Modal Logics of Some Subspaces of Rational Numbers: Diamond as Derivative

Joel Lucero-Bryan New Mexico State University

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Short Background

McKinsey and Tarski 1944

• 2 Topological Interpretations for \Diamond

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

McKinsey and Tarski 1944

- 2 Topological Interpretations for \Diamond
- Closure Operator: c-semantics $x \models \Diamond \varphi$ if and only if $\forall U_x$, $\exists y \in U_x : y \models \varphi$

McKinsey and Tarski 1944

- 2 Topological Interpretations for \Diamond
- Closure Operator: c-semantics $x \models \Diamond \varphi$ if and only if $\forall U_x$, $\exists y \in U_x : y \models \varphi$
- Derivative (or Limit Point Operator): d-semantics $x \models \Diamond \varphi$ if and only if $\forall U_x$, $\exists y \in U_x \{x\} : y \models \varphi$

McKinsey and Tarski 1944

- 2 Topological Interpretations for \Diamond
- Closure Operator: c-semantics $x \models \Diamond \varphi$ if and only if $\forall U_x$, $\exists y \in U_x : y \models \varphi$
- Derivative (or Limit Point Operator): d-semantics $x \models \Diamond \varphi$ if and only if $\forall U_x$, $\exists y \in U_x \{x\} : y \models \varphi$
- Main Result: The c-logic of a dense-in-itself metrizable space is S4.

Diamond as Derivative

- Esakia:
 - (1981) **GL** is the d-logic of all scattered spaces.
 - (2004) **wK4** is the d-logic of all topological spaces.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(2004) **K4** is the d-logic of all T_d -spaces.

Diamond as Derivative

Esakia:

- (1981) **GL** is the d-logic of all scattered spaces.
- (2004) wK4 is the d-logic of all topological spaces.
- (2004) **K4** is the d-logic of all T_d -spaces.

• Shehtman:

(1990) The d-logic of any zero-dim. dense-in-itself metrizable space is **KD4**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Specifically: KD4 is the d-logic of Q and C.

Diamond as Derivative

Esakia:

- (1981) **GL** is the d-logic of all scattered spaces.
- (2004) wK4 is the d-logic of all topological spaces.
- (2004) **K4** is the d-logic of all T_d -spaces.

• Shehtman:

(1990) The d-logic of any zero-dim. dense-in-itself metrizable space is **KD4**.

Specifically: $\mathbf{KD4}$ is the d-logic of Q and \mathbf{C} .

Abashidze/Blass:

(1987/90) **GL** is the d-logic of any ordinal $\alpha \ge \omega^{\omega}$.

Diamond as Derivative

Esakia:

- (1981) **GL** is the d-logic of all scattered spaces.
- (2004) wK4 is the d-logic of all topological spaces.
- (2004) **K4** is the d-logic of all T_d -spaces.

• Shehtman:

(1990) The d-logic of any zero-dim. dense-in-itself metrizable space is **KD4**.

Specifically: KD4 is the d-logic of Q and C.

Abashidze/Blass:

(1987/90) **GL** is the d-logic of any ordinal $\alpha \ge \omega^{\omega}$.

Bezhanishvili:

(2010 w/ Morandi) **GL**_n is the d-logic of any ordinal α where $\omega^{n-1} < \alpha \le \omega^n$. (2010 w/ Esakia and Gabelaia) **K4** is the d-logic of all Stone

spaces.

Essential Preliminaries:

Syntax

Alphabet

Propositional Variables: Binary Connectives: Unary Connectives:
$$\begin{split} \mathfrak{Var} &= \{p_0, \ p_1, \ p_2, \ \ldots\} \\ \text{conjunction} \ \land \text{ and disjunction } \lor \\ \text{negation } \neg, \text{ box } \Box, \text{ and diamond } \diamondsuit \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Essential Preliminaries

Syntax

Alphabet

Propositional Variables: $\mathfrak{Var} = \{p_0, p_1, p_2, \ldots\}$ Binary Connectives: conjunction \land and disjunction \lor Unary Connectives: negation \neg , box \Box , and diamond \Diamond

• Well Formed Formulas: Form

$$\mathfrak{Var}\subseteq\mathfrak{Form}$$

and if $\varphi, \psi \in \mathfrak{Form}$, then

$$(arphi\wedge\psi)$$
 , $(arphi\vee\psi)$, $eg arphi$, eg

Essential Preliminaries:

The Logics of Interest 1

Modal Logic: L

 $L\subseteq\mathfrak{Form},$ containing all substitution instances of classical tautologies, the formulas

$$\Box (\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \tag{K}$$
$$\Box \varphi \leftrightarrow \neg \Diamond \neg \varphi \tag{dual}$$

and which is closed under modus ponens and \Box -necessitation

$$rac{arphi,arphi
ightarrow\psi}{\psi}$$
 and $rac{arphi}{\Boxarphi}$

least: K

Essential Preliminaries:

The Logics of Interest 2

• Specific Logics:

$$\mathbf{K4} = \mathbf{K} + \Diamond \Diamond \varphi \to \Diamond \varphi$$
$$\mathbf{KD4} = \mathbf{K4} + \Diamond \top$$
$$\mathbf{GL} = \mathbf{K} + \Box (\Box \varphi \to \varphi) \to \Box \varphi$$
$$\mathbf{GL}_n = \mathbf{GL} + \Box^n \bot$$

くしゃ (中)・(中)・(中)・(日)

Utilize results in Kripke semantics and transfer to d-semantics

• Main Tool: *d*-morphism-a map $f : (X, \tau) \rightarrow (W, R)$ so that for any $A \subseteq W$

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Utilize results in Kripke semantics and transfer to d-semantics

• Main Tool: *d-morphism*-a map $f : (X, \tau) \rightarrow (W, R)$ so that for any $A \subseteq W$ $f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$

Utilize results in Kripke semantics and transfer to d-semantics

• Main Tool: *d-morphism*-a map $f : (X, \tau) \to (W, R)$ so that for any $A \subseteq W$

$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

- Thm: If a d-morphism f is onto then (X, τ) ⊨ φ implies (W, R) ⊨ φ; or equivalently (W, R) ⊭ φ implies (X, τ) ⊭ φ
 (2005 Bezhanishvili, Esakia, and Gabelaia)
- **Thm:** The following logics are determined by the indicated classes Kripke frames

0	Class countable irreflexive tress
KD4	the irreflexive ω -branching ω -tall tree, \mathcal{T}_ω
GL	finite irreflexive trees
GL	finite irreflexive trees of depth no more than n

Utilize results in Kripke semantics and transfer to d-semantics

• Main Tool: *d-morphism*-a map $f : (X, \tau) \to (W, R)$ so that for any $A \subseteq W$

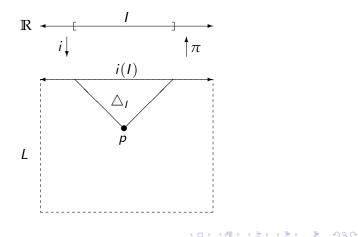
$$f^{-1}(R^{-1}(A)) = d(f^{-1}(A))$$

- Thm: If a d-morphism f is onto then (X, τ) ⊨ φ implies (W, R) ⊨ φ; or equivalently (W, R) ⊭ φ implies (X, τ) ⊭ φ
 (2005 Bezhanishvili, Esakia, and Gabelaia)
- **Thm:** The following logics are determined by the indicated classes Kripke frames
 - LogicClassK4countable irreflexive tressKD4the irreflexive ω -branching ω -tall tree, \mathcal{T}_{ω} GLfinite irreflexive treesGL_nfinite irreflexive trees of depth no more than n

• Observation: all classes consist of countable irreflexive trees

Theorem: For any countable irreflexive tree, \mathcal{T} , there is, $Q_{\mathcal{T}}$, a subspace of \mathbb{Q} and a function $f : Q_{\mathcal{T}} \to \mathcal{T}$ that is a surjective d-morphism.

Let $L = \mathbb{R} \times (-\infty, 0]$ be 'the lower half plane' of \mathbb{R}^2



Dissecting an interval

From $(x, y) \in L = \mathbb{R} \times (-\infty, 0]$ with $y \neq 0$, we get the interval [x + y, x - y]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

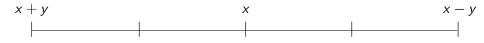
Dissecting an interval

From $(x, y) \in L = \mathbb{R} \times (-\infty, 0]$ with $y \neq 0$, we get the interval [x + y, x - y]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dissecting an interval

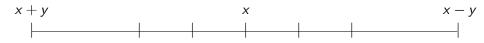
From $(x, y) \in L = \mathbb{R} \times (-\infty, 0]$ with $y \neq 0$, we get the interval [x + y, x - y]



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Dissecting an interval

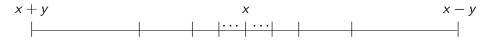
From $(x, y) \in L = \mathbb{R} \times (-\infty, 0]$ with $y \neq 0$, we get the interval [x + y, x - y]

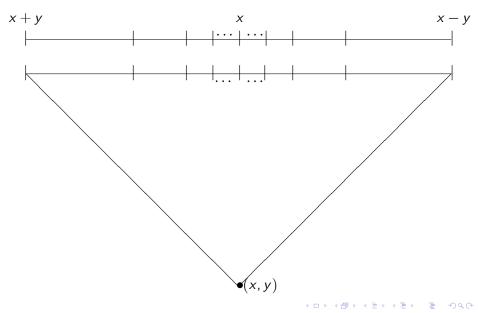


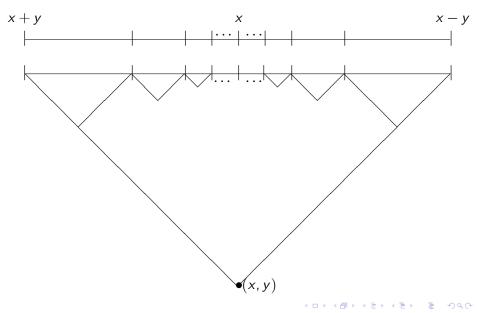
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

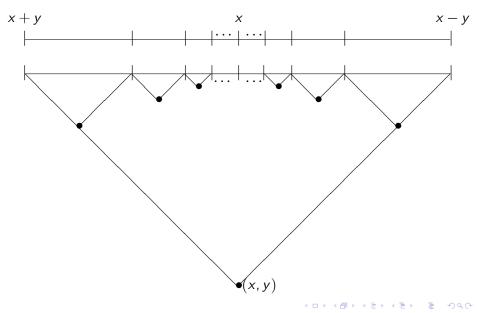
Dissecting an interval

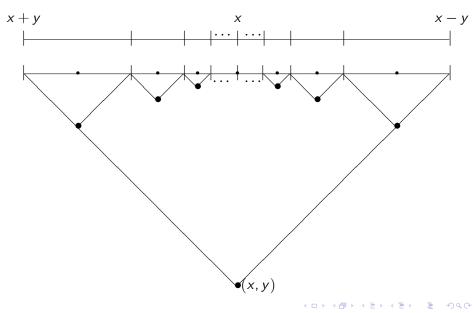
From $(x, y) \in L = \mathbb{R} \times (-\infty, 0]$ with $y \neq 0$, we get the interval [x + y, x - y]











• Theorem: KD4 is the d-logic of \mathbb{Q} . (Shehtman) 'Proof': $Q_{\mathcal{I}_{\omega}} \approx \mathbb{Q}$.

- Theorem: KD4 is the d-logic of \mathbb{Q} . (Shehtman) 'Proof': $Q_{\mathcal{T}_{\omega}} \approx \mathbb{Q}$.
- Theorem: For any $\mathbf{L} \in {\mathbf{K4}, \mathbf{GL}, \mathbf{GL}_n}$ there is a subspace of \mathbb{Q} , $Q_{\mathbf{L}} = \bigcup_{\varphi \notin \mathbf{L}} Q_{T_{\varphi}}$, so that the d-logic of $Q_{\mathbf{L}}$ is \mathbf{L} .

'Proof': $\forall \varphi \notin \mathbf{L}, \exists \mathcal{T} \text{ a tree with } \mathcal{T} \models \mathbf{L} \text{ and } \mathcal{T} \nvDash \varphi$. The countable disjoint union of \mathbb{Q} is homeomorphic to \mathbb{Q} .

- Theorem: KD4 is the d-logic of \mathbb{Q} . (Shehtman) 'Proof': $Q_{\mathcal{T}_{\omega}} \approx \mathbb{Q}$.
- Theorem: For any L ∈ {K4, GL, GL_n} there is a subspace of Q,
 Q_L = ∪ Q_{T_φ}, so that the d-logic of Q_L is L.
 'Proof': ∀φ ∉ L, ∃T a tree with T ⊨ L and T ⊭ φ. The countable disjoint union of Q is homeomorphic to Q.

Algebraic take:

- Theorem: KD4 is the d-logic of \mathbb{Q} . (Shehtman) 'Proof': $Q_{\mathcal{T}_{\omega}} \approx \mathbb{Q}$.
- Theorem: For any L ∈ {K4, GL, GL_n} there is a subspace of Q,
 Q_L = ∪ _{φ∉L} Q_{T_φ}, so that the d-logic of Q_L is L.
 'Proof': ∀φ ∉ L, ∃T a tree with T ⊨ L and T ⊭ φ. The countable disjoint union of Q is homeomorphic to Q.
- Algebraic take:
 - $Var\left(\mathcal{P}\left(\mathbb{Q}
 ight)$, d
 ight) is defined by the equations

- Theorem: KD4 is the d-logic of \mathbb{Q} . (Shehtman) 'Proof': $Q_{\mathcal{T}_{\omega}} \approx \mathbb{Q}$.
- Theorem: For any L ∈ {K4, GL, GL_n} there is a subspace of Q,
 Q_L = ∪_{φ∉L} Q_{T_φ}, so that the d-logic of Q_L is L.
 'Proof': ∀φ ∉ L, ∃T a tree with T ⊨ L and T ⊭ φ. The countable disjoint union of Q is homeomorphic to Q.
- Algebraic take:
 - $Var\left(\mathcal{P}\left(\mathbb{Q}
 ight), d
 ight)$ is defined by the equations

$$\Diamond 0 = 0 \tag{MA1}$$

$$\Diamond (\mathbf{a} \lor \mathbf{b}) = \Diamond \mathbf{a} \lor \Diamond \mathbf{b} \tag{MA2}$$

$$\Diamond 1 = 1$$
 (D)

$$\Diamond \Diamond a \le \Diamond a \tag{4}$$

• $Var\left(\mathcal{P}\left(\mathcal{Q}_{\mathbf{K4}}
ight),d
ight)$ is defined by equations MA1, MA2 and **4**.

The Universal Modality

Add to the language the Universal Modality:

U (box-like) and E(diamond-like)

• Semantics: in any model (topological or Kripke)

$$x \models U\varphi \text{ iff } \forall y, \ y \models \varphi$$
$$x \models E\varphi \text{ iff } \exists y, \ y \models \varphi$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Universal Modality

Add to the language the Universal Modality:

U (box-like) and E(diamond-like)

• Semantics: in any model (topological or Kripke)

$$x \models U\varphi \text{ iff } \forall y, \ y \models \varphi$$
$$x \models E\varphi \text{ iff } \exists y, \ y \models \varphi$$

Global Expressive Power

The Universal Modality

Add to the language the Universal Modality:

U (box-like) and E(diamond-like)

• Semantics: in any model (topological or Kripke)

$$x \models U\varphi \text{ iff } \forall y, \ y \models \varphi$$
$$x \models E\varphi \text{ iff } \exists y, \ y \models \varphi$$

- Global Expressive Power
 - Path Connected Kripke Frame

The Universal Modality

Add to the language the Universal Modality:

U (box-like) and E(diamond-like)

• Semantics: in any model (topological or Kripke)

$$x \models U\varphi \text{ iff } \forall y, \ y \models \varphi$$
$$x \models E\varphi \text{ iff } \exists y, \ y \models \varphi$$

- Global Expressive Power
 - Path Connected Kripke Frame
 - Connected Topological Space

Let **L** be a unimodal logic. The minimal extension of **L**, denoted **L**.**U**, is a bimodal logic extending **L** containing

$$\begin{array}{ll} U\varphi \to \varphi & U\varphi \to \Box\varphi \text{ (bridge axiom)} \\ U\varphi \to UU\varphi & U(\varphi \to \psi) \to (U\varphi \to U\psi) \\ \varphi \to UE\varphi & U\varphi \leftrightarrow \neg E \neg \varphi \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

closed under modus ponens and U-necessitation, $\frac{\varphi}{U\varphi}$.

Results for Kripke Frames

Theorem: The following logics are defined by the indicated classes of forests (a type of Kripke frame):

Logic	Class of <i>finite</i> disjoint Unions of
K4.U	countable irreflexive trees
KD4.U	\mathcal{T}_{ω}
GL.U	finite irreflexive trees
$\mathbf{GL}_n.\mathbf{U}$	finite irreflexive trees of depth $\leq n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Final Results

• Theorem: KD4.U is the ud-logic of \mathbb{Q} .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Final Results

- Theorem: KD4.U is the ud-logic of \mathbb{Q} .
- Theorem: For each L ∈ {K4, GL, GL_n} there is a countable class of subspaces of Q, C_L, so that the ud-logic of C_L is L.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Final Results

- Theorem: KD4.U is the ud-logic of Q.
- Theorem: For each L ∈ {K4, GL, GL_n} there is a countable class of subspaces of Q, C_L, so that the ud-logic of C_L is L.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Note: This construction does not provided C_L to be a singleton except in the case for KD4.U.

Construction gives refutations
 But soundness is checked case by case
 Counter Example: (ω-tall) irreflexive binary tree
 ?? General properties to get soundness ??

- Construction gives refutations
 But soundness is checked case by case
 Counter Example: (ω-tall) irreflexive binary tree
 ?? General properties to get soundness ??
- Referee:

Geometric approach

Suggested to investigate universal modality

- Construction gives refutations
 But soundness is checked case by case
 Counter Example: (ω-tall) irreflexive binary tree
 ?? General properties to get soundness ??
- Referee:

Geometric approach Suggested to investigate universal modality

• Dr. John Harding Alternative realization for $Q_{\mathcal{T}_{\omega}}$

- Construction gives refutations
 But soundness is checked case by case
 Counter Example: (ω-tall) irreflexive binary tree
 ?? General properties to get soundness ??
- Referee:

Geometric approach Suggested to investigate universal modality

- Dr. John Harding Alternative realization for $Q_{T_{\omega}}$
- Conference Organizers

Thank You

Any Questions?