Making classical functions smooth

General Theme

Obtaining smooth (differentiable, or maybe C™) real-valued functions,
where classical results only produced
functions or maybe continuous functions.

Some papers with my name on them
See my home page.

[1] J. Hart & K. Kunen, Arcs in the Plane,
Topology and Applications, to appear.

[2] K. Kunen, Locally Connected HL. Compacta,
Topology and Applications, to appear.

[3] K. Kunen, Forcing and Differentiable Functions
to appear, somewhere . ..

See these for proofs, and for references to earlier results.

An Example of the Theme

Two questions: Is it true that
for all B € [R x RJ™,
B can be covered by countably many curves / arcs?

curve = continuous image of [0, 1].
arc = continuous 1-1 image of [0, 1].

very classical: yes for curves (Peano, 1890), you can cover the plane.

somewhat classical: yes for arcs iff
all sets of size Wy are first category.
—: A countable union of arcs is first category.
«: First cover B by countably many Cantor sets.
this is possible in R and hence in R x R.
But every Cantor set in the plane is contained in an arc.

So, the situation for arcs is clear under MA(N;).

Now, focusing on arcs, Question:
Can your arcs be C* or C? or C? or

Answers:

PFA implies “yes” for C.
MA(Ry) is not enough here.

In ZFC, “no” for C?.

See [1][2] for proofs

but to sketch the reason for the “no” for C?:
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Why “no” for C?:

There is a B € [R x RJ* | such that
B meets every C? arc in a finite set. Hence,
you can’t cover B with countably many C? arcs (or curves).

In fact (Advanced Calculus Exercise), there’s actually a
Cantor set K C R x R with this property.

Hint: K is very ragged, so that an intersection of K
with a C? arc A will contradict Taylor’s Theorem
at a limit point of K N A.

Technical point: for £ > 1,
“C* arc” means the range of some continuous 1-1 ¥ : [a,b] — R x R
such that ¥ is C* in the usual sense
and VU is reqular
(W is never 0; equivalently, the parameter can be arc length)

If you delete “regular” (call this weakly C*), then
under just MA(Ry), every B € [R x R
can be covered by countably many weakly C'*° arcs.

Note: This curve is weakly C:

Just slow down at the corners. m

Another example of the theme:

On Dense Sets — another example of the theme

E C Ris Ny — dense iff £ meets every open set in a set of size Ny.
Cantor: All ¥y — dense sets look alike.
What about N; — dense sets?

More precisely, let F be the set of all
continuous strictly increasing bijections from R onto R.

Question (Harvey Friedman, 1967):

[s it consistent that
Whenever D, E C R are ¥;—dense,
there is an f € F such that f(D) = E?

He knew:
Cantor: Yes for Ry-dense. (and, f can be C'*)
No under CH: R and R\{0} are not homeomorphic.
No in Cohen’s model for ~C'H:
some are first category and some aren’t
Typical 1960s question: OK, what about MA + -CH?

Baumgartner (1973): it’s consistent to have MA + 2% = R, + ves.
In hindsight, his proof shows PFA — yes.

Avraham and Shelah (1981): Con(MA + 2% = R, + no).

New question: Can you actually get f € C" (n > 1)
say, under PFA 7

Some answers:



Answers and More Questions “Proof” of “Theorem” 3 page 1 of 2

“Th 7 3(ZFC) Th N;-dense D, E C R
E C Ris Ny — dense iff ' meets all open intervals in a set of size ;. e::ce}?l that(there)is noer; Zr;% 062?]?;) séch alat F(D) = FE

- all ' ictly i ' ijections f R R. . .
F: all continuous strictly increasing bijections from R onto Furthermore, there’s a “quotable” property involving C? stuff

true of D and false of E.
Theorem 1 (ZFC') There are Ry—dense D, B C R Question 2 was: Can you replace “2” by “177

such that there is no f € F N CYR) with f(D) = E.
In fact, there is no f € F N CY(R) and R;—dense Consider Sierpinski’s text: Hypothese du Continu, 1934 & 1956.

D* C D and E* C E such that f(D*) = E*. Many equivalents of CH, many of which really translate to
B B ZFC theorems characterizing N;.

Question 1 (©): What about FD ? Example: Translating his CH < P,
F D := the set of functions in F which are everywhere differentiable. Ps: “Le plan est une somme
d’une infinité dénombrable de courbes”.

you get the ZFC' theorem:
E x FE is a countable union of “curves” iff |E| < V.
So, E can be R under CH.

Theorem 2 (PFA)(partial answer) For any R;-dense D, E C R
there is an f € FD and an N;-dense
D* C D such that f(D*) = E.

Question 1 asks: Can you make D* = D? “curve” in Py means: a graph of a function or inverse function:
Bl <N o ot e
“Question” 2 (®): In Theorem 1 (first two lines), dp;: E— E (i €w) { )
can you (in ZFC) distinguish some D, E by a quotable property? st. Ex E=,(¢:Up ) L 0

(like, in the Cohen model, D is first category and E isn’t) £ is just an abstract set;

there’s no continuity here.
| Pl

“Theorem” 3 (ZFC') Yes for C?.

BUT
So, IOU three proofs.
Question: Suppose £ C R and |E| = N;.
Start with “Theorem” 3, since even the question isn’t clear: Can the ¢; be continuous (C%)?  or even smooth (C*, C?,...)?
The “quotable” property involves the ¢; being C2.



“Proof” of “Theorem” 3 page 2 of 2

Forn € wU {oco}: E C R is n—small iff / \
dp; € C"(R,R) (i € w)
st. Ex B=U(e:Up") s
C" = “continuous”;
C* means C" for all n € w.

- ¥l

Always, |E| = Ny
By Sierpinski, |E| < N; for every 0-small E, and
countable sets trivially are oo—small,

Remarks:

E is n—small iff E 4+ Q is n—small.

|E| = N; implies £+ Q is N;-dense.
Theorem 3.1 (ZFC') There is a D of size Ry which is co-small.
Theorem 3.2 (ZFC') There is an E of size X; which is not 2-small.
Then WLOG D, E are Ny—dense, and hence “Theorem” 3:

No C? bijection can map D to E.

“2—small” is the “quotable” property.

More Remarks

Is every set of size ¥y O—small or even 1-small?
Under CH: R has size R; and is not 0-small (Baire).
Under MA(Ry): Every E of size 8y is O-small.
Under PFA: Every E of size Ny is 1-small

so you need a different “quotable” property involving C! stuff.

[t’s consistent to have MA(X;) plus
some set of size Ny is not 1-small.
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Proof of Theorem 3.2

There is an £ C R of size Ny which is not 2-small:
E*Z U (iU ).
Whenever the p; € C*(R,R).
That’s easy: Fix B € [R x R]™, such that
B meets every C? arc in a finite set, and let £ = dom(B) U ran(B).

Idea for Theorem 3.1
There’s a D € [R]™ which is co-small.

Simpler fact: one can get D to be O-small:
D x D =J,(¢:Up; ") UA, where all ¢; are continuous
and A is the diagonal (identity function).

Proof: First, replace R by the Cantor set, 2*.

Then, some define “nice” ¢; : 2% — 2%, Then, choose D.

Let (i(2))(7) = 2(T'(i, 7))-

“Nice” Lemma: For all countable non-empty Z C 2
there is an x € 2 such that Z = {¢;(z) : i < w}.
Proof: Let Z = {y; 1 i € w}.
Let 2(I'(i, 7)) = yi(j) for all 4, j; then ¢;(z) = y;.

Let I' map w x w 1-1 into w.

Let D = {d, : @ < wy} where d, is chosen recursively
so that {d¢ : € < a} C{pi(dy) 17 € w}
Then & < o — (dg, do) C U, @i
and so that d,, ¢ {d¢ : £ < a}
so the d,, are all different.
No problem here — since there’s 2% choices for d,,.



“Proof” of Theorem 1

F D = the functions in F which are everywhere differentiable.
Theorem 1 (ZFC') There are ¥y-dense D, E C R
such that for all Xy—dense D* C D and E* C E
and f € FD with f(D*) = E*:
f'(xz) = 0 for all but countably many x € D*
so, f ¢ CHR) because
f"is 0 on a dense set and > 0 on a dense set.

Lemma (advanced calculus exercise).
There are Cantor sets H, K C R such that
Ve > 040 > 0Vxy,x1 € HVyy,y1 € K
0<|r;—20|<d ANO<|y1 —yol <d —
(41 = 90)/ (21 — w0) € (—&,6) U (1/e,00) U (=00, ~1/e)]

Proof of Theorem 1:

Fix H, K as in the lemma and then fix H € [H]Y and K € [K]™.

Let D={H+s:s€Qland E=J{K +t:teQ}.

Now, suppose we had f € FD with f(D*) = E*,
and f'(x) > 0 at ¥y points of D*.
Then there’s ¥ of these in the same translate, so
some translate contains a convergent sequence of them.
So, we get d, — d,,, all in one H + s
and e, = f(d,) — e, all in one K +t.
But then (e, —e,)/(d, — d,) — f'(d,) > 0,
contradicting the lemma, since translating back to H, K:

ew—en (e, —t)— (e, —1)

dy,—d, (d,—3s)—(d,—3s) "’
which should get close to 0 or £oo asn " w.

“Proof” of Theorem 2

Fix Ny—dense D, E C R.
Assume PFA. We produce f, g, D* such that
. f is a strictly increasing bijection from R onto R.
. g = [ exists everywhere.
. D* C D is Xy—dense.
. f(D*)=E.
g(x) =0for x € D*.
. A{x: g(x) > 0} is dense (obvious from (1)(2) ).
. {x: g(x) = 0} is dense (obvious from (5) )
so g is nowhere continuous.
(1)(2)(3)(4) restates Theorem 2.
(1)(2)(6)(7) is a classical ZFC' construction (= 1890).
(5) is to be expected from proof of Theorem 1.

O I R
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Question 1 was: Can you make D* = D?

Assume CH instead of PFA, and force f, g, D* by a ccc poset.
(the “collapse the continuum trick”).
CH is needed to make P ccc.
Amalgamate a classical construction
with Baumgartner’s proof (getting a continuous f).
Get continuous g, — ¢ and f, — f (pointwise).
folz) = foL gn(t) dt and f(z) = foL g(t) dt.
A forcing condition gives you some go, . .. gn, fo,--- fn,
and a finite order-preserving o C D X E.
The f,, approximate o and converge to f D o.

Major problems:
1. Why does f” exist everywhere? (borrow classical ideas)
2. Why is the forcing cce? (borrow Baumgartner’s ideas)
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Problem 1
Why does [ exist everywhere?

We have continuous f, — f and g, — ¢ (pointwise).
Ful) = [ gult) dt.

The g,, are uniformly bounded, so f(z) = for g(t)dt.

The g, are positive, so f and the f,, are strictly increasing.

The convergence g, — ¢ can’t be uniform;
you can’t get f € C!, so g won’t be continuous.
But you need more to guarantee that f'(z) = g(x) everywhere.
Problem: uniform convergence is too much
but pointwise convergence isn’t enough:
If gn(z) is:
1forz < —277 2
2forx >27" —/—
linear for —27" < g <277 1

Then f(x)is x for < 0 and 2z for z > 0, and f’(0) doesn’t exist.

So you need to assume a little more about the convergence;
Following Katznelson and Stromberg (Math. Monthly, 1974):
f" will exist and equal ¢ if g,41 = g5, — ¥ + 6,, where > 0,
converges uniformly and the 6,,, 1), are positive functions and:
= fab Yy(x) dr < 4min(,(a), ¥, (b))  whenever a < b.

Remark (why are we doing this?); Following Baumgartner [1973]:
If all you want is a continuous f € F with f(D) = E then
Each o € P is a finite order-preserving bijection; o C D X E.
Fe =G : D — FE is order-preserving.
Let f = cl(Fg) € F, which is continuous (everywhere).
The f,, g, let you force f to be differentiable everywhere.
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Problem 2
Why is the forcing ccc?
Start with X;—dense D, E C R. Assume CH.
p € P gives you:
A finite order-preserving o? C D x E.
An NP ¢ w and ¢%, fF for n < N?.
In V[G], the f, will approzimate o and converge to f D o.
f2(@) = [ ght) .

Two obvious uncountable antichains:
1. There’s Ry possibilities for o(d) € E.
2. There’s 2% = X possibilities for the f, and g,.

Fix with elementary submodels:
Let (Mg : 0 < £ < wy) be a continuous chain of countable elementary
submodels of H(k), with D, E € M;. Let My = 0.
For z € [J; M, let ht(x), the height of z,
be the £ such that x € Me 1\ M.
By CH, ht(z) is defined whenever z € R or x is a Borel subset of R.
Avoid antichain 1. For (d, e) € o, ht(d) and ht(e) differ finitely.
Avoid antichain 2: Just require that the g2, f2 € M;.

Third obvious uncountable antichain {p, : @ < wy}, where
0o = 0P ={(d,, e,)} and map d, — e, is order-reversing
Fix: Require ht(d) > ht(e) for (d,e) € 0.

The more standard fix is ht(d) # ht(e).
But, this is incompatible with the requirements on the f,, g,;
But now, the domain of the generic function will be a
subset D* of D.

Hence Question 1: Can you make D* = D?
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