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Short Background

McKinsey and Tarski 1944

2 Topological Interpretations for �

Closure Operator: c-semantics
x � �ϕ if and only if 8Ux , 9y 2 Ux : y � ϕ

Derivative (or Limit Point Operator): d-semantics
x � �ϕ if and only if 8Ux , 9y 2 Ux � fxg : y � ϕ

Main Result: The c-logic of a dense-in-itself metrizable space is S4.
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More Background
Diamond as Derivative

Esakia:
(1981) GL is the d-logic of all scattered spaces.
(2004) wK4 is the d-logic of all topological spaces.
(2004) K4 is the d-logic of all Td -spaces.

Shehtman:
(1990) The d-logic of any zero-dim. dense-in-itself metrizable
space is KD4.

Speci�cally: KD4 is the d-logic of Q and C.
Abashidze/Blass:
(1987/90) GL is the d-logic of any ordinal α � ωω.
Bezhanishvili:
(2010 w/ Morandi) GLn is the d-logic of any ordinal α where
ωn�1 < α � ωn.
(2010 w/ Esakia and Gabelaia) K4 is the d-logic of all Stone
spaces.
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Essential Preliminaries:
Syntax

Alphabet
Propositional Variables: Var = fp0, p1, p2, . . .g
Binary Connectives: conjunction ^ and disjunction _
Unary Connectives: negation :, box �, and diamond �

Well Formed Formulas: Form

Var � Form

and if ϕ,ψ 2 Form, then

(ϕ ^ ψ) , (ϕ _ ψ) , :ϕ, �ϕ, �ϕ 2 Form
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Essential Preliminaries:
The Logics of Interest 1

Modal Logic: L
L � Form, containing all substitution instances of classical
tautologies, the formulas

� (ϕ ! ψ)! (�ϕ ! �ψ) (K)

�ϕ $ :�:ϕ (dual)

and which is closed under modus ponens and �-necessitation

ϕ, ϕ ! ψ

ψ
and

ϕ

�ϕ

least: K



Essential Preliminaries:
The Logics of Interest 2

Speci�c Logics:

K4 = K+��ϕ ! �ϕ

KD4 = K4+�>
GL = K+� (�ϕ ! ϕ)! �ϕ

GLn = GL+�n?



Main Technique
Utilize results in Kripke semantics and transfer to d-semantics

Main Tool: d-morphism�a map f : (X , τ)! (W ,R) so that for
any A � W

f �1
�
R�1 (A)

�
= d

�
f �1 (A)

�

Thm: If a d-morphism f is onto
then (X , τ) � ϕ implies (W ,R) � ϕ;
or equivalently (W ,R) 6� ϕ implies (X , τ) 6� ϕ

(2005 Bezhanishvili, Esakia, and Gabelaia)
Thm: The following logics are determined by the indicated classes
Kripke frames

Logic Class
K4 countable irre�exive tress
KD4 the irre�exive ω-branching ω-tall tree, Tω

GL �nite irre�exive trees
GLn �nite irre�exive trees of depth no more than n

Observation: all classes consist of countable irre�exive trees
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Construction
Theorem: For any countable irre�exive tree, T , there is, QT , a subspace
of Q and a function f : QT ! T that is a surjective d-morphism.

Let L = R� (�∞, 0] be �the lower half plane�of R2

R -� I

?i 6π

L

-� i(I )

@
@

@
@

�
�
�
�

�
p

4I



Construction
Dissecting an interval

From (x , y) 2 L = R� (�∞, 0] with y 6= 0, we get the interval
[x + y , x � y ]

j
x + y

j
x � y
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Construction
Choosing a Subspace
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Results

Theorem: KD4 is the d-logic of Q. (Shehtman)
�Proof�: QTω

� Q.

Theorem: For any L 2 fK4,GL,GLng there is a subspace of Q,
QL =

S
ϕ/2L
QTϕ , so that the d-logic of QL is L.

�Proof�: 8ϕ /2 L, 9T a tree with T � L and T 6� ϕ. The countable
disjoint union of Q is homeomorphic to Q.

Algebraic take:

Var (P (Q) , d) is de�ned by the equations

�0 = 0 (MA1)

� (a _ b) = �a _�b (MA2)

�1 = 1 (D)
��a � �a (4)

Var (P (QK4) , d) is de�ned by equations MA1, MA2 and 4.
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Pushing Further:
The Universal Modality

Add to the language the Universal Modality:

U (box-like) and E (diamond-like)

Semantics: in any model (topological or Kripke)

x � Uϕ i¤ 8y , y � ϕ

x � E ϕ i¤ 9y , y � ϕ

Global Expressive Power

Path Connected Kripke Frame
Connected Topological Space
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Minimal Extensions

Let L be a unimodal logic. The minimal extension of L, denoted L.U, is a
bimodal logic extending L containing

Uϕ ! ϕ Uϕ ! �ϕ (bridge axiom)
Uϕ ! UUϕ U (ϕ ! ψ)! (Uϕ ! Uψ)
ϕ ! UE ϕ Uϕ $ :E:ϕ

closed under modus ponens and U-necessitation, ϕ
U ϕ .



Results for Kripke Frames

Theorem: The following logics are de�ned by the indicated classes of
forests (a type of Kripke frame):

Logic Class of �nite disjoint Unions of
K4.U countable irre�exive trees
KD4.U Tω

GL.U �nite irre�exive trees
GLn.U �nite irre�exive trees of depth � n



Final Results

Theorem: KD4.U is the ud-logic of Q.

Theorem: For each L 2 fK4,GL,GLng there is a countable class of
subspaces of Q, CL, so that the ud-logic of CL is L.
Note: This construction does not provided CL to be a singleton
except in the case for KD4.U.
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Remarks and Acknowledgements

Construction gives refutations
But soundness is checked case by case
Counter Example: (ω-tall) irre�exive binary tree
?? General properties to get soundness ??

Referee:
Geometric approach
Suggested to investigate universal modality

Dr. John Harding
Alternative realization for QTω

Conference Organizers



Remarks and Acknowledgements

Construction gives refutations
But soundness is checked case by case
Counter Example: (ω-tall) irre�exive binary tree
?? General properties to get soundness ??

Referee:
Geometric approach
Suggested to investigate universal modality

Dr. John Harding
Alternative realization for QTω

Conference Organizers



Remarks and Acknowledgements

Construction gives refutations
But soundness is checked case by case
Counter Example: (ω-tall) irre�exive binary tree
?? General properties to get soundness ??

Referee:
Geometric approach
Suggested to investigate universal modality

Dr. John Harding
Alternative realization for QTω

Conference Organizers



Remarks and Acknowledgements

Construction gives refutations
But soundness is checked case by case
Counter Example: (ω-tall) irre�exive binary tree
?? General properties to get soundness ??

Referee:
Geometric approach
Suggested to investigate universal modality

Dr. John Harding
Alternative realization for QTω

Conference Organizers



Thank You

Any Questions?


