Vaught's Conjecture and Boolean Algebras

Asher M. Kach

(Joint with Steffen Lempp)

Victoria University of Wellington and University of Connecticut

BLAST 2010

Asher M. Kach (VUW / UConn)

Vaught's Conjecture and BAs

BLAST 2010 1 / 20

1 Vaught's Conjecture for First-Order Logic

2 Vaught's Conjecture for the Infinitary Logic $\mathcal{L}_{\omega_{1,\omega}}$

Vaught's Conjecture

Conjecture (Vaught's Conjecture (1961))

If *T* is a complete first-order theory in a countable language with $n(T) > \aleph_0$, then $n(T) = 2^{\aleph_0}$.

Theorem

lf T is

- a theory of one unary function (Marcus / Miller),
- a theory of trees (Steel),
- an o-minimal theory (Mayer), or
- an ω -stable theory (Shelah, Harrington, and Makkai), nen VC(T).

Indeed, there are a number of other classes C of complete first-order theories for which VC(T) is known for all $T \in C$.

Conjecture (Vaught's Conjecture (1961))

If *T* is a complete first-order theory in a countable language with $n(T) > \aleph_0$, then $n(T) = 2^{\aleph_0}$.

Theorem

lf T is

- a theory of one unary function (Marcus / Miller),
- a theory of trees (Steel),
- an o-minimal theory (Mayer), or
- an ω -stable theory (Shelah, Harrington, and Makkai), then VC(T).

Indeed, there are a number of other classes C of complete first-order theories for which VC(T) is known for all $T \in C$.

Vaught's Conjecture for Boolean Algebras

Theorem (Iverson (1991))

If T is a first-order completion of Th(BA), then $n(T) \in \{1, 2^{\aleph_0}\}$.

Proof.

Tarski and Ershov showed the *elementary characteristic*

$$\textit{EC}(\mathcal{B}) = (p, q, r) \in \{0, 1, \dots, \omega\} \times \{0, 1, \dots, \omega\} \times \{0, 1\}$$

of \mathcal{B} characterizes Th(\mathcal{B}).

Show certain elementary characteristics (p, q, r) have a unique model, namely those of the form (0, m, 0) and (0, m, 1). Show the remaining elementary characteristics (p, q, r) have continuum many models.

Vaught's Conjecture for Boolean Algebras

Theorem (Iverson (1991))

If T is a first-order completion of Th(BA), then $n(T) \in \{1, 2^{\aleph_0}\}$.

Proof.

Tarski and Ershov showed the *elementary characteristic*

$$\textit{EC}(\mathcal{B}) = (\textit{p},\textit{q},\textit{r}) \in \{0,1,\ldots,\omega\} imes \{0,1,\ldots,\omega\} imes \{0,1\}$$

of \mathcal{B} characterizes Th(\mathcal{B}).

Show certain elementary characteristics (p, q, r) have a unique model, namely those of the form (0, m, 0) and (0, m, 1). Show the remaining elementary characteristics (p, q, r) have continuum many models.

Elementary Characteristics

Definition

If \mathcal{B} is a Boolean algebra, define its *Ershov-Tarski ideal* to be the set

 $I(\mathcal{B}) := \{x \lor y : x \text{ is atomic and } y \text{ is atomless}\}.$

Define a sequence $\{B_i\}_{i \in \omega}$ by $B_0 := B$ and $B_{i+1} := B_i / I(B_i)$.

Definition

Define the *elementary characteristic* EC(B) of B to be the triple

 $\begin{cases} (0,0,0) & \text{if } \mathcal{B} \text{ is trivial} \\ (\omega,0,0) & \text{if } \mathcal{B}_i \text{ is nontrivial for all } i, \\ (p,q,r) & \text{otherwise, where } p \text{ is maximal such that } \mathcal{B}_p \text{ is nontrivial,} \\ q \leq \omega \text{ is the number of atoms in } \mathcal{B}_p, \text{ and} \\ r = 1 \text{ if } \mathcal{B}_p \text{ contains atomless elements, else } r = 0. \end{cases}$

Elementary Characteristics

Definition

If B is a Boolean algebra, define its Ershov-Tarski ideal to be the set

 $I(\mathcal{B}) := \{x \lor y : x \text{ is atomic and } y \text{ is atomless}\}.$

Define a sequence $\{\mathcal{B}_i\}_{i \in \omega}$ by $\mathcal{B}_0 := \mathcal{B}$ and $\mathcal{B}_{i+1} := \mathcal{B}_i / I(\mathcal{B}_i)$.

Definition

Define the *elementary characteristic* EC(B) of B to be the triple

- $q \leq \omega$ is the number of atoms in \mathcal{B}_{p} , and

r = 1 if \mathcal{B}_p contains atomless elements, else r = 0.

Theorem (Camerlo and Gao (2001))

If T is a first-order completion of Th(BA) with $n(T) = 2^{\aleph_0}$, then the isomorphism problem restricted to models of T is Borel complete.

Proof.

Informally, exhibit the *right* continuum many models having elementary characteristic (p, q, r).

Formally, exhibit a Borel reduction from the isomorphism problem for countable graphs to the isomorphism problem restricted to Boolean algebras with elementary characteristic (p, q, r).

Theorem (Camerlo and Gao (2001))

If T is a first-order completion of Th(BA) with $n(T) = 2^{\aleph_0}$, then the isomorphism problem restricted to models of T is Borel complete.

Proof.

Informally, exhibit the *right* continuum many models having elementary characteristic (p, q, r).

Formally, exhibit a Borel reduction from the isomorphism problem for countable graphs to the isomorphism problem restricted to Boolean algebras with elementary characteristic (p, q, r).

Vaught's Conjecture for First-Order Logic

2 Vaught's Conjecture for the Infinitary Logic $\mathcal{L}_{\omega_{1,\omega}}$

3 Borel Completeness

Definition

The infinitary logic $\mathcal{L}_{\kappa,\lambda}$ allows quantification over fewer than λ many variables, and conjuctions and disjunctions over fewer than κ many subformulas.

Remark

Thus the formulas of $\mathcal{L}_{\omega,\omega}$ are the usual first-order formulas, those with subformulas having finite quantifier depth and finite conjunctions and disjunctions.

Thus the formulas of $\mathcal{L}_{\omega_1,\omega}$ are those with subformulas having finite quantifier depth and *countable* conjunctions and disjunctions.

Theorem (Scott (1965))

If \mathcal{M} is any countable \mathcal{L} -structure (with \mathcal{L} countable), there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ whose only countable model is \mathcal{M} .

Conjecture (Vaught's Conjecture for $\mathcal{L}_{\omega_{1},\omega}$

If φ is a sentence of $\mathcal{L}_{\omega_1,\omega}$ having uncountably many models, then φ has continuum many models.

Question (Camerlo and Gao (2001))

Does VC(BA) hold for the infinitary language $\mathcal{L}_{\omega_{1,\omega}}$?

Theorem (Scott (1965))

If \mathcal{M} is any countable \mathcal{L} -structure (with \mathcal{L} countable), there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ whose only countable model is \mathcal{M} .

Conjecture (Vaught's Conjecture for $\mathcal{L}_{\omega_1,\omega}$)

If φ is a sentence of $\mathcal{L}_{\omega_1,\omega}$ having uncountably many models, then φ has continuum many models.

Question (Camerlo and Gao (2001))

Does *VC*(*BA*) hold for the infinitary language $\mathcal{L}_{\omega_1,\omega}$?

Theorem (Scott (1965))

If \mathcal{M} is any countable \mathcal{L} -structure (with \mathcal{L} countable), there is a sentence $\varphi \in \mathcal{L}_{\omega_1,\omega}$ whose only countable model is \mathcal{M} .

Conjecture (Vaught's Conjecture for $\mathcal{L}_{\omega_1,\omega}$)

If φ is a sentence of $\mathcal{L}_{\omega_1,\omega}$ having uncountably many models, then φ has continuum many models.

Question (Camerlo and Gao (2001))

Does VC(BA) hold for the infinitary language $\mathcal{L}_{\omega_1,\omega}$?

Work In Progress (Kach and Lempp).

VC(*BA*) for the infinitary language $\mathcal{L}_{\omega_1,\omega}$: If φ is an $\mathcal{L}_{\omega_1,\omega}$ sentence in the language of Boolean algebras extending Th(*BA*), then φ has continuum many models if it has uncountably many models.

Proof.

Divide into three cases:

- The sentence φ has models of arbitrarily high rank.
- The sentence φ has models of arbitrarily high depth.
- The sentence φ has only models of depth δ and rank ρ .

In each case, exhibit continuum many models of φ .

The Rank Invariant

Definition

If \mathcal{B} is a Boolean algebra, let $I(\mathcal{B})$ be the ideal generated by the atoms of \mathcal{B} .

Define a sequence $\{\mathcal{B}_{\alpha}\}_{\alpha\in\omega_1}$ by $\mathcal{B}_0 := \mathcal{B}, \mathcal{B}_{\alpha+1} := \mathcal{B}_{\alpha}/I(\mathcal{B}_{\alpha})$, and $\mathcal{B}_{\gamma} = \bigcap_{\beta<\gamma}\mathcal{B}_{\beta}$.

Definition

The rank $\rho(B)$ of a Boolean algebra B is the least ordinal ρ such that $B_{\rho} \cong B_{\rho+1}$.

Alternately, the rank of \mathcal{B} is the supremum of the ordinals $\beta + 1$ such that \mathcal{B} bounds a β -atom.

Example

 $\rho(\mathsf{IntAlg}(1+\eta)) = \mathsf{0}. \ \rho(\mathsf{IntAlg}(2 \cdot (1+\eta))) = \mathsf{1}. \ \rho(\mathsf{IntAlg}(\omega^{\alpha})) = \alpha + \mathsf{1}.$

Proposition

If φ has models of arbitrarily high rank, then φ has continuum many models.

Proof.

Fix a Δ_{β}^{0} formula φ . Fix a model $\mathcal{B} \models \varphi$ containing a $(\beta + 1)$ -atom. Show that the Π_{β}^{0} theory of \mathcal{B} is unchanged if the $(\beta + 1)$ -atom is replaced with a sufficiently *large* Boolean algebra.

Lemma

Fix an ordinal β . If $\alpha_1, \alpha_2 > \beta$ and σ is a measure with range a subset of $\{\gamma : \gamma > \beta\}$ (i.e., if x is not superatomic, it bounds a β -atom), then

 $Th(IntAlg(\omega^{\alpha_1})) \cap \Pi^0_{\beta} = Th(IntAlg(\omega^{\alpha_2})) \cap \Pi^0_{\beta} = Th(\mathcal{B}_{\sigma}) \cap \Pi^0_{\beta}$

Proposition

If φ has models of arbitrarily high rank, then φ has continuum many models.

Proof.

Fix a Δ_{β}^{0} formula φ . Fix a model $\mathcal{B} \models \varphi$ containing a $(\beta + 1)$ -atom. Show that the Π_{β}^{0} theory of \mathcal{B} is unchanged if the $(\beta + 1)$ -atom is replaced with a sufficiently *large* Boolean algebra.

Lemma

Fix an ordinal β . If $\alpha_1, \alpha_2 > \beta$ and σ is a measure with range a subset of $\{\gamma : \gamma > \beta\}$ (i.e., if x is not superatomic, it bounds a β -atom), then

 $Th(IntAlg(\omega^{\alpha_1})) \cap \Pi_{\beta}^{0} = Th(IntAlg(\omega^{\alpha_2})) \cap \Pi_{\beta}^{0} = Th(\mathcal{B}_{\sigma}) \cap \Pi_{\beta}^{0}$

Definition

Define a sequence of sets $\{\Delta^{\alpha}\sigma(\mathcal{B})\}_{\alpha\in\omega_1}$ by recursion simultaneously for all *uniform* Boolean algebras \mathcal{B} , where $\Delta^0\sigma(\mathcal{B}) = \rho(\mathcal{B})$ and

$$\Delta^{\alpha}\sigma(\mathcal{B}) = \{(\Delta^{\beta}\sigma(x_1),\ldots,\Delta^{\beta}\sigma(x_n)): \mathcal{B} = x_1 \oplus \cdots \oplus x_n, \beta < \alpha\}.$$

Definition

The depth $\delta(\mathcal{B})$ of a Boolean algebra \mathcal{B} is the least ordinal δ such that $\Delta^{\delta}\sigma(x) = \Delta^{\delta}\sigma(y)$ implies $\Delta^{\delta+1}\sigma(x) = \Delta^{\delta+1}\sigma(y)$ for all $x, y \in \mathcal{B}$.

Example

 $\delta(\operatorname{IntAlg}(1+\eta)) = 0 = \delta(\operatorname{IntAlg}(2 \cdot (1+\eta))).$ $\delta(\operatorname{IntAlg}((1+\eta) + 2 \cdot (1+\eta))) = 1.$

Theorem (Ketonen (1978))

The set $\Delta^{\delta(\mathcal{B})+2}\sigma(\mathcal{B})$ is an isomorphism invariant for \mathcal{B} .

Asher M. Kach (VUW / UConn)

Definition

Define a sequence of sets $\{\Delta^{\alpha}\sigma(\mathcal{B})\}_{\alpha\in\omega_1}$ by recursion simultaneously for all *uniform* Boolean algebras \mathcal{B} , where $\Delta^0\sigma(\mathcal{B}) = \rho(\mathcal{B})$ and

$$\Delta^{\alpha}\sigma(\mathcal{B}) = \{ (\Delta^{\beta}\sigma(x_1), \ldots, \Delta^{\beta}\sigma(x_n)) : \mathcal{B} = x_1 \oplus \cdots \oplus x_n, \beta < \alpha \}.$$

Definition

The depth $\delta(\mathcal{B})$ of a Boolean algebra \mathcal{B} is the least ordinal δ such that $\Delta^{\delta}\sigma(x) = \Delta^{\delta}\sigma(y)$ implies $\Delta^{\delta+1}\sigma(x) = \Delta^{\delta+1}\sigma(y)$ for all $x, y \in \mathcal{B}$.

Example

 $\delta(\operatorname{IntAlg}(1+\eta)) = 0 = \delta(\operatorname{IntAlg}(2 \cdot (1+\eta))).$ $\delta(\operatorname{IntAlg}((1+\eta) + 2 \cdot (1+\eta))) = 1.$

Theorem (Ketonen (1978))

The set $\Delta^{\delta(\mathcal{B})+2}\sigma(\mathcal{B})$ is an isomorphism invariant for $\mathcal{B}.$

Asher M. Kach (VUW / UConn)

Definition

Define a sequence of sets $\{\Delta^{\alpha}\sigma(\mathcal{B})\}_{\alpha\in\omega_1}$ by recursion simultaneously for all *uniform* Boolean algebras \mathcal{B} , where $\Delta^0\sigma(\mathcal{B}) = \rho(\mathcal{B})$ and

$$\Delta^{\alpha}\sigma(\mathcal{B}) = \{(\Delta^{\beta}\sigma(x_1),\ldots,\Delta^{\beta}\sigma(x_n)): \mathcal{B} = x_1 \oplus \cdots \oplus x_n, \beta < \alpha\}.$$

Definition

The depth $\delta(\mathcal{B})$ of a Boolean algebra \mathcal{B} is the least ordinal δ such that $\Delta^{\delta}\sigma(x) = \Delta^{\delta}\sigma(y)$ implies $\Delta^{\delta+1}\sigma(x) = \Delta^{\delta+1}\sigma(y)$ for all $x, y \in \mathcal{B}$.

Example

 $\delta(\operatorname{IntAlg}(1+\eta)) = 0 = \delta(\operatorname{IntAlg}(2 \cdot (1+\eta))).$ $\delta(\operatorname{IntAlg}((1+\eta) + 2 \cdot (1+\eta))) = 1.$

Theorem (Ketonen (1978))

The set $\Delta^{\delta(\mathcal{B})+2}\sigma(\mathcal{B})$ is an isomorphism invariant for $\mathcal{B}.$

Asher M. Kach (VUW / UConn)

Definition

Define a sequence of sets $\{\Delta^{\alpha}\sigma(\mathcal{B})\}_{\alpha\in\omega_1}$ by recursion simultaneously for all *uniform* Boolean algebras \mathcal{B} , where $\Delta^0\sigma(\mathcal{B}) = \rho(\mathcal{B})$ and

$$\Delta^{\alpha}\sigma(\mathcal{B}) = \{(\Delta^{\beta}\sigma(x_1),\ldots,\Delta^{\beta}\sigma(x_n)): \mathcal{B} = x_1 \oplus \cdots \oplus x_n, \beta < \alpha\}.$$

Definition

The depth $\delta(\mathcal{B})$ of a Boolean algebra \mathcal{B} is the least ordinal δ such that $\Delta^{\delta}\sigma(x) = \Delta^{\delta}\sigma(y)$ implies $\Delta^{\delta+1}\sigma(x) = \Delta^{\delta+1}\sigma(y)$ for all $x, y \in \mathcal{B}$.

Example

$$\delta(\operatorname{IntAlg}(1+\eta)) = 0 = \delta(\operatorname{IntAlg}(2 \cdot (1+\eta))).$$

$$\delta(\operatorname{IntAlg}((1+\eta) + 2 \cdot (1+\eta))) = 1.$$

Theorem (Ketonen (1978))

The set $\Delta^{\delta(\mathcal{B})+2}\sigma(\mathcal{B})$ is an isomorphism invariant for \mathcal{B} .

Asher M. Kach (VUW / UConn)

Work In Progress (Kach and Lempp).

If φ has models of arbitrarily high depth, then φ has continuum many models.

Proof.

Fix a Δ_{β}^{0} formula φ . Fix a model $\mathcal{B} \models \varphi$ of sufficiently large depth. Show that the Π_{β}^{0} theory of \mathcal{B} is unchanged if a $(\beta + 1)$ -fishbone is replaced with a sufficiently *large* Boolean algebra.

Definition

If \mathcal{B} is the interval algebra of a linear order \mathcal{L} , define \mathcal{B}_{α} to be the Boolean algebra IntAlg $(\mathcal{L} \cdot \omega^{\alpha})$.

Work In Progress (Kach and Lempp).

If φ has models of arbitrarily high depth, then φ has continuum many models.

Proof.

Fix a Δ_{β}^{0} formula φ . Fix a model $\mathcal{B} \models \varphi$ of sufficiently large depth. Show that the Π_{β}^{0} theory of \mathcal{B} is unchanged if a $(\beta + 1)$ -fishbone is replaced with a sufficiently *large* Boolean algebra.

Definition

If \mathcal{B} is the interval algebra of a linear order \mathcal{L} , define \mathcal{B}_{α} to be the Boolean algebra IntAlg($\mathcal{L} \cdot \omega^{\alpha}$).

Lemma (The Missing Lemma)

Fix an ordinal β . Any Boolean algebra β with $\delta(\beta) \gg \beta$ has a subalgebra (almost) of the form $\hat{\mathcal{B}}_{\beta}$ for some $\hat{\mathcal{B}}$, with $\Delta^{\beta}\sigma(\hat{\mathcal{B}}_{\beta_{1}}) = \Delta^{\beta}\sigma(\hat{\mathcal{B}}_{\beta_{2}})$ and $\hat{\mathcal{B}}_{\beta_{1}} \ncong \hat{\mathcal{B}}_{\beta_{2}}$ for all distinct $\beta_{1}, \beta_{2} \ge 0$.

Lemma

Fix an ordinal β *. If* $\alpha_1, \alpha_2 > \beta$ *and* σ *is a measure with* \mathcal{B}_{γ} *for* $\gamma > \beta$ *at* coding locations, *then*

 $Th(IntAlg(\mathcal{B}_{\alpha_1})) \cap \Pi_{\beta}^{0} = Th(IntAlg(\mathcal{B}_{\alpha_2})) \cap \Pi_{\beta}^{0} = Th(\mathcal{B}_{\sigma}) \cap \Pi_{\beta}^{0}$

Lemma (The Missing Lemma)

Fix an ordinal β . Any Boolean algebra β with $\delta(\beta) \gg \beta$ has a subalgebra (almost) of the form $\hat{\mathcal{B}}_{\beta}$ for some $\hat{\mathcal{B}}$, with $\Delta^{\beta}\sigma(\hat{\mathcal{B}}_{\beta_1}) = \Delta^{\beta}\sigma(\hat{\mathcal{B}}_{\beta_2})$ and $\hat{\mathcal{B}}_{\beta_1} \ncong \hat{\mathcal{B}}_{\beta_2}$ for all distinct $\beta_1, \beta_2 \ge 0$.

Lemma

Fix an ordinal β . If $\alpha_1, \alpha_2 > \beta$ and σ is a measure with \mathcal{B}_{γ} for $\gamma > \beta$ at coding locations, then

 $Th(IntAlg(\mathcal{B}_{\alpha_1})) \cap \Pi_{\beta}^{0} = Th(IntAlg(\mathcal{B}_{\alpha_2})) \cap \Pi_{\beta}^{0} = Th(\mathcal{B}_{\sigma}) \cap \Pi_{\beta}^{0}$

Proposition

If φ has uncountably many models of depth δ and rank ρ , then φ has continuum many models.

Proof.

Show $\mathbb{B} := \{ \mathcal{B} : \mathcal{B} \models \varphi \land \chi \land \psi \}$ is Borel, where χ states $\delta(\mathcal{B}) = \delta$ and ψ states $\rho(\mathcal{B}) = \rho$.

Let μ be the least ordinal α such that $\{\Delta^{\alpha}\sigma(x) : x \in \mathcal{B} \in \mathbb{B}\}$ is uncountable. Then $\{\Delta^{\alpha}\sigma(\mathcal{B}) : \mathcal{B} \in \mathbb{B}\}$ is also uncountable.

Show the latter set is analytic.

Vaught's Conjecture for First-Order Logic

2) Vaught's Conjecture for the Infinitary Logic $\mathcal{L}_{\omega_1,\omega}$

3 Borel Completeness

Corollary

If φ has models of arbitrarily high rank, then the isomorphism problem restricted to the models of φ is Borel complete.

If φ has models of arbitrarily high depth, then the isomorphism problem restricted to the models of φ is Borel complete.

If φ has models of rank ρ and depth δ (and no other models), then the isomorphism problem restricted to the models of φ is roughly $\Delta^{0}_{2\rho+2\delta}$ (thus not Borel complete).

Thanks for your attention!

Lutz Heindorf.

Alternative characterizations of finitary and well-founded Boolean algebras. *Algebra Universalis*, 29(1):109–135, 1992.

Paul Iverson.

The number of countable isomorphism types of complete extensions of the theory of Boolean algebras. *Collog. Math.*, 62(2):181–187, 1991.

Jussi Ketonen.

The structure of countable Boolean algebras. Ann. of Math. (2), 108(1):41–89, 1978.

R. S. Pierce.

Countable Boolean algebras.

In Handbook of Boolean algebras, Vol. 3, pages 775-876. North-Holland, Amsterdam, 1989.