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Lattice valued functions
Cuts

Lattice valued function

X 6= ∅; L - complete lattice with the top 1 and the bottom 0;

µ : X → L

µ is a lattice-valued function or L-valued function on X .
µ : X → L - an L-valued function on X ; p ∈ L.

µp := {x ∈ X | µ(x) > p}

µp is the p-cut, a cut set or simply a cut of µ.

A p-cut of µ is the inverse image of the principal filter in L
generated by p :

µp = µ−1(↑p).
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B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued functions
Cuts

Lattice valued function

X 6= ∅; L - complete lattice with the top 1 and the bottom 0;

µ : X → L

µ is a lattice-valued function or L-valued function on X .
µ : X → L - an L-valued function on X ; p ∈ L.

µp := {x ∈ X | µ(x) > p}

µp is the p-cut, a cut set or simply a cut of µ.

A p-cut of µ is the inverse image of the principal filter in L
generated by p :

µp = µ−1(↑p).
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Lattice valued functions
Properties of cuts

Proposition

For an L-valued function µ on X , the following hold.

If p, q ∈ L and p ≤ q, then µq ⊆ µp.

if L1 ⊆ L, then ⋂
{µp | p ∈ L1} = µ∨

{p|p∈L1}.⋃
{µp | p ∈ L} = X .

µL := {µp | p ∈ L} - collection of cuts of µ.

Proposition

For every x ∈ X , ⋂
{µp | x ∈ µp} ∈ µL.
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Lattice valued functions
Properties of cuts

Theorem

The collection µL of cuts of µ : X → L is a complete lattice under
inclusion.

Synthesis by cuts

Theorem

If µ : X → L is an L-valued function on X , then for every x ∈ X

µ(x) =
∨
{p ∈ L | x ∈ µp}.
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Lattice valued functions
Representation by cuts

Representation theorem

Theorem

Let X be a nonempty set and F a family of its subsets closed
under arbitrary intersections and containing X (a closure system on
X ). Let also L be the lattice dual to (F ,⊆) and µ : X → L an
L-valued function on X defined by

µ(x) :=
⋂
{f ∈ F | x ∈ f }.

Then, the lattice of cut subsets of µ is isomorphic with (F ,⊆), and
every f ∈ F coincides with the corresponding cut µf .
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Lattice valued functions
Cardinal power

LX := {µ | µ : X → L}

LX is the collection of all L-valued functions on X .

LX is a lattice under the ordering defined by:

µ 6 ν if and only if for each x ∈ X µ(x) 6 ν(x).

For µ ∈ LX , let

Lµ := ({↑p ∩ µ(X ) | p ∈ L},⊆).

By the definition, Lµ consists of particular collections of images of
µ in L and is a poset under inclusion.
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Lattice valued functions
Classification

Lµ := ({↑p ∩ µ(X ) | p ∈ L},⊆).

µL = {µp | p ∈ L} - the lattice of cuts of µ.

Theorem

Lµ is a lattice isomorphic with the lattice µL of cuts of µ, under

f : µp 7→ ↑p ∩ µ(X ).
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B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued functions
Classification

A classification of functions in the set LX is introduced as follows.

Let ∼ be the relation on LX , defined by:
µ ∼ ν if and only if the correspondence f : µ(x) 7→ ν(x), x ∈ X is
a bijection from µ(X ) onto ν(X ) which has an extension to an
isomorphism from the lattice Lµ onto the lattice Lν , given by the
mapping

F (↑p ∩ µ(X )) := ↑
∧
{ν(x) | µ(x) ≥ p} ∩ ν(X ), p ∈ L.

If µ ∼ ν, then the L-valued functions µ and ν on X are said to be
equivalent.
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B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued functions
Classification

A classification of functions in the set LX is introduced as follows.

Let ∼ be the relation on LX , defined by:
µ ∼ ν if and only if the correspondence f : µ(x) 7→ ν(x), x ∈ X is
a bijection from µ(X ) onto ν(X ) which has an extension to an
isomorphism from the lattice Lµ onto the lattice Lν , given by the
mapping

F (↑p ∩ µ(X )) := ↑
∧
{ν(x) | µ(x) ≥ p} ∩ ν(X ), p ∈ L.

If µ ∼ ν, then the L-valued functions µ and ν on X are said to be
equivalent.
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B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued functions
Classification

Classification of functions in LX

Theorem

Let µ, ν : X → L. Then µ ∼ ν if and only if L-valued functions µ
and ν have equal collections of cuts.
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Lattice valued functions
Cuts applied

Example

µ =

(
x y z
p q r

)
ν =

(
x y z
p q t

)
π =

(
x y z
p r t

)
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Lattice valued functions
Cuts applied

c c
c c c

c c c
cp

q

r

q

p

t

p
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µ(X ) ν(X ) π(X )

B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued functions
Cuts applied
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Lµ Lν Lπ

Lµ = ({↑p ∩ µ(X ) | p ∈ L},⊆)
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Lattice valued functions
Cuts applied
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µp = µ−1(↑p); µL = {µp | p ∈ L}

2

B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued functions
Cuts applied

Representation of lattices

Theorem

Let L be a lattice of finite length, and X the set of its meet
irreducible elements. Then there is an L-valued function µ : X → L
such that L is isomorphic with the dual of the lattice µL of cuts of
µ, under p 7→ µp.
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Lattice valued relations
Definition

Lattice valued relations

A lattice valued relation R on a set X is a lattice valued function
on X 2:

R : X 2 → L.

A cut-relation of R is a p-cut of R, p ∈ L:

Rp = {(x , y) ∈ X 2 | R(x , y) > p} = R−1(↑p).

An L-valued relation R on X is
reflexive and symmetric if it fulfills the analogue properties for its
characteristic function; it is transitive if
R(x , y) ∧ R(y , z) 6 R(x , z), for all x , y , z ∈ X .
An L-valued relation R on X is a lattice valued equivalence
relation on X if it is reflexive, symmetric and transitive.
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Lattice valued sets
Lattice valued algebras

Lattice valued (sub)algebra

Let A = (A,F ) be an algebra and L a complete lattice.
A lattice valued or L-valued subalgebra of A, is any mapping
µ : A→ L fulfilling the following:
For any operation f from F , f : An → A, n ∈ N, and all
x1, . . . , xn ∈ A,

n∧
i=1

µ(xi ) 6 µ(f (x1, . . . , xn)).

For a nullary operation (constant) c ∈ F ,

µ(c) = 1,

where 1 is the top element in L.
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B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued sets
Lattice valued algebras

Lattice valued (sub)algebra

Let A = (A,F ) be an algebra and L a complete lattice.
A lattice valued or L-valued subalgebra of A, is any mapping
µ : A→ L fulfilling the following:
For any operation f from F , f : An → A, n ∈ N, and all
x1, . . . , xn ∈ A,

n∧
i=1

µ(xi ) 6 µ(f (x1, . . . , xn)).

For a nullary operation (constant) c ∈ F ,

µ(c) = 1,

where 1 is the top element in L.
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Lattice valued sets
Definition

Example

An L-valued subgroup of a group (G , ·, −1, e) is a mapping
µ : G → L, fulfilling the following:

µ(x · y) > µ(x) ∧ µ(y), for all x , y ∈ G .

µ(e) = 1.

µ(x−1) > µ(x), for every x ∈ G .

Theorem

If µ : A→ L is a lattice valued subalgebra of an algebra A, then
for every p ∈ L, the cut set µp is a subalgebra of A.
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Lattice valued algebras
Cut subalgebras

Theorem

Let A be an algebra and F a collection of its subuniverses closed
under arbitrary intersections and containing A. Let also L be the
lattice dual to (F ,⊆) and µ : A→ L an L-valued set on A defined
by

µ(x) :=
⋂
{B ∈ F | x ∈ B}.

Then, µ is an L-valued subalgebra of A. In addition, the lattice of
cut subalgebras of µ is isomorphic with (F ,⊆), and every
subalgebra B ∈ F coincides with the corresponding cut µB .
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Lattice valued algebras
Compatibility

Lattice valued congruences

Let A = (A,F ) be an algebra and L a complete lattice, and
R : A2 → L be an L-valued relation on A.

R is said to be compatible with operations on A if for any (n-ary)
f ∈ F and all x1, . . . , xn, y1, . . . , yn ∈ A, we have that

n∧
i=1

R(xi , yi ) 6 R(f (x1, . . . , xn), f (y1, . . . , yn)).

An L-valued equivalence relation on A which is compatible with all
operations is a lattice valued congruence relation on A.

Theorem

If R : A2 → L is a lattice valued congruence on an algebra A, then
for every p ∈ L, the cut relation Rp is a congruence on A.
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Lattice valued algebras
Relations on L-valued sets

Let A be a nonempty set, L a complete lattice and µ : A→ L an
L-valued set on A. An L-valued relation ρ : A2 → L on A is said to
be an L-valued relation on µ if for all x , y ∈ A

ρ(x , y) 6 µ(x) ∧ µ(y). (1)

Due to this boundary condition, we have the following definition.
An L-valued relation ρ on an L-valued set µ is reflexive if for all
x , y ∈ A,

ρ(x , x) = µ(x). (2)

Obviously, by (1), a reflexive relation ρ on µ fulfils the following:

For all x , y ∈ A, ρ(x , x) > ρ(x , y) and ρ(x , x) > ρ(y , x). (3)
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Lattice valued algebras
Relations on L-valued sets

An L-valued relation ρ on µ is symmetric and transitive if it fulfils
the corresponding properties as an L-valued relation on A.

A reflexive, symmetric and transitive relation ρ on µ is an
L-valued equivalence on this L-valued set.

An L-valued equivalence relation ρ on µ, fulfilling

For all x , y ∈ A, ρ(x , x) > ρ(x , y) and ρ(x , x) > ρ(y , x), (4)

is called an L-valued equality relation on an L-valued set µ.

In addition, an L-valued relation ρ on µ is compatible with the
operations on this L-valued subalgebra if for any (n-ary) f ∈ F and
all x1, . . . , xn, y1, . . . , yn ∈ A, we have that

n∧
i=1

R(xi , yi ) 6 R(f (x1, . . . , xn), f (y1, . . . , yn)).
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Lattice valued algebras
Relations on L-valued sets

A compatible L-valued equivalence on µ is an L-valued
congruence on this L-valued subalgebra.

A compatible lattice valued equality is also called an L-valued
equality on µ.

Denote by LConµ and LEqµ the collections of all L-valued
congruences and all compatible L-valued equalities (respectively)
on an L-valued subalgebra µ of an algebra A . These can be
naturally ordered by componentwise order 6 , inherited from L.

Theorem

The poset (LConµ,6) is a complete lattice, and the poset
(LEqµ,6) is a meet-semilattice, a semi-ideal in the former.
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Lattice valued algebras
Connection to the underlying algebra

We have an algebra A = (A,F ) and L-valued relations on it, i.e.,
mappings from A2 to a complete lattice L.

We say that ρ : A2 → L is an L-valued weakly reflexive relation
on A, if

ρ(c , c) = 1 for every constant c ∈ F . (5)

An L-valued relation ρ : A2 → L on an algebra A which is weakly
reflexive, symmetric and transitive, is called a weak L-valued
equivalence on A.
If, in addition, ρ fulfills also the condition

For all x , y ∈ A, ρ(x , x) > ρ(x , y) and ρ(x , x) > ρ(y , x),

then ρ is a weak L-valued equality on A.
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Lattice valued algebras
Connection to the underlying algebra

For compatible weak L-valued equivalences we use the name weak
L-valued congruences on A. A subclass of weak L-valued
congruences are compatible weak L-valued equalities.

Theorem

If ρ : A2 → L is a weak L-valued congruence on an algebra A, then
the mapping µρ : A→ L, defined by

µρ(x) := ρ(x , x) (6)

is an L-valued subalgebra of A.
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Connection to the underlying algebra

The previous theorem gives a link between L-valued congruences
on L-valued subalgebras and weak L-valued congruences on the
whole algebra.

Theorem

A weak L-valued congruence ρ : A2 → L on an algebra A is an
L-valued congruence on the L-valued subalgebra µρ of A.
Conversely, an L-valued congruence ρ on an L-valued subalgebra µ
of A is a weak L-valued congruence on the whole algebra A.
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Lattice of all weak L-valued congruences

Theorem

The collection of all weak L-valued congruences on an algebra A is
a complete lattice. Its sublattice of diagonal relations is isomorphic
to the lattice of all L-valued subalgebras of A. The lattice of
L-valued congruences on each L-valued subalgebra of A is an
interval sublattice.

B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued algebras
Identities

Let A = (A,F ) be an algebra and L a complete lattice.

Let µ be an L-valued subalgebra of A and E : A2 → L an L-valued
equality on µ.

If t1, t2 are terms in the language of A, we consider the expression
E (t1, t2) as an L-valued identity with respect to E , or (briefly)
L-valued identity, if E is fixed.

Suppose that x1, . . . , xn are variables appearing in terms t1, t2. We
say that an L-valued subalgebra µ of A satisfies the L-valued
identity E (t1, t2) (or that this L-valued identity is valid on L-valued
subalgebra µ) if for all x1, . . . , xn ∈ A

n∧
i=1

µ(xi ) 6 E (t1, t2). (7)
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Proposition

Let µ : A→ L be an L-valued subalgebra of an algebra A and
E : A2 → L an L-valued equality on µ. If µ satisfies an L-valued
identity E (f , g), then also µ satisfies the identity E1(f , g), for
every L-valued equality E1 on µ, such that E 6 E1.

Lemma

Let µ : A→ L be an L-valued subalgebra of an algebra A,
{Ei : A2 → L, i ∈ I} a family of L-valued equalities on µ, and f , g
terms in the language of A. Now, if µ satisfies the identity Ei (f , g)
for every i ∈ I , then µ also satisfies the identity E (f , g), where
E =

∧
i∈I Ei .
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∧
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Corollary

If an L-valued subalgebra µ of A satisfies the identity E (f , g) for
an L-valued equality E , then there is the least L-valued equality on
µ, denoted by Eµ(f ,g), such that µ satisfies Eµ(f ,g)(f , g).

Corollary

Let µ be an L-valued subalgebra of an algebra A. Then A satisfies
the identity f = g if and only if µ satisfies the identity E (f , g) for
every E ∈ fEqµ.
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Corollary

Let µ be an L-valued subalgebra of an algebra A and L a complete
lattice. Let also f , g be terms in the language of A. Then the
following hold.
The cut subalgebra µp of µ for p ∈ L satisfies the identity f = g if
and only if the cut-relation (Eµ(f ,g))p of the least equality Eµ(f ,g)

is the ordinary equality on µp.
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B. Šešelja, A. Tepavčević, Equivalent fuzzy sets, Kybernetika
41 (2005), No.2, 115-128.
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B. Šešelja and A. Tepavčević Lattice valued identities



Lattice valued identities
References
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Vogler, Cut sets as recognizable tree languages, Fuzzy Sets
and Systems 157 (2006) 1560-1571.
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