Making classical functions smooth

General Theme

Obtaining smooth (differentiable, or maybe C^n) real-valued functions, where classical results only produced functions or maybe continuous functions.

Some papers with my name on them

See my home page.

- [1] J. Hart & K. Kunen, Arcs in the Plane, Topology and Applications, to appear.
- [2] K. Kunen, Locally Connected HL Compacta, *Topology and Applications*, to appear.
- [3] K. Kunen, Forcing and Differentiable Functions to appear, somewhere ...

See these for proofs, and for references to earlier results.

An Example of the Theme

Two questions: Is it true that for all $B \in [\mathbb{R} \times \mathbb{R}]^{\aleph_1}$, B can be covered by countably many curves / arcs?

curve = continuous image of [0, 1]. , arc = continuous 1-1 image of [0, 1].

very classical: yes for curves (Peano, 1890), you can cover the plane.

somewhat classical: yes for arcs iff
all sets of size ℵ₁ are first category.
→: A countable union of arcs is first category.
←: First cover B by countably many Cantor sets.

this is possible in \mathbb{R} and hence in $\mathbb{R} \times \mathbb{R}$. But every Cantor set in the plane is contained in an arc.

So, the situation for arcs is clear under $MA(\aleph_1)$.

Now, focusing on arcs, Question: Can your arcs be C^1 or C^2 or C^3 or $\cdots ?$

Answers: PFA implies "yes" for C^1 . $MA(\aleph_1)$ is not enough here. In ZFC, "no" for C^2 .

See [1][2] for proofs

but to sketch the reason for the "no" for C^2 :

Why "no" for C^2 :

There is a $B \in [\mathbb{R} \times \mathbb{R}]^{\aleph_1}$, such that B meets every C^2 arc in a finite set. Hence, you can't cover B with countably many C^2 arcs (or curves).

In fact (Advanced Calculus Exercise), there's actually a Cantor set $K \subset \mathbb{R} \times \mathbb{R}$ with this property. Hint: K is very ragged, so that an intersection of K with a C^2 arc A will contradict Taylor's Theorem at a limit point of $K \cap A$.

Technical point: for $k \ge 1$,

" C^k arc" means the range of some continuous 1-1 $\Psi : [a, b] \to \mathbb{R} \times \mathbb{R}$ such that Ψ is C^k in the usual sense and Ψ is regular

(Ψ' is never 0; equivalently, the parameter can be arc length)

If you delete "regular" (call this weakly C^k), then under just $MA(\aleph_1)$, every $B \in [\mathbb{R} \times \mathbb{R}]^{\aleph_1}$ can be covered by countably many weakly C^{∞} arcs.

Another example of the theme:

On Dense Sets - another example of the theme

 $E \subseteq \mathbb{R}$ is \aleph_1 – dense iff E meets every open set in a set of size \aleph_1 . Cantor: All \aleph_0 – dense sets look alike. What about \aleph_1 – dense sets?

More precisely, let \mathcal{F} be the set of all continuous strictly increasing bijections from \mathbb{R} onto \mathbb{R} .

Question (Harvey Friedman, 196?): Is it consistent that Whenever $D, E \subseteq \mathbb{R}$ are \aleph_1 -dense, there is an $f \in \mathcal{F}$ such that f(D) = E?

He knew:

Cantor: Yes for \aleph_0 -dense. (and, f can be C^{∞}) No under CH: \mathbb{R} and $\mathbb{R}\setminus\{0\}$ are not homeomorphic. No in Cohen's model for $\neg CH$: some are first category and some aren't Typical 1960s question: OK, what about $MA + \neg CH$?

Baumgartner (1973): it's consistent to have $MA + 2^{\aleph_0} = \aleph_2 + \text{yes.}$ In hindsight, his proof shows $PFA \rightarrow \text{yes.}$

Avraham and Shelah (1981): $\operatorname{Con}(MA + 2^{\aleph_0} = \aleph_2 + \operatorname{no}).$

New question: Can you actually get $f \in C^n \ (n \ge 1)$ say, under *PFA* ?

Some answers:

Answers and More Questions

 $E \subseteq \mathbb{R}$ is \aleph_1 – dense iff E meets all open intervals in a set of size \aleph_1 . \mathcal{F} : all continuous strictly increasing bijections from \mathbb{R} onto \mathbb{R} .

Theorem 1 (ZFC) There are \aleph_1 -dense $D, E \subseteq \mathbb{R}$ such that there is no $f \in \mathcal{F} \cap C^1(\mathbb{R})$ with f(D) = E. In fact, there is no $f \in \mathcal{F} \cap C^1(\mathbb{R})$ and \aleph_1 -dense $D^* \subseteq D$ and $E^* \subseteq E$ such that $f(D^*) = E^*$.

Question 1 ($\textcircled{\odot}$): What about $\mathcal{F}D$? $\mathcal{F}D$:= the set of functions in \mathcal{F} which are everywhere differentiable.

Theorem 2 (*PFA*)(partial answer) For any \aleph_1 -dense $D, E \subseteq \mathbb{R}$ there is an $f \in \mathcal{F}D$ and an \aleph_1 -dense $D^* \subseteq D$ such that $f(D^*) = E$. Question 1 asks: Can you make $D^* = D$?

"Question" 2 ($\textcircled{\odot}$): In Theorem 1 (first two lines), can you (in ZFC) distinguish some D, E by a *quotable* property? (like, in the Cohen model, D is first category and E isn't)

"Theorem" 3 (ZFC) Yes for C^2 .

So, IOU three proofs.

Start with "Theorem" 3, since even the question isn't clear:

"Proof" of "Theorem" 3 page 1 of 2

"Theorem" 3 (ZFC) There are \aleph_1 -dense $D, E \subseteq \mathbb{R}$ such that there is no $f \in \mathcal{F} \cap C^2(\mathbb{R})$ such that f(D) = E. Furthermore, there's a "quotable" property involving C^2 stuff true of D and false of E. Question 2 was: Can you replace "2" by "1"?

Consider Sierpiński's text: Hypothèse du Continu, 1934 & 1956. Many equivalents of CH, many of which really translate to ZFC theorems characterizing \aleph_1 .

Example: Translating his $CH \leftrightarrow P_2$

 P_2 : "Le plan est une somme d'une infinité dénombrable de courbes".

you get the ZFC theorem:

 $E \times E$ is a countable union of "curves" iff $|E| \leq \aleph_1$. So, E can be \mathbb{R} under CH.

"curve" in P_2 means: a graph of a function or inverse function:

$$\begin{split} |E| &\leq \aleph_1 \leftrightarrow \\ \exists \varphi_i : E \to E \ (i \in \omega) \\ \text{s.t. } E \times E &= \bigcup_i (\varphi_i \cup \varphi_i^{-1}) \\ E \text{ is just an abstract set;} \\ \text{there's no continuity here.} \end{split}$$

BUT

Question: Suppose $E \subseteq \mathbb{R}$ and $|E| = \aleph_1$. Can the φ_i be continuous (C^0) ? or even smooth (C^1, C^2, \ldots) ? The "quotable" property involves the φ_i being C^2 .

No C^2 bijection can map D to E.

"2–small" is the "quotable" property.

More Remarks

Is every set of size \aleph_1 0–small or even 1–small?

Under CH: \mathbb{R} has size \aleph_1 and is not 0-small (Baire).

Under $MA(\aleph_1)$: Every E of size \aleph_1 is 0-small.

Under *PFA*: Every *E* of size \aleph_1 is 1–small

so you need a different "quotable" property involving C^1 stuff.

It's consistent to have $MA(\aleph_1)$ plus

some set of size \aleph_1 is not 1–small.

Proof of Theorem 3.2

There is an $E \subseteq \mathbb{R}$ of size \aleph_1 which is not 2-small: $E^2 \not\subseteq \bigcup_{i \in \omega} (\varphi_i \cup \varphi_i^{-1}).$ Whenever the $\varphi_i \in C^2(\mathbb{R}, \mathbb{R}).$ That's easy: Fix $B \in [\mathbb{R} \times \mathbb{R}]^{\aleph_1}$, such that B meets every C^2 arc in a finite set, and let $E = \operatorname{dom}(B) \cup \operatorname{ran}(B).$

Idea for Theorem 3.1

There's a $D \in [\mathbb{R}]^{\aleph_1}$ which is ∞ -small.

Simpler fact: one can get D to be 0-small: $D \times D = \bigcup_i (\varphi_i \cup \varphi_i^{-1}) \cup \Delta$, where all φ_i are continuous and Δ is the diagonal (identity function). Proof: First, replace \mathbb{R} by the Cantor set, 2^{ω} . Then, some define "nice" $\varphi_i : 2^{\omega} \to 2^{\omega}$. Then, choose D. Let $(\varphi_i(x))(j) = x(\Gamma(i, j)).$ Let Γ map $\omega \times \omega$ 1-1 into ω . "Nice" Lemma: For all countable non-empty $Z \subseteq 2^{\omega}$, there is an $x \in 2^{\omega}$ such that $Z = \{\varphi_i(x) : i < \omega\}.$ Proof: Let $Z = \{y_i : i \in \omega\}.$ Let $x(\Gamma(i, j)) = y_i(j)$ for all i, j; then $\varphi_i(x) = y_i$. Let $D = \{d_{\alpha} : \alpha < \omega_1\}$ where d_{α} is chosen recursively so that $\{d_{\xi} : \xi < \alpha\} \subset \{\varphi_i(d_{\alpha}) : i \in \omega\}$ Then $\xi < \alpha \to (d_{\xi}, d_{\alpha}) \subseteq \bigcup_i \varphi_i$ and so that $d_{\alpha} \notin \{d_{\xi} : \xi < \alpha\}$ so the d_{α} are all different. No problem here — since there's 2^{\aleph_0} choices for d_{α} .

"Proof" of Theorem 1

 $\mathcal{F}D = \text{the functions in } \mathcal{F} \text{ which are everywhere differentiable.}$ Theorem 1 (*ZFC*) There are \aleph_1 -dense $D, E \subseteq \mathbb{R}$ such that for all \aleph_1 -dense $D^* \subseteq D$ and $E^* \subseteq E$ and $f \in \mathcal{F}D$ with $f(D^*) = E^*$: f'(x) = 0 for all but countably many $x \in D^*$ so, $f \notin C^1(\mathbb{R})$ because f' is 0 on a dense set and > 0 on a dense set.

Lemma (advanced calculus exercise).

There are Cantor sets $H, K \subset \mathbb{R}$ such that $\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_0, x_1 \in H \ \forall y_0, y_1 \in K$ $[0 < |x_1 - x_0| < \delta \land 0 < |y_1 - y_0| < \delta \longrightarrow$ $(y_1 - y_0)/(x_1 - x_0) \in (-\varepsilon, \varepsilon) \cup (1/\varepsilon, \infty) \cup (-\infty, -1/\varepsilon)]$

Proof of Theorem 1:

Fix H, K as in the lemma and then fix $\widetilde{H} \in [H]^{\aleph_1}$ and $\widetilde{K} \in [K]^{\aleph_1}$. Let $D = \bigcup \{\widetilde{H} + s : s \in \mathbb{Q}\}$ and $E = \bigcup \{\widetilde{K} + t : t \in \mathbb{Q}\}.$

Now, suppose we had $f \in \mathcal{F}D$ with $f(D^*) = E^*$, and f'(x) > 0 at \aleph_1 points of D^* .

Then there's \aleph_1 of these in the same translate, so

some translate contains a convergent sequence of them.

So, we get $d_n \to d_\omega$, all in one H + s

and $e_n = f(d_n) \to e_{\omega}$, all in one K + t. But then $(e_{\omega} - e_n)/(d_{\omega} - d_n) \to f'(d_{\omega}) > 0$, contradicting the lemma, since translating back to H, K:

$$\frac{e_{\omega}-e_n}{d_{\omega}-d_n} = \frac{(e_{\omega}-t)-(e_n-t)}{(d_{\omega}-s)-(d_n-s)} ,$$

which should get close to 0 or $\pm \infty$ as $n \nearrow \omega$.

"Proof" of Theorem 2

Fix \aleph_1 -dense $D, E \subseteq \mathbb{R}$. Assume *PFA*. We produce f, g, D^* such that 1. f is a strictly increasing bijection from \mathbb{R} onto \mathbb{R} . 2. g := f' exists everywhere. 3. $D^* \subseteq D$ is \aleph_1 -dense. 4. $f(D^*) = E$. 5. g(x) = 0 for $x \in D^*$. 6. $\{x : g(x) > 0\}$ is dense (obvious from (1)(2)). 7. $\{x : g(x) = 0\}$ is dense (obvious from (5)) so g is nowhere continuous. (1)(2)(3)(4) restates Theorem 2. (1)(2)(6)(7) is a classical *ZFC* construction (\approx 1890). (5) is to be expected from proof of Theorem 1.

Question 1 was: Can you make $D^* = D$?

Assume CH instead of PFA, and force f, g, D^* by a ccc poset. (the "collapse the continuum trick").

CH is needed to make \mathbb{P} ccc.

Amalgamate a classical construction

with Baumgartner's proof (getting a continuous f). Get continuous $q_n \to q$ and $f_n \to f$ (*pointwise*).

 $f_n(x) = \int_0^x g_n(t) dt$ and $f(x) = \int_0^x g(t) dt$.

A forcing condition gives you some $g_0, \ldots g_n, f_0, \ldots f_n$, and a finite order-preserving $\sigma \subset D \times E$.

The f_n approximate σ and converge to $f \supset \sigma$.

Major problems:

1. Why does f' exist everywhere? (borrow classical ideas) 2. Why is the forcing ccc? (borrow Baumgartner's ideas)

Problem 1

Why does f' exist everywhere?

We have continuous $f_n \to f$ and $g_n \to g$ (pointwise). $f_n(x) = \int_0^x g_n(t) dt$. The g_n are uniformly bounded, so $f(x) = \int_0^x g(t) dt$. The g_n are positive, so f and the f_n are strictly increasing.

The convergence $g_n \rightarrow g$ can't be uniform;

you can't get $f \in C^1$, so g won't be continuous. But you need more to guarantee that f'(x) = g(x) everywhere. Problem: uniform convergence is too much

but pointwise convergence isn't enough:

If $g_n(x)$ is:

1 for $x \le -2^{-n}$ 2 for $x \ge 2^{-n}$ linear for $-2^{-n} \le x \le 2^{-n}$ 1

Then f(x) is x for $x \leq 0$ and 2x for $x \geq 0$, and f'(0) doesn't exist.

So you need to assume a little more about the convergence; Following Katznelson and Stromberg (Math. Monthly, 1974): f' will exist and equal g if $g_{n+1} = g_n - \psi_n + \theta_n$, where $\sum_n \theta_n$ converges uniformly and the θ_n, ψ_n are positive functions and: $\frac{1}{b-a} \int_a^b \psi_n(x) dx \le 4 \min(\psi_n(a), \psi_n(b))$ whenever a < b.

Remark (why are we doing this?); Following Baumgartner [1973]: If all you want is a *continuous* $f \in \mathcal{F}$ with f(D) = E then

Each $\sigma \in \mathbb{P}$ is a finite order-preserving bijection; $\sigma \subset D \times E$. $F_G := \bigcup G : D \to E$ is order-preserving.

Let $f = \operatorname{cl}(F_G) \in \mathcal{F}$, which is continuous (*everywhere*).

The f_n, g_n let you force f to be *differentiable* everywhere.

$Problem \ 2$

Why is the forcing ccc? Start with \aleph_1 -dense $D, E \subseteq \mathbb{R}$. Assume CH. $p \in \mathbb{P}$ gives you: A finite order-preserving $\sigma^p \subset D \times E$. An $N^p \in \omega$ and g_n^p, f_n^p for $n < N^p$. In V[G], the f_n will approximate σ and converge to $f \supset \sigma$. $f_n^p(x) = \int_0^x g_n^p(t) dt$.

Two obvious uncountable antichains:

1. There's \aleph_1 possibilities for $\sigma(d) \in E$.

2. There's $2^{\aleph_0} = \aleph_1$ possibilities for the f_n and g_n .

Fix with elementary submodels:

Let $\langle M_{\xi} : 0 < \xi < \omega_1 \rangle$ be a continuous chain of countable elementary submodels of $H(\kappa)$, with $D, E \in M_1$. Let $M_0 = \emptyset$. For $x \in \bigcup_{\xi} M_{\xi}$, let ht(x), the *height* of x,

be the ξ such that $x \in M_{\xi+1} \setminus M_{\xi}$.

By CH, ht(x) is defined whenever $x \in \mathbb{R}$ or x is a Borel subset of \mathbb{R} . Avoid antichain 1: For $(d, e) \in \sigma$, ht(d) and ht(e) differ finitely. Avoid antichain 2: Just require that the $g_n^p, f_n^p \in M_1$.

Third obvious uncountable antichain $\{p_{\alpha} : \alpha < \omega_1\}$, where

 $\sigma_{\alpha} = \sigma^{p_{\alpha}} = \{(d_{\alpha}, e_{\alpha})\}$ and map $d_{\alpha} \to e_{\alpha}$ is order-*reversing* Fix: Require $\operatorname{ht}(d) > \operatorname{ht}(e)$ for $(d, e) \in \sigma$.

The more standard fix is $ht(d) \neq ht(e)$.

But, this is incompatible with the requirements on the f_n, g_n ; But now, the domain of the generic function will be a subset D^* of D.

Hence Question 1: Can you make $D^* = D$?