Self-commuting lattice polynomial functions

Erkko Lehtonen joint work with Miguel Couceiro

University of Luxembourg

BLAST 2010 Boulder, CO, 2–6 June 2010

Commuting operations

Let *A* be an arbitrary set, and *n* and *m* positive integers.

We denote $[n] := \{1, ..., n\}.$

Definition

We say that $f: A^n \to A$ and $g: A^m \to A$ commute if

$$\begin{split} f\big(g(a_{11},a_{12},\ldots,a_{1m}),\ldots,g(a_{n1},a_{n2},\ldots,a_{nm})\big) \\ &= g\big(f(a_{11},a_{21},\ldots,a_{n1}),\ldots,f(a_{1m},a_{2m},\ldots,a_{nm})\big), \end{split}$$

for all $a_{ij} \in A \ (i \in [n], j \in [m])$.

If f and g commute, then we write $f \perp g$.

Commuting operations

In other words, f and g commute if

$$g(a_{11} \ a_{12} \ \cdots \ a_{1m}) = c_1$$
 $g(a_{21} \ a_{22} \ \cdots \ a_{2m}) = c_2$
 $\vdots \ \vdots \ \cdots \ \vdots \ \vdots$
 $g(a_{n1} \ a_{n2} \ \cdots \ a_{nm}) = c_n$
 $g(a_{n1} \ a_{n2} \ \cdots \ a_{nm}) = c_n$
 $g(a_{n1} \ a_{n2} \ \cdots \ a_{nm}) = c_n$

A particular case ...

For
$$n=m=2$$
, we have $f\perp g$ if
$$f\big(g(a_{11},a_{12}),g(a_{21},a_{22})\big)=g\big(f(a_{11},a_{21}),f(a_{12},a_{22})\big).$$

Theorem (Eckmann-Hilton, 1962)

If f and g are binary operations on A with an identity element and $f \perp g$, then f = g and (A; f) is a commutative monoid.

The relevance of commutation in universal algebra:

Commutation is the defining property of:

- entropic algebras,
- modes,
- centralizer clones,
- 4 ..

Self-commuting operations

Let A be an arbitrary set, and n a positive integer.

Definition

An operation $f: A^n \to A$ is self-commuting (or bisymmetric) if $f \perp f$, that is,

$$\begin{split} f\big(f(a_{11},a_{12},\ldots,a_{1n}),\ldots,f(a_{n1},a_{n2},\ldots,a_{nn})\big) \\ &= f\big(f(a_{11},a_{21},\ldots,a_{n1}),\ldots,f(a_{1n},a_{2n},\ldots,a_{nn})\big), \end{split}$$

for every $a_{ij} \in A$.

A particular case ...

An algebra (A; f) where f is a binary operation that satisfies the identity

$$f(f(a_{11}, a_{12}), f(a_{21}, a_{22})) = f(f(a_{11}, a_{21}), f(a_{12}, a_{22}))$$

is called a medial groupoid.

Thus, the notion of self-commutation generalizes mediality.

Lattice polynomial functions

Let $(L; \wedge, \vee)$ be a lattice with least and greatest elements 0 and 1, respectively.

Definition

A (lattice) polynomial function is any map $p: L^n \to L$ which is a composition of

- \bullet the lattice operations \wedge , \vee ,
- 2 projections $\mathbf{x} \mapsto x_i$, $i \in [n]$, and
- **3** constant functions $\mathbf{x} \mapsto c$, $c \in L$.

Representations: disjunctive normal form

A function $p: L^n \to L$ has a disjunctive normal form (**DNF**) if

$$p(\mathbf{x}) = \bigvee_{I \subseteq [n]} \left(a_I \wedge \bigwedge_{i \in I} x_i \right)$$

for some $a_l \in L (I \subseteq [n])$.

Representations: disjunctive normal form

Proposition (Goodstein 1965)

Let $(L; \wedge, \vee)$ be a bounded distributive lattice. A function $p: L^n \to L$ is a polynomial function if and only if it has the **DNF**

$$p(\mathbf{x}) = \bigvee_{I \subseteq [n]} (p(\mathbf{e}_I) \wedge \bigwedge_{i \in I} x_i),$$

where for $I \subseteq [n]$, $\mathbf{e}_I \in \{0, 1\}^n$ is the characteristic vector of I:

$$(\mathbf{e}_I)_i = \begin{cases} 1 & \text{if } i \in I, \\ 0 & \text{if } i \notin I. \end{cases}$$

A few consequences ...

Corollary

Let L be a bounded distributive lattice. Every polynomial function $p: L^n \to L$ is uniquely determined by its restriction to $\{0,1\}^n$.

Corollary

Every polynomial function $p: L^n \to L$ over a bounded distributive lattice L has a **DNF**

$$p(\mathbf{x}) = \bigvee_{I \subseteq [n]} (a_I \wedge \bigwedge_{i \in I} x_i),$$

where $a_I \leq a_J$ whenever $I \subseteq J$.

Our problem

Problem

Explicitly describe the self-commuting lattice polynomial functions.

Sufficient conditions: weighted disjunction

A polynomial function $f: L^n \to L$ is a weighted disjunction if

$$f(x_1, x_2, \ldots, x_n) = a_{\emptyset} \vee \bigvee_{i \in [n]} (a_i \wedge x_i)$$

for some $a_0, a_1, \ldots, a_n \in L$.

Lemma

Let *L* be a distributive lattice. If $f: L^n \to L$ is a weighted disjunction, then it is self-commuting.

Sufficient conditions: chain form

We say that $f: L^n \to L$ has chain form if

$$f(x_1, x_2, \dots, x_n) = a_{\emptyset} \vee \bigvee_{i \in [n]} (a_i \wedge x_i) \vee \bigvee_{1 \leq \ell \leq r} (a_{S_{\ell}} \wedge \bigwedge_{i \in S_{\ell}} x_i),$$

where $r \ge 1$, $|S_1| \ge 2$, and

- ② for all $i \in [n]$, there is a $j \in S_1$ such that $a_i \leq a_j$.

Sufficient conditions: chain form

Lemma

Let *L* be a distributive lattice. If $f: L^n \to L$ has chain form, then it is self-commuting.

Corollary

Every binary polynomial function over a distributive lattice is self-commuting.

Example 1

Consider $f: [0,1]^3 \to [0,1]$ given by $f = (x_1 \land x_2) \lor (x_2 \land x_3)$.

Thus *f* is not self-commuting!

Necessary conditions: chain form

We say that $f: L^n \to L$ has chain form if

$$f(x_1, x_2, \dots, x_n) = a_{\emptyset} \vee \bigvee_{i \in [n]} (a_i \wedge x_i) \vee \bigvee_{1 \leq \ell \leq r} (a_{S_{\ell}} \wedge \bigwedge_{i \in S_{\ell}} x_i),$$

where $r \ge 1$, $|S_1| \ge 2$, and

- ② for all $i \in [n]$, there is a $j \in S_1$ such that $a_i \leq a_j$.

Example 2

Consider $f: [0,1]^3 \to [0,1]$ given by $f = (0.5 \land x_1) \lor (x_2 \land x_3)$.

Thus *f* is not self-commuting!

Description of bisymmetric polynomial functions on chains

Theorem (Couceiro, Lehtonen 2010)

Let $(L; \land, \lor)$ be a bounded chain. A polynomial function $f: L^n \to L$ is self-commuting if and only if

- 1 it is a weighted disjunction, or
- it has chain form.

Open problems

- Determine whether these conditions are still necessary in the general case of distributive lattices.
- Find necessary and sufficient conditions for two lattice polynomial functions to commute.
- Characterize "strongly bisymmetric" lattice polynomial functions, i.e., functions

$$f: \bigcup_{n>1} L^n \to L$$

such that for all $n \ge 1$, $f_n := f|_{L^n}$ is a lattice polynomial function and for all $n, m \ge 1$, $f_n \perp f_m$.

Thank you for your attention!