phi(cf(\kappa), \kappa, \lambda)$ holds.

István Juhász (Rényi Institute)

(i) If $\Phi(\mu, \kappa, \lambda)$ holds then $cf(\mu) = cf(\kappa)$, hence κ is singular. (ii) $\Phi(cf(\kappa), \kappa, \lambda)$ implies $\Phi(\mu, \kappa, \lambda)$ whenever $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$.

DEFINITION. If κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$,

$$\{f_{\xi}:\xi<\lambda\}\subset \prod\{\kappa_{\alpha}:\alpha<\mathsf{cf}(\kappa)\}$$

is a scale if it is increasing and cofinal w.r.t. eventual dominance <*.

THEOREM

If there is a scale of length $\lambda = cf(\lambda)$ in $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ then $\Phi(cf(\kappa), \kappa, \lambda)$ holds.

István Juhász (Rényi Institute)

• • • • • • • • • • • • •

(i) If $\Phi(\mu, \kappa, \lambda)$ holds then $cf(\mu) = cf(\kappa)$, hence κ is singular. (ii) $\Phi(cf(\kappa), \kappa, \lambda)$ implies $\Phi(\mu, \kappa, \lambda)$ whenever $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$.

DEFINITION. If κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$,

$$\{f_{\xi}: \xi < \lambda\} \subset \prod \{\kappa_{\alpha}: \alpha < \mathsf{cf}(\kappa)\}$$

is a scale if it is increasing and cofinal w.r.t. eventual dominance <*.

THEOREM

If there is a scale of length $\lambda = cf(\lambda)$ in $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ then $\Phi(cf(\kappa), \kappa, \lambda)$ holds.

István Juhász (Rényi Institute)

• • • • • • • • • • • •

(i) If $\Phi(\mu, \kappa, \lambda)$ holds then $cf(\mu) = cf(\kappa)$, hence κ is singular. (ii) $\Phi(cf(\kappa), \kappa, \lambda)$ implies $\Phi(\mu, \kappa, \lambda)$ whenever $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$.

DEFINITION. If κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$,

$$\{f_{\xi}: \xi < \lambda\} \subset \prod \{\kappa_{\alpha}: \alpha < \mathsf{cf}(\kappa)\}$$

is a scale if it is increasing and cofinal w.r.t. eventual dominance <*.

THEOREM

If there is a scale of length $\lambda = cf(\lambda)$ in $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ then $\Phi(cf(\kappa), \kappa, \lambda)$ holds.

• • • • • • • • • • • •

(i) If $\Phi(\mu, \kappa, \lambda)$ holds then $cf(\mu) = cf(\kappa)$, hence κ is singular. (ii) $\Phi(cf(\kappa), \kappa, \lambda)$ implies $\Phi(\mu, \kappa, \lambda)$ whenever $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$.

DEFINITION. If κ is singular and $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$,

$$\{f_{\xi}: \xi < \lambda\} \subset \prod \{\kappa_{\alpha}: \alpha < \mathsf{cf}(\kappa)\}$$

is a scale if it is increasing and cofinal w.r.t. eventual dominance <*.

THEOREM

If there is a scale of length $\lambda = cf(\lambda)$ in $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ then $\Phi(cf(\kappa), \kappa, \lambda)$ holds.

THEOREM (Shelah

For every singular cardinal κ there are regular cardinals $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$ s.t. $\prod \{ \kappa_{\alpha} : \alpha < cf(\kappa) \}$ has a scale of length κ^+ .

COROLLARY

If κ is singular and $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$ then $\Phi(\mu, \kappa, \kappa^+)$ holds. So, if X is μ -compact and κ^+ -compact then it is κ -compact.

THEOREM (Shelat

For every singular cardinal κ there are regular cardinals $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$ s.t. $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ has a scale of length κ^+ .

COROLLARY

If κ is singular and $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$ then $\Phi(\mu, \kappa, \kappa^+)$ holds. So, if X is μ -compact and κ^+ -compact then it is κ -compact.

THEOREM (Shelal

For every singular cardinal κ there are regular cardinals $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$ s.t. $\prod \{ \kappa_{\alpha} : \alpha < cf(\kappa) \}$ has a scale of length κ^+ .

COROLLARY

If κ is singular and $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$ then $\Phi(\mu, \kappa, \kappa^+)$ holds. So, if X is μ -compact and κ^+ -compact then it is κ -compact.

THEOREM (Shelah)

For every singular cardinal κ there are regular cardinals $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$ s.t. $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ has a scale of length κ^+ .

COROLLARY

If κ is singular and $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$ then $\Phi(\mu, \kappa, \kappa^+)$ holds. So, if X is μ -compact and κ^+ -compact then it is κ -compact.

THEOREM (Shelah)

For every singular cardinal κ there are regular cardinals $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$ s.t. $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ has a scale of length κ^+ .

COROLLARY

If κ is singular and $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$ then $\Phi(\mu, \kappa, \kappa^+)$ holds. So, if X is μ -compact and κ^+ -compact then it is κ -compact.

THEOREM (Shelah)

For every singular cardinal κ there are regular cardinals $\kappa_{\alpha} \nearrow \kappa$ for $\alpha < cf(\kappa)$ s.t. $\prod \{\kappa_{\alpha} : \alpha < cf(\kappa)\}$ has a scale of length κ^+ .

COROLLARY

If κ is singular and $\mu < \kappa$ with $cf(\mu) = cf(\kappa)$ then $\Phi(\mu, \kappa, \kappa^+)$ holds. So, if X is μ -compact and κ^+ -compact then it is κ -compact.

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf. Example: one-point "Lindelöfication" of any (uncountable) discrete

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever $cf(\kappa) > \omega$. The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

ヘロト ヘ回ト ヘヨト ヘヨ

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf. Example: one-point "Lindelöfication" of any (uncountable) discrete space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever cf(κ) > ω . The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf.

Example: one-point "Lindelöfication" of any (uncountable) discrete space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever cf(κ) > ω . The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf. Example: one-point "Lindelöfication" of any (uncountable) discrete

space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever cf(κ) > ω . The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf.

Example: one-point "Lindelöfication" of any (uncountable) discrete space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever $cf(\kappa) > \omega$. The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

Arhangel'skii (2008) :

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf. Example: one-point "Lindelöfication" of any (uncountable) discrete

space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever cf(κ) > ω . The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

< ロ > < 同 > < 三 > < 三 >

Arhangel'skii (2008) :

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf.

Example: one-point "Lindelöfication" of any (uncountable) discrete space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever cf(κ) > ω . The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Arhangel'skii (2008) :

A space is uncountably compact (UCC) iff it is κ -compact for every uncountable κ . Every UCC space is Lindelöf.

Example: one-point "Lindelöfication" of any (uncountable) discrete space.

NOTE. *X* is linearly Lindelöf (LL) iff it is κ -compact for every uncountable regular κ . By extrapolation, then *X* is κ -compact whenever $cf(\kappa) > \omega$. The question when LL implies Lindelöf is an interesting and important question.

THEOREM

Any LL and \aleph_{ω} -compact space is UCC, hence Lindelöf.

• • • • • • • • • • • •

DEFINITION. *X* is κ -concentrated on $Y \subset X$ iff for every open $U \supset Y$ we have $|X \setminus U| < \kappa$.

THEOREM

If X is κ -concentrated on a compact subset then X is λ -compact for all $\lambda \geq \kappa$.

THEOREM (Arhangel'skii)

Every UCC T_3 space is \aleph_{ω} -concentrated on a compact subset.

THEOREM

Every UCC T_1 space X with the wD property is \aleph_{ω} -concentrated on a compact subset.

NOTE. Lindelöf T_3 spaces are normal, while wD is a very weak normality property.

DEFINITION. X is κ -concentrated on $Y \subset X$ iff for every open $U \supset Y$ we have $|X \setminus U| < \kappa$.

THEOREM

If X is κ -concentrated on a compact subset then X is λ -compact for all $\lambda \geq \kappa$.

THEOREM (Arhangel'skii)

Every UCC T_3 space is \aleph_{ω} -concentrated on a compact subset.

THEOREM

Every UCC T_1 space X with the wD property is \aleph_{ω} -concentrated on a compact subset.

NOTE. Lindelöf T_3 spaces are normal, while wD is a very weak normality property.

DEFINITION. X is κ -concentrated on $Y \subset X$ iff for every open $U \supset Y$ we have $|X \setminus U| < \kappa$.

THEOREM

If X is κ -concentrated on a compact subset then X is λ -compact for all $\lambda \geq \kappa$.

THEOREM (Arhangel'skii)

Every UCC T_3 space is \aleph_{ω} -concentrated on a compact subset.

THEOREM

Every UCC T_1 space X with the wD property is \aleph_{ω} -concentrated on a compact subset.

NOTE. Lindelöf T_3 spaces are normal, while wD is a very weak normality property.

DEFINITION. *X* is κ -concentrated on $Y \subset X$ iff for every open $U \supset Y$ we have $|X \setminus U| < \kappa$.

THEOREM

If X is κ -concentrated on a compact subset then X is λ -compact for all $\lambda \geq \kappa$.

THEOREM (Arhangel'skii)

Every UCC T_3 space is \aleph_{ω} -concentrated on a compact subset.

THEOREM

Every UCC T_1 space X with the wD property is \aleph_{ω} -concentrated on a compact subset.

NOTE. Lindelöf T_3 spaces are normal, while wD is a very weak normality property.

DEFINITION. X is κ -concentrated on $Y \subset X$ iff for every open $U \supset Y$ we have $|X \setminus U| < \kappa$.

THEOREM

If X is κ -concentrated on a compact subset then X is λ -compact for all $\lambda \geq \kappa$.

THEOREM (Arhangel'skii)

Every UCC T_3 space is \aleph_{ω} -concentrated on a compact subset.

THEOREM

Every UCC T_1 space X with the wD property is \aleph_{ω} -concentrated on a compact subset.

NOTE. Lindelöf T_3 spaces are normal, while wD is a very weak normality property.

DEFINITION. X is κ -concentrated on $Y \subset X$ iff for every open $U \supset Y$ we have $|X \setminus U| < \kappa$.

THEOREM

If X is κ -concentrated on a compact subset then X is λ -compact for all $\lambda \geq \kappa$.

THEOREM (Arhangel'skii)

Every UCC T_3 space is \aleph_{ω} -concentrated on a compact subset.

THEOREM

Every UCC T_1 space X with the wD property is \aleph_{ω} -concentrated on a compact subset.

NOTE. Lindelöf T_3 spaces are normal, while *wD* is a very weak normality property.

$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_\omega$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction.

Now, let $V \supset C$ be open. If we had $|X \setminus V| \ge \aleph_{\omega}$ then any CAP of $X \setminus V$ would be in *C*, again a contradiction.

$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_{\omega}$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction.

Now, let $V \supset C$ be open. If we had $|X \setminus V| \ge \aleph_{\omega}$ then any CAP of $X \setminus V$ would be in *C*, again a contradiction.

$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_{\omega}$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction.

Now, let $V \supset C$ be open. If we had $|X \setminus V| \ge \aleph_{\omega}$ then any CAP of $X \setminus V$ would be in *C*, again a contradiction.

$$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_\omega$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction. Now, let $V \supset C$ be open. If we had $|X \setminus V| > \aleph_\omega$, then any CAP

of $X \setminus V$ would be in *C*, again a contradiction.

$$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_{\omega}$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction.

Now, let $V \supset C$ be open. If we had $|X \setminus V| \ge \aleph_{\omega}$ then any CAP of $X \setminus V$ would be in *C*, again a contradiction.

→ ∃ → < ∃</p>

$$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_{\omega}$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction.

Now, let $V \supset C$ be open. If we had $|X \setminus V| \ge \aleph_{\omega}$ then any CAP of $X \setminus V$ would be in *C*, again a contradiction.

• = • •

$$C = X \setminus \cup \{U : U \text{ open }, |U| < \aleph_{\omega} \}.$$

C is LL, hence compact if countably (i.e. ω -)compact. Otherwise, by *wD*, there is a discrete collection $\{U_n : n \in \omega\}$ of open sets s.t. $C \cap U_n \neq \emptyset$, hence $|U_n| \ge \aleph_{\omega}$ for each $n < \omega$. Pick $A_n \subset U_n$ with $|A_n| = \aleph_n$ and set $A = \bigcup \{A_n : n < \omega\}$. Then $A^\circ = \emptyset$, contradiction.

Now, let $V \supset C$ be open. If we had $|X \setminus V| \ge \aleph_{\omega}$ then any CAP of $X \setminus V$ would be in *C*, again a contradiction.