BLAST 2010

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A survey on the Katětov order

DAVID MEZA-ALCÁNTARA Universidad Michoacana de San Nicolás de Hidalgo, Morelia dmeza@fismat.umich.mx and MICHAEL HRUŠÁK Universidad Nacional Autónoma de México, Morelia

> University of Colorado at Boulder June 6, 2010

	Contents
Katětov order	
David Meza	
The Katětov order	
Ramsey Properties	1 The Katětov order
Category Dichotomy	
	2 Katětov order and Ramsey properties

3 Category Dichotomy

The Katětov order

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

The Katětov order is defined as follows: Let \mathcal{I} and \mathcal{J} be ideals on ω . Then $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f \in \omega^{\omega}$ such that $f^{-1}(I) \in \mathcal{J}$ for all $I \in \mathcal{I}$.

Definition

We say an ideal \mathcal{I} is *tall* if for every $X \in [\omega]^{\omega}$, $[X]^{\omega} \cap \mathcal{I} \neq \emptyset$.

Tall and non-tall ideals

The following are equivalent:

- $\blacksquare \mathcal{I}$ is tall,
- **I** $\not\subseteq_K$ **Fin**, and
- $\mathcal{I} \upharpoonright X \neq \operatorname{Fin}(X)$ for all $X \in \mathcal{I}^+$.

The Katětov order

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

The Katětov order is defined as follows: Let \mathcal{I} and \mathcal{J} be ideals on ω . Then $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f \in \omega^{\omega}$ such that $f^{-1}(I) \in \mathcal{J}$ for all $I \in \mathcal{I}$.

Definition

We say an ideal \mathcal{I} is *tall* if for every $X \in [\omega]^{\omega}$, $[X]^{\omega} \cap \mathcal{I} \neq \emptyset$.

Tall and non-tall ideals

The following are equivalent:

- $\blacksquare \mathcal{I}$ is tall,
- **I** $\not\subseteq_K$ **Fin**, and
- $\mathcal{I} \upharpoonright X \neq \mathbf{Fin}(X)$ for all $X \in \mathcal{I}^+$.

The Katětov order

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

The Katětov order is defined as follows: Let \mathcal{I} and \mathcal{J} be ideals on ω . Then $\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$ if there is a function $f \in \omega^{\omega}$ such that $f^{-1}(I) \in \mathcal{J}$ for all $I \in \mathcal{I}$.

Definition

We say an ideal \mathcal{I} is *tall* if for every $X \in [\omega]^{\omega}$, $[X]^{\omega} \cap \mathcal{I} \neq \emptyset$.

Tall and non-tall ideals

The following are equivalent:

- $\blacksquare \mathcal{I}$ is tall,
- $\mathcal{I} \not\leq_{\mathcal{K}} \mathbf{Fin}$, and
- $\mathcal{I} \upharpoonright X \neq \operatorname{Fin}(X)$ for all $X \in \mathcal{I}^+$.

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
 Every family of at most c ideals has a ≤_K-lower bound.
 Below any tall ideal *I*, there is a ≤_K-antichain of size c.
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

There is an order-embedding from P(ω)/Fin into the family of sumable ideals.

• The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω_1 .

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
- Every family of at most \mathfrak{c} ideals has a $\leq_{\mathcal{K}}$ -lower bound.
- Below any tall ideal \mathcal{I} , there is a $\leq_{\mathcal{K}}$ -antichain of size \mathfrak{c} .
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

There is an order-embedding from P(ω)/Fin into the family of sumable ideals.

• The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω_1 .

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
- Every family of at most \mathfrak{c} ideals has a $\leq_{\mathcal{K}}$ -lower bound.
- Below any tall ideal \mathcal{I} , there is a $\leq_{\mathcal{K}}$ -antichain of size \mathfrak{c} .
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

There is an order-embedding from P(ω)/Fin into the family of sumable ideals.

The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω_1 .

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
- Every family of at most \mathfrak{c} ideals has a $\leq_{\mathcal{K}}$ -lower bound.
- Below any tall ideal \mathcal{I} , there is a $\leq_{\mathcal{K}}$ -antichain of size \mathfrak{c} .
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

There is an order-embedding from P(ω)/Fin into the family of sumable ideals.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□ ♥) ♥()

The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω_1 .

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
- Every family of at most \mathfrak{c} ideals has a $\leq_{\mathcal{K}}$ -lower bound.
- Below any tall ideal \mathcal{I} , there is a $\leq_{\mathcal{K}}$ -antichain of size \mathfrak{c} .
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

There is an order-embedding from P(ω)/Fin into the family of sumable ideals.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□ ♥) ♥()

The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω_1 .

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
- Every family of at most \mathfrak{c} ideals has a $\leq_{\mathcal{K}}$ -lower bound.
- Below any tall ideal \mathcal{I} , there is a $\leq_{\mathcal{K}}$ -antichain of size \mathfrak{c} .
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

 There is an order-embedding from P(ω)/Fin into the family of sumable ideals.

The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω₁.

Katětov order

David Meza

The Katětov order

- Ramsey Properties
- Category Dichotomy

Global order-theoretic properties

- Prime ideals are cofinal and MAD families are coinitial.
- Every family of at most \mathfrak{c} ideals has a $\leq_{\mathcal{K}}$ -lower bound.
- Below any tall ideal \mathcal{I} , there is a $\leq_{\mathcal{K}}$ -antichain of size \mathfrak{c} .
- Below any tall ideal *I*, there is a decreasing chain of length c⁺.

Order theoretic properties among definable ideals

- There is an order-embedding from $\mathcal{P}(\omega)/\mathbf{Fin}$ into the family of sumable ideals.
- The family of the Cantor-Bendixson's ideals is an increasing chain of Borel ideals of length ω₁.

0				
	on	tρ	n	τc
\sim		LC		ີ

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

The Katětov order

2 Katětov order and Ramsey properties

3 Category Dichotomy

| ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let *E* be a random graph on ω . \mathcal{R} is the ideal generated by the homogeneous sets of *E*.

heorem

 $\omega \to (\mathcal{I}^+)^2_2$ if and only if $\mathcal{R} \not\leq_K \mathcal{I}$.

E. Thümmel provided an example of a Borel ideal \mathcal{I} which satisfies the arrow property. Unfortunately this example is non-homogeneous. Actually Thümmel's example has a positive set X such that the restriction $\mathcal{I} \upharpoonright X$ does not satisfy $X \to (\mathcal{I}^+)_2^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Question

Is there a Borel ideal \mathcal{I} satisfying $\mathcal{I}^+ \to (\mathcal{I}^+)_2^2$?

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let *E* be a random graph on ω . \mathcal{R} is the ideal generated by the homogeneous sets of *E*.

Theorem

 $\omega \to (\mathcal{I}^+)^2_2$ if and only if $\mathcal{R} \nleq_{\mathcal{K}} \mathcal{I}$.

E. Thümmel provided an example of a Borel ideal \mathcal{I} which satisfies the arrow property. Unfortunately this example is non-homogeneous. Actually Thümmel's example has a positive set X such that the restriction $\mathcal{I} \upharpoonright X$ does not satisfy $X \to (\mathcal{I}^+)_2^2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Question

Is there a Borel ideal \mathcal{I} satisfying $\mathcal{I}^+ \to (\mathcal{I}^+)_2^2$?

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let *E* be a random graph on ω . \mathcal{R} is the ideal generated by the homogeneous sets of *E*.

Theorem

 $\omega \to (\mathcal{I}^+)^2_2$ if and only if $\mathcal{R} \not\leq_K \mathcal{I}$.

E. Thümmel provided an example of a Borel ideal \mathcal{I} which satisfies the arrow property. Unfortunately this example is non-homogeneous. Actually Thümmel's example has a positive set X such that the restriction $\mathcal{I} \upharpoonright X$ does not satisfy $X \to (\mathcal{I}^+)_2^2$.

・ロト・団ト・ヨト・ヨト ・日・

Question

Is there a Borel ideal \mathcal{I} satisfying $\mathcal{I}^+ \to (\mathcal{I}^+)_2^2$?

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let *E* be a random graph on ω . \mathcal{R} is the ideal generated by the homogeneous sets of *E*.

Theorem

 $\omega \to (\mathcal{I}^+)^2_2$ if and only if $\mathcal{R} \not\leq_K \mathcal{I}$.

E. Thümmel provided an example of a Borel ideal \mathcal{I} which satisfies the arrow property. Unfortunately this example is non-homogeneous. Actually Thümmel's example has a positive set X such that the restriction $\mathcal{I} \upharpoonright X$ does not satisfy $X \to (\mathcal{I}^+)_2^2$.

(日) (四) (日) (日) (日) (日) (日) (日)

Question

Is there a Borel ideal $\mathcal I$ satisfying $\mathcal I^+ o (\mathcal I^+)_2^2$?

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let $\varphi : [\omega]^n \to \omega$. A subset A of ω is \mathcal{I} -homogeneous for φ if $\varphi''[A]^n \in \mathcal{I}$.

Definition

 \mathcal{I} satisfies the property $\omega \to (\omega)^n_{\omega,\mathcal{I}}$ if for every $\varphi : [\omega]^n \to \omega$ there is an infinite \mathcal{I} -homogeneous set.

For each *n*, there is a critical ideal for the property $\omega \to (\omega)_{\omega,\mathcal{I}}^n$ in the Katětov order, the ideal \mathcal{G}_c^n which is generated by the subsets *A* of $[\omega]^n$ so that $[X]^n \subseteq A$ implies *X* is finite. This is:

Theorem

$$\omega \to (\omega)^n_{\omega,\mathcal{I}}$$
 if and only if $\mathcal{I} \not\leq_K \mathcal{G}^n_c$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let $\varphi : [\omega]^n \to \omega$. A subset A of ω is \mathcal{I} -homogeneous for φ if $\varphi''[A]^n \in \mathcal{I}$.

Definition

 \mathcal{I} satisfies the property $\omega \to (\omega)^n_{\omega,\mathcal{I}}$ if for every $\varphi : [\omega]^n \to \omega$ there is an infinite \mathcal{I} -homogeneous set.

For each *n*, there is a critical ideal for the property $\omega \to (\omega)_{\omega,\mathcal{I}}^n$ in the Katětov order, the ideal \mathcal{G}_c^n which is generated by the subsets *A* of $[\omega]^n$ so that $[X]^n \subseteq A$ implies *X* is finite. This is:

Theorem

$$\omega \to (\omega)^n_{\omega,\mathcal{I}}$$
 if and only if $\mathcal{I} \not\leq_K \mathcal{G}^n_c$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let $\varphi : [\omega]^n \to \omega$. A subset A of ω is \mathcal{I} -homogeneous for φ if $\varphi''[A]^n \in \mathcal{I}$.

Definition

 \mathcal{I} satisfies the property $\omega \to (\omega)^n_{\omega,\mathcal{I}}$ if for every $\varphi : [\omega]^n \to \omega$ there is an infinite \mathcal{I} -homogeneous set.

For each *n*, there is a critical ideal for the property $\omega \to (\omega)_{\omega,\mathcal{I}}^n$ in the Katětov order, the ideal \mathcal{G}_c^n which is generated by the subsets *A* of $[\omega]^n$ so that $[X]^n \subseteq A$ implies *X* is finite. This is:

Theorem

$$\omega \to (\omega)^n_{\omega,\mathcal{I}}$$
 if and only if $\mathcal{I} \not\leq_{\mathcal{K}} \mathcal{G}^n_c$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Definition

Let $\varphi : [\omega]^n \to \omega$. A subset A of ω is \mathcal{I} -homogeneous for φ if $\varphi''[A]^n \in \mathcal{I}$.

Definition

 \mathcal{I} satisfies the property $\omega \to (\omega)^n_{\omega,\mathcal{I}}$ if for every $\varphi : [\omega]^n \to \omega$ there is an infinite \mathcal{I} -homogeneous set.

For each *n*, there is a critical ideal for the property $\omega \to (\omega)_{\omega,\mathcal{I}}^n$ in the Katětov order, the ideal \mathcal{G}_c^n which is generated by the subsets *A* of $[\omega]^n$ so that $[X]^n \subseteq A$ implies *X* is finite. This is:

Theorem

$$\omega \to (\omega)^n_{\omega,\mathcal{I}}$$
 if and only if $\mathcal{I} \not\leq_{\mathcal{K}} \mathcal{G}^n_c$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy With respect to the property $\omega
ightarrow (\omega)^2_{\omega,\mathcal{I}}$ we have that:

Theorem

It is not the case that $\omega \to (\omega)^2_{\omega, CB2}$, and

• $\omega \to (\omega)^2_{\omega, CB3}$.

In general, $\omega \to (\omega)^n_{\omega, CB(n+1)}$ for all n and then,

• $\omega \to (\omega)^n_{\omega,\text{nwd}}$ for all n.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy With respect to the property $\omega
ightarrow (\omega)^2_{\omega,\mathcal{I}}$ we have that:

Theorem

• It is not the case that $\omega o (\omega)^2_{\omega, CB2}$, and

•
$$\omega \to (\omega)^2_{\omega, CB3}$$
.

In general, $\omega \to (\omega)^n_{\omega, CB(n+1)}$ for all n and then,

• $\omega \to (\omega)^n_{\omega, nwd}$ for all n.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy With respect to the property $\omega
ightarrow (\omega)^2_{\omega,\mathcal{I}}$ we have that:

Theorem

- It is not the case that $\omega \to (\omega)^2_{\omega, CB2}$, and
- $\omega \to (\omega)^2_{\omega, CB3}$.
- In general, $\omega \to (\omega)^n_{\omega, CB(n+1)}$ for all n and then,
- $\omega \to (\omega)^n_{\omega,\mathsf{nwd}}$ for all n

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy With respect to the property $\omega
ightarrow (\omega)^2_{\omega,\mathcal{I}}$ we have that:

Theorem

- It is not the case that $\omega \to (\omega)^2_{\omega, CB2}$, and
- $\omega \to (\omega)^2_{\omega, CB3}$.
- In general, $\omega \to (\omega)^n_{\omega, CB(n+1)}$ for all n and then,
- $\omega \to (\omega)^n_{\omega,\mathsf{nwd}}$ for all n

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy With respect to the property $\omega
ightarrow (\omega)^2_{\omega,\mathcal{I}}$ we have that:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

- It is not the case that $\omega \to (\omega)^2_{\omega, CB2}$, and
- $\omega \to (\omega)^2_{\omega, CB3}$.
- In general, $\omega \to (\omega)^n_{\omega, CB(n+1)}$ for all n and then,

•
$$\omega \to (\omega)^n_{\omega, nwd}$$
 for all n

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

⁻he linŀ

If $\mathcal{I} \leq_{K} \mathcal{J}$ then $\operatorname{cov}^{*}(\mathcal{J}) \leq \operatorname{cov}^{*}(\mathcal{I}).$

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

- $[[Blass] \mathfrak{par}_2 = \min{\{\mathfrak{b},\mathfrak{s}\}} \geq \mathfrak{h}.$
- In the Mathias model,
 - $\mathsf{cov}^*(\mathcal{I}) \leq \mathsf{cov}(\mathcal{M}) < \mathfrak{h} \leq \mathsf{cov}^*(\mathcal{G}^2_c).$
- By the absoluteness of the Katětov order $\mathcal{I} \not\subset \mathcal{K} \subseteq \mathcal{G}^2$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

The link

If
$$\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$$
 then $\operatorname{cov}^*(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{I}).$

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

- $[[Blass] \mathfrak{par}_2 = \min{\{\mathfrak{b},\mathfrak{s}\}} \geq \mathfrak{h}.$
- In the Mathias model,
 - $-\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M}) < \mathfrak{h} \leq \operatorname{cov}^*(\mathcal{G}^2_c).$
- By the absoluteness of the Katětov order, $\mathcal{I} \not\leq_{\mathcal{K}} \mathcal{G}_{2}^{2}$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

The link

If
$$\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$$
 then $\operatorname{cov}^*(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{I})$.

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

- 1 $\mathfrak{par}_2 \leq \mathrm{cov}^*(\mathcal{G}_c^2)$
- $[Iass) \mathfrak{par}_2 = \min \{ \mathfrak{b}, \mathfrak{s} \} \geq \mathfrak{h}.$
- In the Mathias model,
 - $\mathsf{L} = \mathsf{cov}^*(\mathcal{I}) \leq \mathsf{cov}(\mathcal{M}) < \mathfrak{h} \leq \mathsf{cov}^*(\mathcal{G}^2_{m{c}}).$
- By the absoluteness of the Katětov order, $\mathcal{I} \not\subset_{\mathcal{K}} \mathcal{G}^2_{\mathcal{K}}$

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

The link

If
$$\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$$
 then $\operatorname{cov}^*(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{I})$.

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

```
1 \mathfrak{par}_2 \leq \mathrm{cov}^*(\mathcal{G}_c^2).
```

- **2** (Blass) $\mathfrak{par}_2 = \min{\{\mathfrak{b},\mathfrak{s}\}} \ge \mathfrak{h}$.
- 3 In the Mathias model,
 - $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M}) < \mathfrak{h} \leq \operatorname{cov}^*(\mathcal{G}_c^2).$
- 4 By the absoluteness of the Katětov order, $\mathcal{I} \leq \mathcal{K} \subseteq \mathcal{G}^2$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

The link

If
$$\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$$
 then $\operatorname{cov}^*(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{I})$.

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

Sketch of proof.

- 1 $\mathfrak{par}_2 \leq \mathrm{cov}^*(\mathcal{G}_c^2).$
- 2 (Blass) $\mathfrak{par}_2 = \min{\{\mathfrak{b}, \mathfrak{s}\}} \ge \mathfrak{h}.$

In the Mathias model,

 $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M}) < \mathfrak{h} \leq \operatorname{cov}^*(\mathcal{G}^2_c).$

4 By the absoluteness of the Katětov order, $\mathcal{I} \leq_{\mathcal{K}} \mathcal{G}_{\varsigma}^2$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

The link

If
$$\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$$
 then $\operatorname{cov}^*(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{I}).$

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

Sketch of proof.

- 1 $\mathfrak{par}_2 \leq \mathrm{cov}^*(\mathcal{G}_c^2).$
- 2 (Blass) $\mathfrak{par}_2 = \min{\{\mathfrak{b}, \mathfrak{s}\}} \ge \mathfrak{h}.$

3 In the Mathias model,

- $\mathsf{cov}^*(\mathcal{I}) \leq \mathsf{cov}(\mathcal{M}) < \mathfrak{h} \leq \mathsf{cov}^*(\mathcal{G}^2_{c}).$
- 4 By the absoluteness of the Katětov order, $\mathcal{I} \not\leq_{\kappa} \mathcal{G}_{\varsigma}^2$.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

A cardinal invariant related with Katětov order

 $\operatorname{cov}^* \mathcal{I} = \min\{ |\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land (\forall X \in [\omega]^\omega) (\exists A \in \mathcal{A}) | X \cap A| = \aleph_0 \}.$

The link

If
$$\mathcal{I} \leq_{\mathcal{K}} \mathcal{J}$$
 then $\operatorname{cov}^*(\mathcal{J}) \leq \operatorname{cov}^*(\mathcal{I}).$

Theorem

If \mathcal{I} is a Borel ideal and $\operatorname{cov}^*(\mathcal{I}) \leq \operatorname{cov}(\mathcal{M})$ then $\omega \to (\omega)^2_{\omega,\mathcal{I}}$.

- 1 $\mathfrak{par}_2 \leq \mathrm{cov}^*(\mathcal{G}_c^2).$
- 2 (Blass) $\mathfrak{par}_2 = \min{\{\mathfrak{b}, \mathfrak{s}\}} \ge \mathfrak{h}.$
- 3 In the Mathias model,
 - $\operatorname{\mathsf{cov}}^*(\mathcal{I}) \leq \operatorname{\mathsf{cov}}(\mathcal{M}) < \mathfrak{h} \leq \operatorname{\mathsf{cov}}^*(\mathcal{G}^2_{\mathsf{c}}).$
- **4** By the absoluteness of the Katětov order, $\mathcal{I} \not\leq_{\mathcal{K}} \mathcal{G}_{c}^{2}$.

0				
	on	tρ	n	τc
\sim		LC		ີ

Katetov order			- V				
	12	s٦	te	to	N C	rd	er
		`u			· · · ·	/i U	~

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

The Katětov order

2 Katětov order and Ramsey properties

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 Category Dichotomy

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

■ Let's play a game *G*:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

■ Let's play a game *G*:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

• Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

• Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

• Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathsf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$...Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$...

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

• Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

• Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

David Meza

The Katětov order

Ramsey Properties

Category Dichotomy

Theorem

Let \mathcal{I} be a Borel ideal. Then, either $\mathcal{I} \leq_{\mathcal{K}} \mathsf{nwd}$ or there is $X \in \mathcal{I}^+$ such that $\mathcal{ED} \leq_{\mathcal{K}} \mathcal{I} \upharpoonright X$.

Sketch of proof.

Let's play a game G:

Player I $I_0 \in \mathcal{I}$ $I_1 \in \mathcal{I}$ \cdots Player II $n_0 \in \omega \setminus I_0$ $n_1 \in \omega \setminus I_1$ \cdots

Player I wins if $\{n_k : k < \omega\} \in \mathcal{I}$.

• Claim. Player I has a winning strategy for G iff there is an \mathcal{I}^* -branching tree of increasing sequences st $rng(x) \in \mathcal{I}$ for all branch x of T.

Katětov order

- David Meza
- The Katětov order
- Ramsey Properties
- Category Dichotomy

Claim. The following conditions are equivalent

Player II has a winning strategy,

- There is an \mathcal{I}^+ branching tree T such that $rng(x) \in \mathcal{I}^+$ for all branch x of T, and
- There is a pairwise disjoint family {X_n : n < ω} of

 I-positive sets such that for every *I* ∈ *I*, exists *n* such that
 X_n ∩ *I* = Ø.
- **Claim.** If for every \mathcal{I} -positive set X, Player II has a winning strategy in G(X), then $\mathcal{I} \leq_{\mathcal{K}}$ **nwd**.
- Claim. If there is an \mathcal{I} -positive set Y such that Player I has a winning strategy for $G(\mathcal{I} \upharpoonright Y)$ then there is an \mathcal{I} -positive set $X \subseteq Y$ such that $\mathcal{I} \upharpoonright X \geq_{\mathcal{K}} \mathcal{ED}$.

- David Meza
- The Katětov order
- Ramsey Properties
- Category Dichotomy

- Player II has a winning strategy,
- There is an \mathcal{I}^+ branching tree T such that $rng(x) \in \mathcal{I}^+$ for all branch x of T, and
- There is a pairwise disjoint family {X_n : n < ω} of

 I-positive sets such that for every *I* ∈ *I*, exists *n* such that
 X_n ∩ *I* = ∅.
- **Claim.** If for every \mathcal{I} -positive set X, Player II has a winning strategy in G(X), then $\mathcal{I} \leq_K$ **nwd**.
- Claim. If there is an \mathcal{I} -positive set Y such that Player I has a winning strategy for $G(\mathcal{I} \upharpoonright Y)$ then there is an \mathcal{I} -positive set $X \subseteq Y$ such that $\mathcal{I} \upharpoonright X \geq_{\mathcal{K}} \mathcal{ED}$.

Katětov order

- David Meza
- The Katětov order
- Ramsey Properties
- Category Dichotomy

- Player II has a winning strategy,
- There is an \mathcal{I}^+ branching tree T such that $rng(x) \in \mathcal{I}^+$ for all branch x of T, and
- There is a pairwise disjoint family $\{X_n : n < \omega\}$ of \mathcal{I} -positive sets such that for every $I \in \mathcal{I}$, exists *n* such that $X_n \cap I = \emptyset$.
- **Claim.** If for every \mathcal{I} -positive set X, Player II has a winning strategy in G(X), then $\mathcal{I} \leq_{\mathcal{K}}$ **nwd**.
- Claim. If there is an \mathcal{I} -positive set Y such that Player I has a winning strategy for $G(\mathcal{I} \upharpoonright Y)$ then there is an \mathcal{I} -positive set $X \subseteq Y$ such that $\mathcal{I} \upharpoonright X \geq_{\mathcal{K}} \mathcal{ED}$.

Katětov order

- David Meza
- The Katětov order
- Ramsey Properties
- Category Dichotomy

- Player II has a winning strategy,
- There is an \mathcal{I}^+ branching tree T such that $rng(x) \in \mathcal{I}^+$ for all branch x of T, and
- There is a pairwise disjoint family $\{X_n : n < \omega\}$ of \mathcal{I} -positive sets such that for every $I \in \mathcal{I}$, exists *n* such that $X_n \cap I = \emptyset$.
- **Claim.** If for every \mathcal{I} -positive set X, Player II has a winning strategy in G(X), then $\mathcal{I} \leq_{\mathcal{K}}$ **nwd**.
- Claim. If there is an \mathcal{I} -positive set Y such that Player I has a winning strategy for $G(\mathcal{I} \upharpoonright Y)$ then there is an \mathcal{I} -positive set $X \subseteq Y$ such that $\mathcal{I} \upharpoonright X \geq_{\mathcal{K}} \mathcal{ED}$.

Katětov order

- David Meza
- The Katětov order
- Ramsey Properties
- Category Dichotomy

- Player II has a winning strategy,
- There is an \mathcal{I}^+ branching tree T such that $rng(x) \in \mathcal{I}^+$ for all branch x of T, and
- There is a pairwise disjoint family $\{X_n : n < \omega\}$ of \mathcal{I} -positive sets such that for every $I \in \mathcal{I}$, exists *n* such that $X_n \cap I = \emptyset$.
- **Claim.** If for every \mathcal{I} -positive set X, Player II has a winning strategy in G(X), then $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$.
- Claim. If there is an *I*-positive set *Y* such that Player I has a winning strategy for *G*(*I* ↾ *Y*) then there is an *I*-positive set *X* ⊆ *Y* such that *I* ↾ *X* ≥_K *ED*.

Katětov order

- David Meza
- The Katětov order
- Ramsey Properties
- Category Dichotomy

- Player II has a winning strategy,
- There is an \mathcal{I}^+ branching tree T such that $rng(x) \in \mathcal{I}^+$ for all branch x of T, and
- There is a pairwise disjoint family $\{X_n : n < \omega\}$ of \mathcal{I} -positive sets such that for every $I \in \mathcal{I}$, exists *n* such that $X_n \cap I = \emptyset$.
- **Claim.** If for every \mathcal{I} -positive set X, Player II has a winning strategy in G(X), then $\mathcal{I} \leq_{\mathcal{K}} \mathbf{nwd}$.
- Claim. If there is an \mathcal{I} -positive set Y such that Player I has a winning strategy for $G(\mathcal{I} \upharpoonright Y)$ then there is an \mathcal{I} -positive set $X \subseteq Y$ such that $\mathcal{I} \upharpoonright X \geq_{\mathcal{K}} \mathcal{ED}$.