Non-continuous satisfaction of identities

W Taylor

BLAST, Boulder, Colorado

June 2, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Basics

More nearly precise definitions.

An example: $\mu_1(A, \Sigma) = 0$; $\mu_2(A, \Sigma) = \text{diam}(A)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some further results

$$A \models \Sigma$$
,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

$$A \models \Sigma$$
,

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} ,

$$A \models \Sigma$$
,

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups,

$$A \models \Sigma$$
,

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces,

$$A \models \Sigma$$
,

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1],

$$A \models \Sigma$$
,

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1], a ternary median operation on Y,

$$A \models \Sigma$$
,

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1], a ternary median operation on Y, simple Σ on absolute-retract A,

$$A \models \Sigma$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1], a ternary median operation on Y, simple Σ on absolute-retract A, Sets^{*n*} on any space A^n ,

$$A \models \Sigma$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1], a ternary median operation on Y, simple Σ on absolute-retract A, Setsⁿ on any space A^n , a unital ring on $S^1 \times \mathbb{Z}$,

$$A \models \Sigma$$
,

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1], a ternary median operation on Y, simple Σ on absolute-retract A, Sets^{*n*} on any space A^n , a unital ring on $S^1 \times \mathbb{Z}$, a Boolean algebra on $\{0, 1\}^{\aleph_0}$.

$$A \models \Sigma$$

and say that A and Σ are *compatible*, iff there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ .

Examples: Groups on S^1 , S^3 and \mathbb{R} , various matrix groups, many H-spaces, a lattice on [0, 1], a ternary median operation on Y, simple Σ on absolute-retract A, Sets^{*n*} on any space A^n , a unital ring on $S^1 \times \mathbb{Z}$, a Boolean algebra on $\{0, 1\}^{\aleph_0}$. Even, for any A and Σ , the Świerczkowski free algebra $\mathbf{F}_A(\Sigma)$ (based on a set larger than A).

• Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.
- But A ⊭ Σ does not seem to have any uniform method of proof.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.
- But A ⊭ Σ does not seem to have any uniform method of proof.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 E.g. the sphere Sⁿ ⊨ Σ only for trivial Σ or for n = 1, 3, 7. (Hard algebraic topology to prove this.)

- Experientially, $A \models \Sigma$ occurs only sporadically, whereas it can in many cases be proved false.
- But A ⊭ Σ does not seem to have any uniform method of proof.
- E.g. the sphere Sⁿ ⊨ Σ only for trivial Σ or for n = 1,3,7. (Hard algebraic topology to prove this.)
- There is no algorithm that settles R ⊨ Σ for finite Σ. (Uses Matiasevich solution of Hilbert's Tenth Problem.) Thus ⊨ is not *too* sparse.

$A \models \Sigma$ demands operations \overline{F}_t that satisfy Σ **exactly** and are **continuous**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

$A \models \Sigma$ demands operations \overline{F}_t that satisfy Σ **exactly** and are **continuous**. We can relax those demands in two ways:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$A \models \Sigma$ demands operations \overline{F}_t that satisfy Σ **exactly** and are **continuous**. We can relax those demands in two ways: we can consider approximate satisfaction, and

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $A \models \Sigma$ demands operations \overline{F}_t that satisfy Σ **exactly** and are **continuous**. We can relax those demands in two ways: we can consider approximate satisfaction, and we can consider approximate continuity.

Approximate replacements for $A \models \Sigma$

For (A, d) a metric space, and $\eta > 0$

$$A \models_{\eta} \Sigma$$
,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 ○○○○

will mean that there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ within η .

For (A, d) a metric space, and $\eta > 0$

$$A \models_{\eta} \Sigma,$$

will mean that there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ within η . For $\varepsilon > 0$,

$$A \models^{\varepsilon} \Sigma,$$

will mean that there exist operations $\overline{F_t}$ on A satisfying Σ and whose discontinuities are no greater than ε .

For (A, d) a metric space, and $\eta > 0$

$$A \models_{\eta} \Sigma,$$

will mean that there exist *continuous* operations $\overline{F_t}$ on A satisfying Σ within η . For $\varepsilon > 0$,

$$A \models^{\varepsilon} \Sigma,$$

will mean that there exist operations $\overline{F_t}$ on A satisfying Σ and whose discontinuities are no greater than ε .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Of course we also study $A \models_{\eta}^{\varepsilon} \Sigma!$)

We said a lot about |=η in "Approximate satisfaction of identities," and have spoken on it at various times.

◆□▶ <□▶ < □▶ < □▶ < □▶ = - のへで</p>

We said a lot about ⊨_η in "Approximate satisfaction of identities," and have spoken on it at various times.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Today's talk will be about \models^{ε} .

- We said a lot about ⊨_η in "Approximate satisfaction of identities," and have spoken on it at various times.
- Today's talk will be about \models^{ε} .
- > Paralleling our previous work, we define

$$\mu(A, \Sigma) = \inf \{ \varepsilon : A \models^{\varepsilon} \Sigma \}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- We said a lot about ⊨_η in "Approximate satisfaction of identities," and have spoken on it at various times.
- Today's talk will be about \models^{ε} .
- > Paralleling our previous work, we define

$$\mu(A, \Sigma) = \inf \{ \varepsilon : A \models^{\varepsilon} \Sigma \}.$$

(日) (同) (三) (三) (三) (○) (○)

One hopes that some further understanding of ⊨ will come out of ⊨^ε and µ.

- We said a lot about |=η in "Approximate satisfaction of identities," and have spoken on it at various times.
- Today's talk will be about \models^{ε} .
- > Paralleling our previous work, we define

$$\mu(A, \Sigma) = \inf \{ \varepsilon : A \models^{\varepsilon} \Sigma \}.$$

- One hopes that some further understanding of \models will come out of \models^{ε} and μ .
- E.g. recursive enumerability of $A \models_{\eta} \Sigma$.

Basics

More nearly precise definitions.

An example:
$$\mu_1(A, \Sigma) = 0$$
; $\mu_2(A, \Sigma) = \text{diam}(A)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Some further results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Given $\overline{F}: B \longrightarrow A$ (not necessarily continuous) and $\delta, \varepsilon > 0$, we say that \overline{F} is (δ, ε) -constrained it satisfies: for all $b, b' \in B$, if $e(b, b') < \delta$, then $d(\overline{F}(b), \overline{F}(b')) < \varepsilon$.

Given $\overline{F}: B \longrightarrow A$ (not necessarily continuous) and $\delta, \varepsilon > 0$, we say that \overline{F} is (δ, ε) -constrained it satisfies: for all $b, b' \in B$, if $e(b, b') < \delta$, then $d(\overline{F}(b), \overline{F}(b')) < \varepsilon$.

We say that \overline{F} is *n*-constrained by (δ_0, δ_n) iff there exist $0 < \delta_0 \le \delta_1 \le \cdots \le \delta_n$ such that \overline{F} is (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained, and so on, up to (δ_{n-1}, δ_n) -constrained.

Given $\overline{F}: B \longrightarrow A$ (not necessarily continuous) and $\delta, \varepsilon > 0$, we say that \overline{F} is (δ, ε) -constrained it satisfies: for all $b, b' \in B$, if $e(b, b') < \delta$, then $d(\overline{F}(b), \overline{F}(b')) < \varepsilon$.

We say that \overline{F} is *n*-constrained by (δ_0, δ_n) iff there exist $0 < \delta_0 \le \delta_1 \le \cdots \le \delta_n$ such that \overline{F} is (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained, and so on, up to (δ_{n-1}, δ_n) -constrained.

(If \overline{F} is uniformly continuous, then for every $\varepsilon > 0$ there exists $\delta > 0$ so that \overline{F} is *n*-constrained by (δ, ε) .)

Lemma

Suppose that f maps a convex subset of \mathbb{R} into \mathbb{R} , and that f is (δ, ε) -constrained with $\delta, \varepsilon > 0$. If a < c and s is between f(a) and f(c), then there exists b with $a \leq b \leq c$ and with $d(f(b), s) < \varepsilon/2$.

Definition of \models_n^{ε} and $\mu_n(A, \Sigma)$

$A \models_n^{\varepsilon} \Sigma$

Definition of \models_n^{ε} and $\mu_n(A, \Sigma)$

$$A \models_n^{\varepsilon} \Sigma$$

means that there exists an algebra $\mathbf{A} = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is *n*-constrained by (δ_0, ε) .

Definition of \models_n^{ε} and $\mu_n(A, \Sigma)$

$$A \models_n^{\varepsilon} \Sigma$$

means that there exists an algebra $\mathbf{A} = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is *n*-constrained by (δ_0, ε) .

We define

$$\mu_n(A,\Sigma) = \inf \{\varepsilon : A \models_n^{\varepsilon} \Sigma \}.$$

Definition of \models_n^{ε} and $\mu_n(A, \Sigma)$

$$A \models_n^{\varepsilon} \Sigma$$

means that there exists an algebra $\mathbf{A} = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is *n*-constrained by (δ_0, ε) .

We define

$$\mu_n(A,\Sigma) = \inf \{\varepsilon : A \models_n^{\varepsilon} \Sigma \}.$$

It is not hard to see that

$$0 \leq \mu_1(A, \Sigma) \leq \mu_2(A, \Sigma) \leq \cdots \leq \operatorname{diam}(A).$$

Connection of \models_n^{ε} and $\mu_n(A, \Sigma)$ with $A \models \Sigma$

We repeat the definition:

$$A \models_n^{\varepsilon} \Sigma$$

.

means that there exists an algebra $\mathbf{A} = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is *n*-constrained by (δ_0, ε) .

We repeat the definition:

$$A \models_n^{\varepsilon} \Sigma$$

means that there exists an algebra $\mathbf{A} = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is *n*-constrained by (δ_0, ε) .

Thus if $A \models \Sigma$, then $A \models_n^{\varepsilon} \Sigma$ for every *n* and every $\varepsilon > 0$,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We repeat the definition:

$$A \models_n^{\varepsilon} \Sigma$$

means that there exists an algebra $\mathbf{A} = (A, \overline{F}_t)_{t \in T}$ modeling Σ and a real number $\delta_0 > 0$ such that each \overline{F}_t is *n*-constrained by (δ_0, ε) .

Thus if $A \models \Sigma$, then $A \models_n^{\varepsilon} \Sigma$ for every *n* and every $\varepsilon > 0$, and hence

$$\mu_n(A, \Sigma) = \inf \{ \varepsilon : A \models_n^{\varepsilon} \Sigma \} = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for every n.

Basics

More nearly precise definitions.

An example: $\mu_1(A, \Sigma) = 0$; $\mu_2(A, \Sigma) = \text{diam}(A)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some further results

 $F_0(G(x_0, x_1)) \approx x_0, \qquad F_1(G(x_0, x_1)) \approx x_1.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$F_0(G(x_0, x_1)) \approx x_0, \qquad F_1(G(x_0, x_1)) \approx x_1.$$

A model of Σ has

$$A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $F_0(G(x_0, x_1)) \approx x_0, \qquad F_1(G(x_0, x_1)) \approx x_1.$

A model of Σ has

$$A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity},$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

where \overline{F} has \overline{F}_0 and \overline{F}_1 as its component functions.

 $F_0(G(x_0, x_1)) \approx x_0, \qquad F_1(G(x_0, x_1)) \approx x_1.$

A model of Σ has

$$A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity},$$

where \overline{F} has \overline{F}_0 and \overline{F}_1 as its component functions. Thus \overline{G} must be one-one and \overline{F} must be onto.

- ロ ト - 4 回 ト - 4 □ - 4

 $\mu_1([0,1],\Sigma) = 0$

Repeating Σ : $A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Repeating Σ : $A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity}$

So let \overline{F} be a Peano curve: continuous from [0, 1] onto $[0, 1]^2$, and let \overline{G} be any left-inverse to \overline{F} .

Repeating
$$\Sigma$$
: $A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity}$

So let \overline{F} be a Peano curve: continuous from [0, 1] **onto** $[0, 1]^2$, and let \overline{G} be any left-inverse to \overline{F} . \overline{G} is perforce discontinuous. For arbitrary $\varepsilon > 0$, define

$$G'(a_0, b_0) = \varepsilon \overline{G}(a_0, b_0); \quad F'(a) = \overline{F}(1 \wedge (a/\varepsilon)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Repeating
$$\Sigma$$
: $A^2 \xrightarrow{\overline{G}} A \xrightarrow{\overline{F}} A^2 = \text{identity}$

So let \overline{F} be a Peano curve: continuous from [0, 1] **onto** $[0, 1]^2$, and let \overline{G} be any left-inverse to \overline{F} . \overline{G} is perforce discontinuous. For arbitrary $\varepsilon > 0$, define

$$G'(a_0, b_0) = \varepsilon \overline{G}(a_0, b_0); \quad F'(a) = \overline{F}(1 \wedge (a/\varepsilon)).$$

(日) (同) (三) (三) (三) (○) (○)

Now the discontinuities of G' are no larger than ε , and F' remains continuous, while F' and G' still satisfy Σ . Thus $A \models_1^{\varepsilon}$ for every $\varepsilon > 0$; hence $\mu_1([0, 1], \Sigma) = 0$.

We consider $(A; \overline{G}, \overline{F}_0, \overline{F}_1)$ modeling Σ , with the operations (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained. We will show that $\delta_2 \geq 1$.

- ロ ト - 4 回 ト - 4 □ - 4

We consider $(A; \overline{G}, \overline{F}_0, \overline{F}_1)$ modeling Σ , with the operations (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained. We will show that $\delta_2 \geq 1$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $\overline{G}(a_i, b_j)$; w.l.o.g. $\overline{G}(a_0, b_0)$ is the smallest.

We consider $(A; \overline{G}, \overline{F}_0, \overline{F}_1)$ modeling Σ , with the operations (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained. We will show that $\delta_2 \geq 1$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $\overline{G}(a_i, b_j)$; w.l.o.g. $\overline{G}(a_0, b_0)$ is the smallest. Again w.l.o.g. we have $\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)$. In other words,

$$\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).$$

We consider $(A; \overline{G}, \overline{F}_0, \overline{F}_1)$ modeling Σ , with the operations (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained. We will show that $\delta_2 \geq 1$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $\overline{G}(a_i, b_j)$; w.l.o.g. $\overline{G}(a_0, b_0)$ is the smallest. Again w.l.o.g. we have $\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)$. In other words,

$$\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).$$

We consider the real function $\overline{H}(x) = \overline{G}(a_0, x)$.

We consider $(A; \overline{G}, \overline{F}_0, \overline{F}_1)$ modeling Σ , with the operations (δ_0, δ_1) -constrained and (δ_1, δ_2) -constrained. We will show that $\delta_2 \geq 1$.

Let $\{a_0, a_1\} = \{b_0, b_1\} = \{0, 1\}$. Compare the four values $\overline{G}(a_i, b_j)$; w.l.o.g. $\overline{G}(a_0, b_0)$ is the smallest. Again w.l.o.g. we have $\overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1)$. In other words,

$$\overline{G}(a_0, b_0) \leq \overline{G}(a_1, b_0) \leq \overline{G}(a_0, b_1).$$

We consider the real function $\overline{H}(x) = \overline{G}(a_0, x)$. By the Lemma (IVT), there exists $e \in [0, 1]$ with

$$d(\overline{G}(a_0,e),\overline{G}(a_1,b_0))) < \delta_1.$$

$\mathsf{Repeat:} \quad d\big(\overline{G}(a_0,e),\overline{G}(a_1,b_0)\big)\big) \ < \ \delta_1.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\mathsf{Repeat:} \quad d\big(\overline{G}(a_0,e),\overline{G}(a_1,b_0)\big)\big) \ < \ \delta_1.$$

Because $\{a_0, a_1\} = \{0, 1\}$, because of Σ , and because the function \overline{F}_0 is (δ_1, δ_2) -constrained, we now have:

$$1 = d(a_0, a_1) = d(\overline{F}_0(\overline{G}(a_0, e)), \overline{F}_0(\overline{G}(a_1, b_0))) \leq \delta_2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\mathsf{Repeat:} \quad d\big(\overline{G}(\mathsf{a}_0, e), \overline{G}(\mathsf{a}_1, \mathsf{b}_0)\big)\big) \ < \ \delta_1.$$

Because $\{a_0, a_1\} = \{0, 1\}$, because of Σ , and because the function \overline{F}_0 is (δ_1, δ_2) -constrained, we now have:

$$1 = d(a_0, a_1) = d(\overline{F}_0(\overline{G}(a_0, e)), \overline{F}_0(\overline{G}(a_1, b_0))) \leq \delta_2.$$

Thus $\mu_2([0,1],\Sigma)$, being the infimum of such δ_2 's, must be 1.

Basics

More nearly precise definitions.

An example: $\mu_1(A, \Sigma) = 0$; $\mu_2(A, \Sigma) = \text{diam}(A)$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some further results

• $\mu_2([0,1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• $\mu_2([0,1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

• $\mu_2(\mathbb{R}, \text{Groups} + x^n \approx 1) \geq \text{radius}(\mathbb{R}).$

• $\mu_2([0,1]^2, \text{same } \Sigma) = 1$ — uses Borsuk-Ulam Theorem.

- ロ ト - 4 回 ト - 4 □ - 4

- $\mu_2(\mathbb{R}, \text{Groups} + x^n \approx 1) \geq \text{radius}(\mathbb{R}).$
- $\mu_2([0,1]^n, \text{Groups}) = \text{diameter}([0,1]^n).$

- $\mu_2([0,1]^2, \text{same } \Sigma) = 1$ uses Borsuk-Ulam Theorem.
- $\mu_2(\mathbb{R}, \text{Groups} + x^n \approx 1) \geq \text{radius}(\mathbb{R}).$
- $\mu_2([0,1]^n, \text{Groups}) = \text{diameter}([0,1]^n).$
- $\mu_3(Y, \text{Lattices}) \geq 0.5.$

(Here Y stands for a Y-shaped one-dimensional space with each arm of unit length.)

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\mu_1(S^1, \Sigma) = 2/3.$$

Here Σ stands for the equations defining a binary operation with left-zero and left-one, or defining a commutative idempotent binary operation, or defining a ternary majority operation.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

•
$$\mu_1(S^1, \Sigma) = 2/3.$$

► $\mu_1(S^2, \Sigma) \ge 2/3.$