Lattice valued identities

B. Šešelja and A. Tepavčević

Blast 2010 Boulder, June 6., 2009.

Lattice valued function

B. Šešelja and A. Tepavčević Lattice valued identities

문 🕨 👘 문

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

< ≣ >

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

$$\mu: X \to L$$

< ≣ >

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

 $\mu: X \to L$

 μ is a **lattice-valued function** or *L*-valued function on *X*.

個人 くほん くほん しほ

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

 $\mu: X \to L$

 μ is a **lattice-valued function** or *L*-valued function on *X*. $\mu: X \to L$ - an *L*-valued function on *X*; $p \in L$.

御 と く ヨ と く ヨ と … ヨ

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

$$\mu: X \to L$$

 μ is a **lattice-valued function** or *L*-valued function on *X*. $\mu: X \to L$ - an *L*-valued function on *X*; $p \in L$.

$$\mu_p := \{x \in X \mid \mu(x) \ge p\}$$

同 ト く ヨ ト く ヨ ト

3

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

$$\mu: X \to L$$

 μ is a **lattice-valued function** or *L*-valued function on *X*. $\mu: X \to L$ - an *L*-valued function on *X*; $p \in L$.

$$\mu_p := \{x \in X \mid \mu(x) \ge p\}$$

 μ_p is the *p*-cut, a cut set or simply a cut of μ .

白 と く ヨ と く ヨ と …

Lattice valued functions _{Cuts}

Lattice valued function

 $X \neq \emptyset$; *L* - complete lattice with the top 1 and the bottom 0;

 $\mu: X \to L$

 μ is a **lattice-valued function** or *L*-valued function on *X*. $\mu: X \to L$ - an *L*-valued function on *X*; $p \in L$.

$$\mu_p := \{x \in X \mid \mu(x) \ge p\}$$

 μ_p is the *p*-cut, a cut set or simply a cut of μ .

A p-cut of μ is the inverse image of the principal filter in L generated by p :

$$\mu_p = \mu^{-1}(\uparrow p).$$

(人間) (人) (人) (人) (人) (人)

Proposition

For an L-valued function μ on X, the following hold.

æ

≣ ▶

A⊒ ▶ ∢ ∃

Proposition

For an L-valued function μ on X, the following hold.

• If
$$p, q \in L$$
 and $p \leq q$, then $\mu_q \subseteq \mu_p$.

æ

≣ ▶

A⊒ ▶ ∢ ∃

Proposition

For an L-valued function μ on X, the following hold.

- If $p, q \in L$ and $p \leq q$, then $\mu_q \subseteq \mu_p$.
- if $L_1 \subseteq L$, then

$$\bigcap \{\mu_p \mid p \in L_1\} = \mu_{\bigvee \{p \mid p \in L_1\}}.$$

/⊒ ▶ ∢ ≣ ▶

Proposition

For an L-valued function μ on X, the following hold.

- If $p, q \in L$ and $p \leq q$, then $\mu_q \subseteq \mu_p$.
- if $L_1 \subseteq L$, then

$$\bigcap \{\mu_p \mid p \in L_1\} = \mu_{\bigvee \{p \mid p \in L_1\}}.$$

•
$$\bigcup \{\mu_p \mid p \in L\} = X.$$

/⊒ > < ≣ >

Proposition

For an L-valued function μ on X, the following hold.

- If $p,q \in L$ and $p \leq q$, then $\mu_q \subseteq \mu_p$.
- if $L_1 \subseteq L$, then

$$\bigcap \{\mu_p \mid p \in L_1\} = \mu_{\bigvee \{p \mid p \in L_1\}}.$$

•
$$\bigcup \{\mu_p \mid p \in L\} = X.$$

 $\mu_L := \{\mu_p \mid p \in L\}$ - collection of cuts of μ .

⊡ ▶ < ≣ ▶

Proposition

For an L-valued function μ on X, the following hold.

- If $p,q \in L$ and $p \leq q$, then $\mu_q \subseteq \mu_p$.
- if $L_1 \subseteq L$, then

$$\bigcap \{\mu_p \mid p \in L_1\} = \mu_{\bigvee \{p \mid p \in L_1\}}.$$

•
$$\bigcup \{\mu_p \mid p \in L\} = X.$$

 $\mu_L := \{\mu_p \mid p \in L\}$ - collection of cuts of μ .

Proposition

For every $x \in X$,

$$\bigcap \{\mu_p \mid x \in \mu_p\} \in \mu_L.$$

イロト イヨト イヨト イヨト

Theorem

The collection μ_L of cuts of $\mu : X \to L$ is a complete lattice under inclusion.

Theorem

The collection μ_L of cuts of $\mu : X \to L$ is a complete lattice under inclusion.

Synthesis by cuts

Theorem

The collection μ_L of cuts of $\mu : X \to L$ is a complete lattice under inclusion.

Synthesis by cuts

Theorem

If $\mu : X \to L$ is an L-valued function on X, then for every $x \in X$

$$\mu(x) = \bigvee \{ p \in L \mid x \in \mu_p \}.$$

A⊒ ▶ ∢ ∃

Representation theorem

≣ >

Representation theorem

Theorem

Let X be a nonempty set and F a family of its subsets closed under arbitrary intersections and containing X (a closure system on X). Let also L be the lattice dual to (F, \subseteq) and $\mu : X \to L$ an L-valued function on X defined by

$$\mu(x) := \bigcap \{ f \in F \mid x \in f \}.$$

Then, the lattice of cut subsets of μ is isomorphic with (F, \subseteq) , and every $f \in F$ coincides with the corresponding cut μ_f .

$$L^{X} := \{ \mu \mid \mu : X \to L \}$$

・ロト ・回ト ・ヨト

< ≣⇒

$$L^{X} := \{ \mu \mid \mu : X \to L \}$$

 L^X is the collection of all *L*-valued functions on *X*.

@▶ 《 ≧ ▶

- < ≣ →

$$L^{X} := \{ \mu \mid \mu : X \to L \}$$

 L^X is the collection of all *L*-valued functions on *X*.

 L^X is a lattice under the ordering defined by:

 $\mu \leq \nu$ if and only if for each $x \in X$ $\mu(x) \leq \nu(x)$.

$$L^{X} := \{ \mu \mid \mu : X \to L \}$$

 L^X is the collection of all *L*-valued functions on *X*.

 L^X is a lattice under the ordering defined by:

 $\mu \leq \nu$ if and only if for each $x \in X$ $\mu(x) \leq \nu(x)$.

For $\mu \in L^X$, let

$$L^{X} := \{ \mu \mid \mu : X \to L \}$$

 L^X is the collection of all *L*-valued functions on *X*.

 L^X is a lattice under the ordering defined by:

 $\mu \leq \nu$ if and only if for each $x \in X$ $\mu(x) \leq \nu(x)$.

For $\mu \in L^X$, let

$$L_{\mu} := (\{\uparrow p \cap \mu(X) \mid p \in L\}, \subseteq).$$

$$L^{X} := \{ \mu \mid \mu : X \to L \}$$

 L^X is the collection of all *L*-valued functions on *X*.

 L^X is a lattice under the ordering defined by:

 $\mu \leq \nu$ if and only if for each $x \in X$ $\mu(x) \leq \nu(x)$.

For $\mu \in L^X$, let

$$L_{\mu} := (\{\uparrow p \cap \mu(X) \mid p \in L\}, \subseteq).$$

By the definition, L_{μ} consists of particular collections of images of μ in L and is a poset under inclusion.

$$L_{\mu} := (\{\uparrow p \cap \mu(X) \mid p \in L\}, \subseteq).$$

<->
</>
</>
</>
</>
</l>

< ≣ >

$$L_{\mu} := (\{\uparrow p \cap \mu(X) \mid p \in L\}, \subseteq).$$

 $\mu_L = \{\mu_p \mid p \in L\}$ - the lattice of cuts of μ .

□ > 《 E > 《 E >

$$L_{\mu} := (\{\uparrow p \cap \mu(X) \mid p \in L\}, \subseteq).$$

 $\mu_L = \{\mu_p \mid p \in L\}$ - the lattice of cuts of μ .

Theorem

 L_{μ} is a lattice isomorphic with the lattice μ_L of cuts of μ , under

 $f: \mu_p \mapsto \uparrow p \cap \mu(X).$

・ 回 ト ・ ヨ ト ・ ヨ ト

문 🕨 👘 문

Let \sim be the relation on L^X , defined by:

Let ~ be the relation on L^X , defined by: $\mu \sim \nu$ if and only if the correspondence $f : \mu(x) \mapsto \nu(x), x \in X$ is a bijection from $\mu(X)$ onto $\nu(X)$ which has an extension to an isomorphism from the lattice L_{μ} onto the lattice L_{ν} , given by the mapping

Let ~ be the relation on L^X , defined by: $\mu \sim \nu$ if and only if the correspondence $f : \mu(x) \mapsto \nu(x), x \in X$ is a bijection from $\mu(X)$ onto $\nu(X)$ which has an extension to an isomorphism from the lattice L_{μ} onto the lattice L_{ν} , given by the mapping

 $F(\uparrow p \cap \mu(X)) := \uparrow \bigwedge \{\nu(x) \mid \mu(x) \ge p\} \cap \nu(X), p \in L.$

Let ~ be the relation on L^X , defined by: $\mu \sim \nu$ if and only if the correspondence $f : \mu(x) \mapsto \nu(x), x \in X$ is a bijection from $\mu(X)$ onto $\nu(X)$ which has an extension to an isomorphism from the lattice L_{μ} onto the lattice L_{ν} , given by the mapping

$$F(\uparrow p \cap \mu(X)) := \uparrow \bigwedge \{ \nu(x) \mid \mu(x) \ge p \} \cap \nu(X), p \in L.$$

If $\mu \sim \nu$, then the *L*-valued functions μ and ν on *X* are said to be **equivalent**.

Classification of functions in L^X

æ

< ≣ >

Classification of functions in L^X

Theorem

Let $\mu, \nu : X \to L$. Then $\mu \sim \nu$ if and only if L-valued functions μ and ν have equal collections of cuts.
Lattice valued functions Cuts applied

< ≣⇒

æ

Lattice valued functions Cuts applied

Example

$$\mu = \begin{pmatrix} x & y & z \\ p & q & r \end{pmatrix} \qquad \nu = \begin{pmatrix} x & y & z \\ p & q & t \end{pmatrix} \qquad \pi = \begin{pmatrix} x & y & z \\ p & r & t \end{pmatrix}$$

< ≣⇒

æ

Lattice valued functions

Example

● ▶ 《 三 ▶

< ≣ >

æ

Lattice valued functions Cuts applied

$$L_{\mu} = (\{\uparrow p \cap \mu(X) \mid p \in L\}, \subseteq)$$

문 🛌 문

Lattice valued functions Cuts applied

$$\mu_{p} = \mu^{-1}(\uparrow p); \quad \mu_{L} = \{\mu_{p} \mid p \in L\}$$

Representation of lattices

B. Šešelja and A. Tepavčević Lattice valued identities

Representation of lattices

Theorem

Let L be a lattice of finite length, and X the set of its meet irreducible elements. Then there is an L-valued function $\mu : X \to L$ such that L is isomorphic with the dual of the lattice μ_L of cuts of μ , under $p \mapsto \mu_p$.

Lattice valued relations

< ≣⇒

æ

Lattice valued relations

A **lattice valued relation** R on a set X is a lattice valued function on X^2 :

æ

< ≣ >

Lattice valued relations

A **lattice valued relation** R on a set X is a lattice valued function on X^2 :

$$R: X^2 \to L.$$

æ

< ≣ >

Lattice valued relations

A lattice valued relation R on a set X is a lattice valued function on X^2 :

$$R: X^2 \to L.$$

A **cut-relation** of *R* is a *p*-cut of *R*, $p \in L$:

Lattice valued relations

A **lattice valued relation** R on a set X is a lattice valued function on X^2 :

$$R: X^2 \to L.$$

A **cut-relation** of *R* is a *p*-cut of *R*, $p \in L$:

$$R_p = \{(x,y) \in X^2 \mid R(x,y) \ge p\} = R^{-1}(\uparrow p).$$

Lattice valued relations

A **lattice valued relation** R on a set X is a lattice valued function on X^2 :

 $R: X^2 \to L.$

A **cut-relation** of *R* is a *p*-cut of *R*, $p \in L$:

$$R_p = \{(x,y) \in X^2 \mid R(x,y) \ge p\} = R^{-1}(\uparrow p).$$

An L-valued relation R on X is

Lattice valued relations

A **lattice valued relation** R on a set X is a lattice valued function on X^2 :

$$R: X^2 \to L.$$

A **cut-relation** of *R* is a *p*-cut of *R*, $p \in L$:

$$R_p = \{(x,y) \in X^2 \mid R(x,y) \ge p\} = R^{-1}(\uparrow p).$$

An *L*-valued relation *R* on *X* is **reflexive** and **symmetric** if it fulfills the analogue properties for its characteristic function; it is **transitive** if $R(x, y) \land R(y, z) \leq R(x, z)$, for all $x, y, z \in X$.

Lattice valued relations

A **lattice valued relation** R on a set X is a lattice valued function on X^2 :

$$R: X^2 \to L.$$

A **cut-relation** of *R* is a *p*-cut of *R*, $p \in L$:

$$R_p = \{(x,y) \in X^2 \mid R(x,y) \geq p\} = R^{-1}(\uparrow p).$$

An L-valued relation R on X is

reflexive and **symmetric** if it fulfills the analogue properties for its characteristic function; it is **transitive** if $R(x,y) \wedge R(y,z) \leq R(x,z)$, for all $x, y, z \in X$.

An *L*-valued relation R on X is a **lattice valued equivalence** relation on X if it is reflexive, symmetric and transitive.

æ

≣ >

/⊒ ▶ < ≣ ▶

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice.

周▶ ★ 国▶ ★ 国▶

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and L a complete lattice. A **lattice valued** or *L*-valued subalgebra of \mathcal{A} , is any mapping $\mu : \mathcal{A} \to L$ fulfilling the following:

向 ト イヨト

Let $\mathcal{A} = (A, F)$ be an algebra and L a complete lattice. A **lattice valued** or *L*-valued subalgebra of \mathcal{A} , is any mapping $\mu : A \to L$ fulfilling the following: For any operation f from $F, f : A^n \to A, n \in \mathbb{N}$, and all $x_1, \ldots, x_n \in A$,

Let $\mathcal{A} = (A, F)$ be an algebra and L a complete lattice. A **lattice valued** or *L*-valued subalgebra of \mathcal{A} , is any mapping $\mu : A \to L$ fulfilling the following: For any operation f from F, $f : A^n \to A$, $n \in \mathbb{N}$, and all $x_1, \ldots, x_n \in A$,

$$\bigwedge_{i=1}^n \mu(x_i) \leqslant \mu(f(x_1,\ldots,x_n)).$$

白 ト く ヨ ト く ヨ ト

Let $\mathcal{A} = (A, F)$ be an algebra and L a complete lattice. A **lattice valued** or *L*-valued subalgebra of \mathcal{A} , is any mapping $\mu : A \to L$ fulfilling the following: For any operation f from F, $f : A^n \to A$, $n \in \mathbb{N}$, and all $x_1, \ldots, x_n \in A$,

$$\bigwedge_{i=1}^n \mu(x_i) \leqslant \mu(f(x_1,\ldots,x_n)).$$

For a nullary operation (constant) $c \in F$,

Let $\mathcal{A} = (A, F)$ be an algebra and L a complete lattice. A **lattice valued** or *L*-valued subalgebra of \mathcal{A} , is any mapping $\mu : A \to L$ fulfilling the following: For any operation f from F, $f : A^n \to A$, $n \in \mathbb{N}$, and all $x_1, \ldots, x_n \in A$,

$$\bigwedge_{i=1}^n \mu(x_i) \leqslant \mu(f(x_1,\ldots,x_n)).$$

For a nullary operation (constant) $c \in F$,

$$\mu(c) = 1,$$

where 1 is the top element in L.

▲ @ > < ≥ >

∢ 臣 ▶

æ

An *L*-valued subgroup of a group $(G, \cdot, {}^{-1}, e)$ is a mapping $\mu : G \to L$, fulfilling the following:

/⊒ > < ≣ >

An *L*-valued subgroup of a group $(G, \cdot, {}^{-1}, e)$ is a mapping $\mu : G \to L$, fulfilling the following:

• $\mu(x \cdot y) \ge \mu(x) \land \mu(y)$, for all $x, y \in G$.

•
$$\mu(e) = 1.$$

•
$$\mu(x^{-1}) \ge \mu(x)$$
, for every $x \in G$.

同 と く ヨ と く ヨ と

An *L*-valued subgroup of a group $(G, \cdot, -1, e)$ is a mapping $\mu : G \to L$, fulfilling the following:

•
$$\mu(x \cdot y) \geqslant \mu(x) \land \mu(y)$$
, for all $x, y \in G$.

•
$$\mu(e) = 1.$$

•
$$\mu(x^{-1}) \ge \mu(x)$$
, for every $x \in G$.

Theorem

If $\mu : A \to L$ is a lattice valued subalgebra of an algebra \mathcal{A} , then for every $p \in L$, the cut set μ_p is a subalgebra of \mathcal{A} .

▲圖▶ ▲屋▶ ▲屋▶

Theorem

Let \mathcal{A} be an algebra and \mathcal{F} a collection of its subuniverses closed under arbitrary intersections and containing A. Let also L be the lattice dual to (\mathcal{F}, \subseteq) and $\mu : A \to L$ an L-valued set on A defined by

$$\mu(x) := \bigcap \{B \in \mathcal{F} \mid x \in B\}.$$

Then, μ is an L-valued subalgebra of A. In addition, the lattice of cut subalgebras of μ is isomorphic with (\mathcal{F}, \subseteq) , and every subalgebra $B \in \mathcal{F}$ coincides with the corresponding cut μ_B .

Lattice valued algebras Compatibility

Lattice valued congruences

B. Šešelja and A. Tepavčević Lattice valued identities

Lattice valued algebras Compatibility

Lattice valued congruences

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice, and $R : \mathcal{A}^2 \to \mathcal{L}$ be an \mathcal{L} -valued relation on \mathcal{A} .

Lattice valued congruences

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice, and $R: \mathcal{A}^2 \to \mathcal{L}$ be an \mathcal{L} -valued relation on \mathcal{A} .

R is said to be **compatible** with operations on A if for any (*n*-ary) $f \in F$ and all $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$, we have that

$$\bigwedge_{i=1}^n R(x_i, y_i) \leqslant R(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)).$$

Lattice valued congruences

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice, and $R : \mathcal{A}^2 \to \mathcal{L}$ be an \mathcal{L} -valued relation on \mathcal{A} .

R is said to be **compatible** with operations on A if for any (*n*-ary) $f \in F$ and all $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$, we have that

$$\bigwedge_{i=1}^n R(x_i, y_i) \leqslant R(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)).$$

An *L*-valued equivalence relation on \mathcal{A} which is compatible with all operations is a **lattice valued congruence** relation on \mathcal{A} .

白 と く ヨ と く ヨ と

Lattice valued congruences

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice, and $R : \mathcal{A}^2 \to \mathcal{L}$ be an \mathcal{L} -valued relation on \mathcal{A} .

R is said to be **compatible** with operations on A if for any (*n*-ary) $f \in F$ and all $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$, we have that

$$\bigwedge_{i=1}^n R(x_i, y_i) \leq R(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)).$$

An *L*-valued equivalence relation on \mathcal{A} which is compatible with all operations is a **lattice valued congruence** relation on \mathcal{A} .

Theorem

If $R : A^2 \to L$ is a lattice valued congruence on an algebra A, then for every $p \in L$, the cut relation R_p is a congruence on A. Let A be a nonempty set, L a complete lattice and $\mu : A \to L$ an L-valued set on A. An L-valued relation $\rho : A^2 \to L$ on A is said to be an L-valued relation on μ if for all $x, y \in A$

$$\rho(x,y) \leqslant \mu(x) \land \mu(y). \tag{1}$$

Let A be a nonempty set, L a complete lattice and $\mu : A \to L$ an L-valued set on A. An L-valued relation $\rho : A^2 \to L$ on A is said to be an L-valued relation on μ if for all $x, y \in A$

$$\rho(x,y) \leqslant \mu(x) \land \mu(y). \tag{1}$$

Due to this boundary condition, we have the following definition.

Let A be a nonempty set, L a complete lattice and $\mu : A \to L$ an L-valued set on A. An L-valued relation $\rho : A^2 \to L$ on A is said to be an L-valued relation on μ if for all $x, y \in A$

$$\rho(x,y) \leqslant \mu(x) \land \mu(y). \tag{1}$$

Due to this boundary condition, we have the following definition. An *L*-valued relation ρ on an *L*-valued set μ is **reflexive** if for all $x, y \in A$,

$$\rho(\mathbf{x}, \mathbf{x}) = \mu(\mathbf{x}). \tag{2}$$
Let A be a nonempty set, L a complete lattice and $\mu : A \to L$ an L-valued set on A. An L-valued relation $\rho : A^2 \to L$ on A is said to be an L-valued relation on μ if for all $x, y \in A$

$$\rho(x,y) \leqslant \mu(x) \land \mu(y). \tag{1}$$

Due to this boundary condition, we have the following definition. An *L*-valued relation ρ on an *L*-valued set μ is **reflexive** if for all $x, y \in A$,

$$\rho(\mathbf{x}, \mathbf{x}) = \mu(\mathbf{x}). \tag{2}$$

Obviously, by (1), a reflexive relation ρ on μ fulfils the following:

For all
$$x, y \in A$$
, $\rho(x, x) \ge \rho(x, y)$ and $\rho(x, x) \ge \rho(y, x)$. (3)

An *L*-valued relation ρ on μ is symmetric and transitive if it fulfils the corresponding properties as an *L*-valued relation on *A*.

An *L*-valued relation ρ on μ is symmetric and transitive if it fulfils the corresponding properties as an *L*-valued relation on *A*. A reflexive, symmetric and transitive relation ρ on μ is an *L*-valued equivalence on this *L*-valued set.

An *L*-valued relation ρ on μ is symmetric and transitive if it fulfils the corresponding properties as an *L*-valued relation on *A*. A reflexive, symmetric and transitive relation ρ on μ is an *L*-valued equivalence on this *L*-valued set.

An L-valued equivalence relation ρ on μ , fulfilling

For all $x, y \in A$, $\rho(x, x) > \rho(x, y)$ and $\rho(x, x) > \rho(y, x)$, (4)

is called an *L*-valued equality relation on an *L*-valued set μ .

An *L*-valued relation ρ on μ is symmetric and transitive if it fulfils the corresponding properties as an *L*-valued relation on *A*. A reflexive, symmetric and transitive relation ρ on μ is an *L*-valued equivalence on this *L*-valued set.

An L-valued equivalence relation ρ on μ , fulfilling

For all
$$x, y \in A$$
, $\rho(x, x) > \rho(x, y)$ and $\rho(x, x) > \rho(y, x)$, (4)

is called an *L*-valued equality relation on an *L*-valued set μ .

In addition, an *L*-valued relation ρ on μ is compatible with the operations on this *L*-valued subalgebra if for any (*n*-ary) $f \in F$ and all $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$, we have that

$$\bigwedge_{i=1}^n R(x_i, y_i) \leqslant R(f(x_1, \ldots, x_n), f(y_1, \ldots, y_n)).$$

A compatible lattice valued equality is also called an *L*-valued equality on μ .

A compatible lattice valued equality is also called an *L*-valued equality on μ .

Denote by LCon μ and LEq μ the collections of all *L*-valued congruences and all compatible *L*-valued equalities (respectively) on an *L*-valued subalgebra μ of an algebra \mathcal{A} . These can be naturally ordered by componentwise order \leq , inherited from *L*.

A compatible lattice valued equality is also called an *L*-valued equality on μ .

Denote by LCon μ and LEq μ the collections of all *L*-valued congruences and all compatible *L*-valued equalities (respectively) on an *L*-valued subalgebra μ of an algebra \mathcal{A} . These can be naturally ordered by componentwise order \leq , inherited from *L*.

Theorem

The poset (LCon μ , \leq) is a complete lattice, and the poset (LEq μ , \leq) is a meet-semilattice, a semi-ideal in the former.

▲帰▶ ▲ 臣▶ ▲ 臣♪

We have an algebra $\mathcal{A} = (A, F)$ and *L*-valued relations on it, i.e., mappings from A^2 to a complete lattice *L*.

We have an algebra $\mathcal{A} = (A, F)$ and *L*-valued relations on it, i.e., mappings from A^2 to a complete lattice *L*. We say that $\rho : A^2 \to L$ is an *L*-valued weakly reflexive relation on \mathcal{A} , if

 $\rho(c,c) = 1$ for every constant $c \in F$. (5)

We have an algebra $\mathcal{A} = (A, F)$ and *L*-valued relations on it, i.e., mappings from A^2 to a complete lattice *L*. We say that $\rho : A^2 \to L$ is an *L*-valued weakly reflexive relation on \mathcal{A} , if

 $\rho(c,c) = 1 \text{ for every constant } c \in F.$ (5)

An *L*-valued relation $\rho : A^2 \to L$ on an algebra \mathcal{A} which is weakly reflexive, symmetric and transitive, is called a **weak** *L*-valued equivalence on \mathcal{A} .

We have an algebra $\mathcal{A} = (A, F)$ and *L*-valued relations on it, i.e., mappings from A^2 to a complete lattice *L*. We say that $\rho : A^2 \to L$ is an *L*-valued weakly reflexive relation on \mathcal{A} , if

$$\rho(c,c) = 1$$
 for every constant $c \in F$. (5)

(日本) (日本) (日本)

An *L*-valued relation $\rho : A^2 \to L$ on an algebra \mathcal{A} which is weakly reflexive, symmetric and transitive, is called a **weak** *L*-valued **equivalence** on \mathcal{A} .

If, in addition, ρ fulfills also the condition

 $\text{ For all } x,y\in A, \ \rho(x,x)>\rho(x,y) \ \text{ and } \ \rho(x,x)>\rho(y,x), \\$

then ρ is a weak *L*-valued equality on \mathcal{A} .

For compatible weak *L*-valued equivalences we use the name **weak** *L*-valued congruences on A. A subclass of weak *L*-valued congruences are compatible weak *L*-valued equalities.

For compatible weak *L*-valued equivalences we use the name weak *L*-valued congruences on A. A subclass of weak *L*-valued congruences are compatible weak *L*-valued equalities.

Theorem

If $\rho : A^2 \to L$ is a weak L-valued congruence on an algebra A, then the mapping $\mu_{\rho} : A \to L$, defined by

$$\mu_{\rho}(x) := \rho(x, x) \tag{6}$$

is an L-valued subalgebra of \mathcal{A} .

The previous theorem gives a link between *L*-valued congruences on *L*-valued subalgebras and weak *L*-valued congruences on the whole algebra.

The previous theorem gives a link between *L*-valued congruences on *L*-valued subalgebras and weak *L*-valued congruences on the whole algebra.

Theorem

A weak L-valued congruence $\rho : A^2 \to L$ on an algebra \mathcal{A} is an L-valued congruence on the L-valued subalgebra μ_{ρ} of A. Conversely, an L-valued congruence ρ on an L-valued subalgebra μ of \mathcal{A} is a weak L-valued congruence on the whole algebra \mathcal{A} .

Theorem

The collection of all weak L-valued congruences on an algebra A is a complete lattice. Its sublattice of diagonal relations is isomorphic to the lattice of all L-valued subalgebras of A. The lattice of L-valued congruences on each L-valued subalgebra of A is an interval sublattice.

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice.

□ ▶ 《 臣 ▶ 《 臣 ▶ ...

2

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice.

Let μ be an *L*-valued subalgebra of \mathcal{A} and $E : \mathcal{A}^2 \to L$ an *L*-valued equality on μ .

白 ト く ヨ ト く ヨ ト

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice.

Let μ be an *L*-valued subalgebra of \mathcal{A} and $E : \mathcal{A}^2 \to L$ an *L*-valued equality on μ .

If t_1, t_2 are terms in the language of A, we consider the expression $E(t_1, t_2)$ as an *L*-valued identity with respect to *E*, or (briefly) *L*-valued identity, if *E* is fixed.

Let $\mathcal{A} = (\mathcal{A}, \mathcal{F})$ be an algebra and \mathcal{L} a complete lattice.

Let μ be an *L*-valued subalgebra of \mathcal{A} and $E : \mathcal{A}^2 \to L$ an *L*-valued equality on μ .

If t_1, t_2 are terms in the language of A, we consider the expression $E(t_1, t_2)$ as an *L*-valued identity with respect to *E*, or (briefly) *L*-valued identity, if *E* is fixed.

Suppose that x_1, \ldots, x_n are variables appearing in terms t_1, t_2 . We say that an *L*-valued subalgebra μ of \mathcal{A} satisfies the *L*-valued identity $E(t_1, t_2)$ (or that this *L*-valued identity is valid on *L*-valued subalgebra μ) if for all $x_1, \ldots, x_n \in \mathcal{A}$

$$\bigwedge_{i=1}^{n} \mu(x_i) \leqslant E(t_1, t_2). \tag{7}$$

Proposition

Let $\mu : A \to L$ be an L-valued subalgebra of an algebra \mathcal{A} and $E : A^2 \to L$ an L-valued equality on μ . If μ satisfies an L-valued identity E(f,g), then also μ satisfies the identity $E_1(f,g)$, for every L-valued equality E_1 on μ , such that $E \leq E_1$.

Proposition

Let $\mu : A \to L$ be an L-valued subalgebra of an algebra \mathcal{A} and $E : A^2 \to L$ an L-valued equality on μ . If μ satisfies an L-valued identity E(f,g), then also μ satisfies the identity $E_1(f,g)$, for every L-valued equality E_1 on μ , such that $E \leq E_1$.

Lemma

Let $\mu : A \to L$ be an L-valued subalgebra of an algebra \mathcal{A} , { $E_i : A^2 \to L, i \in I$ } a family of L-valued equalities on μ , and f, g terms in the language of \mathcal{A} . Now, if μ satisfies the identity $E_i(f, g)$ for every $i \in I$, then μ also satisfies the identity E(f, g), where $E = \bigwedge_{i \in I} E_i$.

イロト イヨト イヨト イヨト

Corollary

If an L-valued subalgebra μ of A satisfies the identity E(f,g) for an L-valued equality E, then there is the least L-valued equality on μ , denoted by $E_{\mu(f,g)}$, such that μ satisfies $E_{\mu(f,g)}(f,g)$.

| 4 回 2 4 U = 2 4 U =

Corollary

If an L-valued subalgebra μ of A satisfies the identity E(f,g) for an L-valued equality E, then there is the least L-valued equality on μ , denoted by $E_{\mu(f,g)}$, such that μ satisfies $E_{\mu(f,g)}(f,g)$.

Corollary

Let μ be an L-valued subalgebra of an algebra \mathcal{A} . Then \mathcal{A} satisfies the identity f = g if and only if μ satisfies the identity E(f,g) for every $E \in fEq \mu$.

◆□> ◆□> ◆国> ◆国>

Corollary

Let μ be an L-valued subalgebra of an algebra A and L a complete lattice. Let also f, g be terms in the language of A. Then the following hold. The cut subalgebra μ_p of μ for $p \in L$ satisfies the identity f = g if and only if the cut-relation $(E_{\mu(f,g)})_p$ of the least equality $E_{\mu(f,g)}$ is the ordinary equality on μ_p .

B. Šešelja and A. Tepavčević Lattice valued identities

• A. Di Nola, G. Gerla, *Lattice valued algebras*, Stochastica 11 (1987) 137150.

- A. Di Nola, G. Gerla, *Lattice valued algebras*, Stochastica 11 (1987) 137150.
- M. Demirci, *Vague Groups*, J. Math. Anal. Appl. 230,(1999) 142-156.

- A. Di Nola, G. Gerla, *Lattice valued algebras*, Stochastica 11 (1987) 137150.
- M. Demirci, *Vague Groups*, J. Math. Anal. Appl. 230,(1999) 142-156.
- R. Bělohlávek, *Fuzzy Relational Systems: Foundations and Principles*, Kluwer Academic/Plenum Publishers, New York, 2002.

• B. Šešelja, A. Tepavčević, *Equivalent fuzzy sets*, Kybernetika 41 (2005), No.2, 115-128.

Lattice valued identities References

- B. Šešelja, A. Tepavčević, *Equivalent fuzzy sets*, Kybernetika 41 (2005), No.2, 115-128.
- B. Šešelja, *Lattice-valued Covering Relation and Ordering: An Abstract Approach*, Computational Intelligence, Theory and Applications, Bernd Reusch (Ed.), Springer, 2006, 295-300.

Lattice valued identities References

- B. Šešelja, A. Tepavčević, *Equivalent fuzzy sets*, Kybernetika 41 (2005), No.2, 115-128.
- B. Šešelja, *Lattice-valued Covering Relation and Ordering: An Abstract Approach*, Computational Intelligence, Theory and Applications, Bernd Reusch (Ed.), Springer, 2006, 295-300.
- V. Janis, B. Šešelja, A. Tepavčević, *Non-standard cut classification of lattice-valued sets*, Information Sciences 177 (2007) 161-169.

Lattice valued identities References

- B. Šešelja, A. Tepavčević, *Equivalent fuzzy sets*, Kybernetika 41 (2005), No.2, 115-128.
- B. Šešelja, *Lattice-valued Covering Relation and Ordering: An Abstract Approach*, Computational Intelligence, Theory and Applications, Bernd Reusch (Ed.), Springer, 2006, 295-300.
- V. Janis, B. Šešelja, A. Tepavčević, Non-standard cut classification of lattice-valued sets, Information Sciences 177 (2007) 161-169.
- B. Borchardt, A. Maletti, B. Šešelja, A. Tepavčević, H. Vogler, *Cut sets as recognizable tree languages*, Fuzzy Sets and Systems 157 (2006) 1560-1571.

御 と く ヨ と く

Thank you for your attention!

B. Šešelja and A. Tepavčević Lattice valued identities