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κ-COMPACTNESS

x is a complete accumulation point (CAP) of A ⊂ X iff for every
neighbourhood U of x we have |U ∩ A| = |A|.
We denote the set of all CAP’s of A by A◦.

Alexandrov-Urysohn (1920’s) : A space is compact iff every infinite
subset has a CAP.

DEFINITION. A space κ-compact if every subset of cardinality κ

has a CAP.

EXTRAPOLATION : Assume κ is singular and κα ր κ for α < cf(κ).
If X is both κα-compact for all α < cf(κ) and cf(κ)-compact then X is
κ-compact.

COROLLARY. A space is compact iff every infinite subset of regular
cardinality has a CAP.
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INTERPOLATION OF κ-COMPACTNESS

Non-attributed results below are joint with Z. Szentmiklóssy.

INTERPOLATION : µ < κ < λ and we deduce κ-compactness of a
space X from its µ- and λ-compactness.

DEFINITION. Φ(µ, κ, λ) is the statement: µ < κ < λ = cf(λ) and there
is {Sξ : ξ < λ} ⊂ [κ]µ s.t. A ∈ [κ]<κ implies

∣

∣{ξ : |Sξ ∩ A| = µ}
∣

∣ < λ .

PROPOSITION
If Φ(µ, κ, λ) holds and X is both µ-compact and λ-compact then X is
κ-compact.

Proof. Let Y ∈ [X ]κ and {Sξ : ξ < λ} ⊂ [Y ]µ witness Φ(µ, κ, λ). Pick
pξ ∈ Sξ

◦ for all ξ < λ. There is p ∈ X s.t. for every nbhd U of p,
∣

∣{ξ : |Sξ ∩U| = µ}
∣

∣ = λ. By Φ(µ, κ, λ), then |Y ∩U| = κ, hence p ∈ Y ◦.
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SCALES

LEMMA
(i) If Φ(µ, κ, λ) holds then cf(µ) = cf(κ), hence κ is singular.
(ii) Φ(cf(κ), κ, λ) implies Φ(µ, κ, λ) whenever µ < κ with cf(µ) = cf(κ).

DEFINITION. If κ is singular and κα ր κ for α < cf(κ),

{fξ : ξ < λ} ⊂
∏

{κα : α < cf(κ)}

is a scale if it is increasing and cofinal w.r.t. eventual dominance <∗.

THEOREM
If there is a scale of length λ = cf(λ) in

∏

{κα : α < cf(κ)} then
Φ(cf(κ), κ, λ) holds.
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PCF

Scales play a central role in Shelah’s PCF theory ≡ study of products
of "progressive" sets of regular cardinals. A ⊂ REG is progressive iff
|A| < min A.

THEOREM (Shelah)
For every singular cardinal κ there are regular cardinals κα ր κ for
α < cf(κ) s.t.

∏

{κα : α < cf(κ)} has a scale of length κ+.

COROLLARY
If κ is singular and µ < κ with cf(µ) = cf(κ) then Φ(µ, κ, κ+) holds.
So, if X is µ-compact and κ+-compact then it is κ-compact.
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UNCOUNTABLE COMPACTNESS

Arhangel’skii (2008) :
A space is uncountably compact (UCC) iff it is κ-compact for every
uncountable κ . Every UCC space is Lindelöf.
Example: one-point "Lindelöfication" of any (uncountable) discrete
space.

NOTE. X is linearly Lindelöf (LL) iff it is κ-compact for every
uncountable regular κ . By extrapolation, then X is κ-compact
whenever cf(κ) > ω . The question when LL implies Lindelöf is an
interesting and important question.

THEOREM
Any LL and ℵω-compact space is UCC, hence Lindelöf.
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NOTE. X is linearly Lindelöf (LL) iff it is κ-compact for every
uncountable regular κ . By extrapolation, then X is κ-compact
whenever cf(κ) > ω . The question when LL implies Lindelöf is an
interesting and important question.
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UNCOUNTABLE COMPACTNESS

DEFINITION. X is κ-concentrated on Y ⊂ X iff for every open U ⊃ Y
we have |X \ U| < κ.

THEOREM
If X is κ-concentrated on a compact subset then X is λ-compact for all
λ ≥ κ.

THEOREM (Arhangel’skii)
Every UCC T3 space is ℵω-concentrated on a compact subset.

THEOREM
Every UCC T1 space X with the wD property is ℵω-concentrated on a
compact subset.

NOTE. Lindelöf T3 spaces are normal, while wD is a very weak
normality property.
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Proof

Set
C = X \ ∪{U : U open , |U| < ℵω }.

C is LL, hence compact if countably (i.e. ω-)compact. Otherwise, by
wD, there is a discrete collection {Un : n ∈ ω} of open sets s.t.
C ∩ Un 6= ∅, hence |Un| ≥ ℵω for each n < ω. Pick An ⊂ Un with
|An| = ℵn and set A = ∪{An : n < ω}. Then A◦ = ∅, contradiction.

Now, let V ⊃ C be open. If we had |X \ V | ≥ ℵω then any CAP
of X \ V would be in C, again a contradiction.
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