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@ 2 Topological Interpretations for ¢

@ Closure Operator: c-semantics
xFE Q@ ifandonly if VU, dy € Us:y F g

@ Derivative (or Limit Point Operator): d-semantics
xEQgifandonly if VU,, 3y € Uy —{x} :yEF ¢

@ Main Result: The c-logic of a dense-in-itself metrizable space is S4.
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More Background

Diamond as Derivative

o Esakia:
(1981) GL is the d-logic of all scattered spaces.
(2004) wK4 is the d-logic of all topological spaces.
(2004) K4 is the d-logic of all T-spaces.
o Shehtman:
(1990) The d-logic of any zero-dim. dense-in-itself metrizable
space is KD4.
Specifically: KDA4 is the d-logic of Q and C.
o Abashidze/Blass:
(1987,/90) GL is the d-logic of any ordinal &« > w®.
@ Bezhanishvili:
(2010 w/ Morandi) GL, is the d-logic of any ordinal & where
w' <o < W,
(2010 w/ Esakia and Gabelaia) K4 is the d-logic of all Stone
spaces.
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Syntax
o Alphabet
Propositional Variables: Yar ={py, p1, p2, ...}
Binary Connectives: conjunction A and disjunction V
Unary Connectives: negation —, box [, and diamond ¢

@ Well Formed Formulas: Fotm
Yar C Form
and if ¢, € Form, then

(eAY), (pVY), —p, Up, O € Form



Essential Preliminaries:
The Logics of Interest 1

o Modal Logic: L
L C Form, containing all substitution instances of classical
tautologies, the formulas

(e —¢) — (O — Oy) (K)
Op < —O—g (dual)
and which is closed under modus ponens and [-necessitation

P9 =9 i
74] and g

least: K



Essential Preliminaries:
The Logics of Interest 2

e Specific Logics:

K4 =K+ 009 — O
KD4=K4+OT
GL=K+O¢p — ¢) — O¢
GL,=GL+0O"L
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Utilize results in Kripke semantics and transfer to d-semantics

e Main Tool: d-morphism—a map f : (X, T) — (W, R) so that for
any AC W
FH(RT(A) =d(F1(4)

e Thm: If a d-morphism f is onto
then (X, T) E ¢ implies (W, R) E ¢;
or equivalently (W, R) ¥ ¢ implies (X, T) # ¢
(2005 Bezhanishvili, Esakia, and Gabelaia)
e Thm: The following logics are determined by the indicated classes
Kripke frames

Logic Class
K4  countable irreflexive tress
KD4 the irreflexive w-branching w-tall tree, 7,
GL finite irreflexive trees
GL, finite irreflexive trees of depth no more than n

@ Observation: all classes consist of countable irreflexive trees



Construction

Theorem: For any countable irreflexive tree, 7, there is, Q7, a subspace
of Q and a function f : Qr — 7 that is a surjective d-morphism.

Let L =R x (—o0,0] be ‘the lower half plane’ of IR?
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Results

e Theorem: KDA4 is the d-logic of Q. (Shehtman)
‘Proof™: Qr, = Q.

e Theorem: For any L € {K4,GL,GL,} there is a subspace of Q,

Q= U Qr,. so that the d-logic of Q@ is L.
pEL

‘Proof’: V¢ ¢ L, 37 a tree with 7 FE L and 7 # ¢. The countable

disjoint union of Q is homeomorphic to Q.
@ Algebraic take:
o Var (P (Q),d) is defined by the equations

Q0=0
O(avb)=0aVvOb

0l1=1

00a< Qa

o Var (P (Qka) . d) is defined by equations MA1, MA2 and 4.
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Pushing Further:

The Universal Modality

Add to the language the Universal Modality:

U (box-like) and E(diamond-like)

@ Semantics: in any model (topological or Kripke)

xEUgpiffVy, yE o
xEEg@iffdy, yF o

@ Global Expressive Power

o Path Connected Kripke Frame
e Connected Topological Space



Minimal Extensions

Let L be a unimodal logic. The minimal extension of L, denoted L.U, is a
bimodal logic extending L containing

Up— ¢ Up — O (bridge axiom)
Up — UUgp U(p — ) — (Up — Uy)

closed under modus ponens and U-necessitation, U%P'



Results for Kripke Frames

Theorem: The following logics are defined by the indicated classes of
forests (a type of Kripke frame):

Logic
K4.U
KD4.U
GL.U
GL,.U

Class of finite disjoint Unions of
countable irreflexive trees

7w

finite irreflexive trees

finite irreflexive trees of depth < n
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Final Results

@ Theorem: KDA4.U is the ud-logic of Q.

@ Theorem: For each L € {K4, GL, GL,} there is a countable class of
subspaces of Q, Ci, so that the ud-logic of Cy is L.

@ Note: This construction does not provided Cy to be a singleton
except in the case for KD4.U.
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@ Conference Organizers



Thank You

Any Questions?



