
Making classical functions smooth

General Theme

Obtaining smooth (differentiable, or maybe Cn) real-valued functions,

where classical results only produced

functions or maybe continuous functions.

Some papers with my name on them

See my home page.

[1] J. Hart & K. Kunen, Arcs in the Plane,

Topology and Applications, to appear.

[2] K. Kunen, Locally Connected HL Compacta,

Topology and Applications, to appear.

[3] K. Kunen, Forcing and Differentiable Functions

to appear, somewhere . . .

See these for proofs, and for references to earlier results.
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An Example of the Theme

Two questions: Is it true that

for all B ∈ [R× R]ℵ1,

B can be covered by countably many curves / arcs?

curve = continuous image of [0, 1].

arc = continuous 1-1 image of [0, 1].

very classical: yes for curves (Peano, 1890), you can cover the plane.

somewhat classical: yes for arcs iff

all sets of size ℵ1 are first category.

→: A countable union of arcs is first category.

←: First cover B by countably many Cantor sets.

this is possible in R and hence in R× R.

But every Cantor set in the plane is contained in an arc.

So, the situation for arcs is clear under MA(ℵ1).

Now, focusing on arcs, Question:

Can your arcs be C1 or C2 or C3 or · · · · · · ?

Answers:

PFA implies “yes” for C1.

MA(ℵ1) is not enough here.

In ZFC , “no” for C2.

See [1][2] for proofs

but to sketch the reason for the “no” for C2:
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Why “no” for C2:

There is a B ∈ [R× R]ℵ1, such that

B meets every C2 arc in a finite set. Hence,

you can’t cover B with countably many C2 arcs (or curves).

In fact (Advanced Calculus Exercise), there’s actually a

Cantor set K ⊂ R× R with this property.

Hint: K is very ragged, so that an intersection of K

with a C2 arc A will contradict Taylor’s Theorem

at a limit point of K ∩A.

Technical point: for k ≥ 1,

“Ck arc” means the range of some continuous 1-1 Ψ : [a, b]→ R×R

such that Ψ is Ck in the usual sense

and Ψ is regular

(Ψ′ is never 0; equivalently, the parameter can be arc length)

If you delete “regular” (call this weakly Ck), then

under just MA(ℵ1), every B ∈ [R× R]ℵ1

can be covered by countably many weakly C∞ arcs.

Note: This curve is weakly C∞:

Just slow down at the corners.

Another example of the theme:
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On Dense Sets – another example of the theme

E ⊆ R is ℵ1 – dense iff E meets every open set in a set of size ℵ1.

Cantor: All ℵ0 – dense sets look alike.

What about ℵ1 – dense sets?

More precisely, let F be the set of all

continuous strictly increasing bijections from R onto R.

Question (Harvey Friedman, 196?):

Is it consistent that

Whenever D,E ⊆ R are ℵ1–dense,

there is an f ∈ F such that f(D) = E?

He knew:

Cantor: Yes for ℵ0–dense. (and, f can be C∞)

No under CH: R and R\{0} are not homeomorphic.

No in Cohen’s model for ¬CH:

some are first category and some aren’t

Typical 1960s question: OK, what about MA + ¬CH ?

Baumgartner (1973): it’s consistent to have MA + 2ℵ0 = ℵ2 + yes.

In hindsight, his proof shows PFA→ yes.

Avraham and Shelah (1981): Con(MA + 2ℵ0 = ℵ2 + no).

New question: Can you actually get f ∈ Cn (n ≥ 1)

say, under PFA ?

Some answers:
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Answers and More Questions

E ⊆ R is ℵ1 – dense iff E meets all open intervals in a set of size ℵ1.

F : all continuous strictly increasing bijections from R onto R.

Theorem 1 (ZFC ) There are ℵ1–dense D,E ⊆ R

such that there is no f ∈ F ∩ C1(R) with f(D) = E.

In fact, there is no f ∈ F ∩ C1(R) and ℵ1–dense

D∗ ⊆ D and E∗ ⊆ E such that f(D∗) = E∗.

Question 1 (§): What about FD ?

FD := the set of functions in F which are everywhere differentiable.

Theorem 2 (PFA)(partial answer) For any ℵ1–dense D,E ⊆ R

there is an f ∈ FD and an ℵ1–dense

D∗ ⊆ D such that f(D∗) = E.

Question 1 asks: Can you make D∗ = D?

“Question” 2 (§): In Theorem 1 (first two lines),

can you (in ZFC) distinguish someD,E by a quotable property?

(like, in the Cohen model, D is first category and E isn’t)

“Theorem” 3 (ZFC ) Yes for C2.

So, IOU three proofs.

Start with “Theorem” 3, since even the question isn’t clear:
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“Proof” of “Theorem” 3 page 1 of 2

“Theorem” 3 (ZFC ) There are ℵ1–dense D,E ⊆ R

such that there is no f ∈ F ∩ C2(R) such that f(D) = E.

Furthermore, there’s a “quotable” property involving C2 stuff

true of D and false of E.

Question 2 was: Can you replace “2” by “1”?

Consider Sierpiński’s text: Hypothèse du Continu, 1934 & 1956.

Many equivalents of CH , many of which really translate to

ZFC theorems characterizing ℵ1.

Example: Translating his CH ↔ P2

P2: “Le plan est une somme

d’une infinité dénombrable de courbes”.

you get the ZFC theorem:

E × E is a countable union of “curves” iff |E| ≤ ℵ1.

So, E can be R under CH .

“curve” in P2 means: a graph of a function or inverse function:

|E| ≤ ℵ1 ↔
∃ϕi : E → E (i ∈ ω)

s.t. E × E =
⋃
i(ϕi ∪ ϕ

−1

i )

E is just an abstract set;

there’s no continuity here.
E × E

ϕ0

ϕ1

ϕ−1

0
ϕ−1

1

BUT

Question: Suppose E ⊆ R and |E| = ℵ1.

Can the ϕi be continuous (C0)? or even smooth (C1, C2, . . .)?

The “quotable” property involves the ϕi being C2.
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“Proof” of “Theorem” 3 page 2 of 2

For n ∈ ω ∪ {∞}: E ⊆ R is n–small iff

∃ϕi ∈ C
n(R,R) (i ∈ ω)

s.t. E × E =
⋃
i(ϕi ∪ ϕ

−1

i )

C0 = “continuous”;

C∞ means Cn for all n ∈ ω.

E × E

ϕ0

ϕ1

ϕ−1

0
ϕ−1

1

Always, |E| = ℵ1:

By Sierpiński, |E| ≤ ℵ1 for every 0–small E, and

countable sets trivially are∞–small,

Remarks:

E is n–small iff E + Q is n–small.

|E| = ℵ1 implies E + Q is ℵ1–dense.

Theorem 3.1 (ZFC ) There is a D of size ℵ1 which is ∞–small.

Theorem 3.2 (ZFC ) There is an E of size ℵ1 which is not 2–small.

Then WLOG D,E are ℵ1–dense, and hence “Theorem” 3:

No C2 bijection can map D to E.

“2–small” is the “quotable” property.

More Remarks

Is every set of size ℵ1 0–small or even 1–small?

Under CH : R has size ℵ1 and is not 0–small (Baire).

Under MA(ℵ1): Every E of size ℵ1 is 0–small.

Under PFA: Every E of size ℵ1 is 1–small

so you need a different “quotable” property involving C1 stuff.

It’s consistent to have MA(ℵ1) plus

some set of size ℵ1 is not 1–small.
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Proof of Theorem 3.2

There is an E ⊆ R of size ℵ1 which is not 2–small:

E2 6⊆
⋃
i∈ω(ϕi ∪ ϕ

−1

i ).

Whenever the ϕi ∈ C
2(R,R).

That’s easy: Fix B ∈ [R× R]ℵ1, such that

B meets every C2 arc in a finite set, and let E = dom(B) ∪ ran(B).

Idea for Theorem 3.1

There’s a D ∈ [R]ℵ1 which is ∞–small.

Simpler fact: one can get D to be 0–small:

D ×D =
⋃
i(ϕi ∪ ϕ

−1

i ) ∪∆, where all ϕi are continuous

and ∆ is the diagonal (identity function).

Proof: First, replace R by the Cantor set, 2ω.

Then, some define “nice” ϕi : 2ω → 2ω. Then, choose D.

Let Γ map ω × ω 1-1 into ω. Let (ϕi(x))(j) = x(Γ(i, j)).

“Nice” Lemma: For all countable non-empty Z ⊆ 2ω,

there is an x ∈ 2ω such that Z = {ϕi(x) : i < ω}.
Proof: Let Z = {yi : i ∈ ω}.

Let x(Γ(i, j)) = yi(j) for all i, j; then ϕi(x) = yi.

Let D = {dα : α < ω1} where dα is chosen recursively

so that {dξ : ξ < α} ⊆ {ϕi(dα) : i ∈ ω}
Then ξ < α→ (dξ, dα) ⊆

⋃
i ϕi

and so that dα /∈ {dξ : ξ < α}
so the dα are all different.

No problem here — since there’s 2ℵ0 choices for dα.
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“Proof” of Theorem 1

FD = the functions in F which are everywhere differentiable.

Theorem 1 (ZFC ) There are ℵ1–dense D,E ⊆ R

such that for all ℵ1–dense D∗ ⊆ D and E∗ ⊆ E

and f ∈ FD with f(D∗) = E∗:

f ′(x) = 0 for all but countably many x ∈ D∗

so, f /∈ C1(R) because

f ′ is 0 on a dense set and > 0 on a dense set.

Lemma (advanced calculus exercise).

There are Cantor sets H,K ⊂ R such that

∀ε > 0 ∃δ > 0 ∀x0, x1 ∈ H ∀y0, y1 ∈ K
[0 < |x1 − x0| < δ ∧ 0 < |y1 − y0| < δ −→

(y1 − y0)/(x1 − x0) ∈ (−ε, ε) ∪ (1/ε,∞) ∪ (−∞,−1/ε)]

Proof of Theorem 1:

Fix H,K as in the lemma and then fix H̃ ∈ [H]ℵ1 and K̃ ∈ [K]ℵ1.

Let D =
⋃
{H̃ + s : s ∈ Q} and E =

⋃
{K̃ + t : t ∈ Q}.

Now, suppose we had f ∈ FD with f(D∗) = E∗,

and f ′(x) > 0 at ℵ1 points of D∗.

Then there’s ℵ1 of these in the same translate, so

some translate contains a convergent sequence of them.

So, we get dn → dω, all in one H + s

and en = f(dn)→ eω, all in one K + t.

But then (eω − en)/(dω − dn)→ f ′(dω) > 0,

contradicting the lemma, since translating back to H,K:

eω − en
dω − dn

=
(eω − t)− (en − t)

(dω − s)− (dn − s)
,

which should get close to 0 or ±∞ as nր ω.
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“Proof” of Theorem 2

Fix ℵ1–dense D,E ⊆ R.

Assume PFA. We produce f, g,D∗ such that

1. f is a strictly increasing bijection from R onto R.

2. g := f ′ exists everywhere.

3. D∗ ⊆ D is ℵ1–dense.

4. f(D∗) = E.

5. g(x) = 0 for x ∈ D∗.
6. {x : g(x) > 0} is dense (obvious from (1)(2) ).

7. {x : g(x) = 0} is dense (obvious from (5) )

so g is nowhere continuous.

(1)(2)(3)(4) restates Theorem 2.

(1)(2)(6)(7) is a classical ZFC construction (≈ 1890).

(5) is to be expected from proof of Theorem 1.

Question 1 was: Can you make D∗ = D?

Assume CH instead of PFA, and force f, g,D∗ by a ccc poset.

(the “collapse the continuum trick”).

CH is needed to make P ccc.

Amalgamate a classical construction

with Baumgartner’s proof (getting a continuous f).

Get continuous gn → g and fn → f (pointwise).

fn(x) =
∫ x

0
gn(t) dt and f(x) =

∫ x

0
g(t) dt.

A forcing condition gives you some g0, . . . gn, f0, . . . fn,

and a finite order-preserving σ ⊂ D × E.

The fn approximate σ and converge to f ⊃ σ.

Major problems:

1. Why does f ′ exist everywhere? (borrow classical ideas)

2. Why is the forcing ccc? (borrow Baumgartner’s ideas)
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Problem 1

Why does f ′ exist everywhere?

We have continuous fn → f and gn → g (pointwise).

fn(x) =
∫ x

0
gn(t) dt.

The gn are uniformly bounded, so f(x) =
∫ x

0
g(t) dt.

The gn are positive, so f and the fn are strictly increasing.

The convergence gn → g can’t be uniform;

you can’t get f ∈ C1, so g won’t be continuous.

But you need more to guarantee that f ′(x) = g(x) everywhere.

Problem: uniform convergence is too much

but pointwise convergence isn’t enough:

If gn(x) is:

1 for x ≤ −2−n

2 for x ≥ 2−n

linear for −2−n ≤ x ≤ 2−n
1

2

Then f(x) is x for x ≤ 0 and 2x for x ≥ 0, and f ′(0) doesn’t exist.

So you need to assume a little more about the convergence;

Following Katznelson and Stromberg (Math. Monthly, 1974):

f ′ will exist and equal g if gn+1 = gn − ψn + θn, where
∑

n θn
converges uniformly and the θn, ψn are positive functions and:

1

b−a

∫ b

a ψn(x) dx ≤ 4 min(ψn(a), ψn(b)) whenever a < b.

Remark (why are we doing this?); Following Baumgartner [1973]:

If all you want is a continuous f ∈ F with f(D) = E then

Each σ ∈ P is a finite order-preserving bijection; σ ⊂ D × E.

FG :=
⋃
G : D → E is order-preserving.

Let f = cl(FG) ∈ F , which is continuous (everywhere).

The fn, gn let you force f to be differentiable everywhere.
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Problem 2

Why is the forcing ccc?

Start with ℵ1–dense D,E ⊆ R. Assume CH .

p ∈ P gives you:

A finite order-preserving σp ⊂ D × E.

An Np ∈ ω and gpn, f
p
n for n < Np.

In V [G], the fn will approximate σ and converge to f ⊃ σ.

f pn(x) =
∫ x

0
gpn(t) dt.

Two obvious uncountable antichains:

1. There’s ℵ1 possibilities for σ(d) ∈ E.

2. There’s 2ℵ0 = ℵ1 possibilities for the fn and gn.

Fix with elementary submodels:

Let 〈Mξ : 0 < ξ < ω1〉 be a continuous chain of countable elementary

submodels of H(κ), with D,E ∈M1. Let M0 = ∅.
For x ∈

⋃
ξMξ, let ht(x), the height of x,

be the ξ such that x ∈Mξ+1\Mξ.

By CH , ht(x) is defined whenever x ∈ R or x is a Borel subset of R.

Avoid antichain 1: For (d, e) ∈ σ, ht(d) and ht(e) differ finitely.

Avoid antichain 2: Just require that the gpn, f
p
n ∈M1.

Third obvious uncountable antichain {pα : α < ω1}, where

σα = σpα = {(dα, eα)} and map dα → eα is order-reversing

Fix: Require ht(d) > ht(e) for (d, e) ∈ σ.

The more standard fix is ht(d) 6= ht(e).

But, this is incompatible with the requirements on the fn, gn;

But now, the domain of the generic function will be a

subset D∗ of D.

Hence Question 1: Can you make D∗ = D?
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