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Four sections of the talk.

Basics

More nearly precise definitions.

An example: µ1(A, Σ) = 0; µ2(A, Σ) = diam(A).

Some further results



Compatibility: A |= Σ

Given a topological space A and a set Σ of equations in
operation symbols Ft , we write

A |= Σ,

and say that A and Σ are compatible, iff there exist
continuous operations Ft on A satisfying Σ.

Examples: Groups on S1, S3 and R, various matrix groups,
many H-spaces, a lattice on [0, 1], a ternary median operation
on Y , simple Σ on absolute-retract A, Setsn on any space An,
a unital ring on S1 × Z, a Boolean algebra on {0, 1}ℵ0 . Even,
for any A and Σ, the Świerczkowski free algebra FA(Σ) (based
on a set larger than A).
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A |= Σ is a mysterious, sparse relation

I Experientially, A |= Σ occurs only sporadically, whereas it
can in many cases be proved false.

I But A 6|= Σ does not seem to have any uniform method
of proof.

I E.g. the sphere Sn |= Σ only for trivial Σ or for
n = 1, 3, 7. (Hard algebraic topology to prove this.)

I There is no algorithm that settles R |= Σ for finite Σ.
(Uses Matiasevich solution of Hilbert’s Tenth Problem.)
Thus |= is not too sparse.
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Relaxing the demands of A |= Σ.

A |= Σ demands operations F t that satisfy Σ exactly and are
continuous.

We can relax those demands in two ways: we
can consider approximate satisfaction, and we can consider
approximate continuity.
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Approximate replacements for A |= Σ

For (A, d) a metric space, and η > 0

A |=η Σ,

will mean that there exist continuous operations Ft on A
satisfying Σ within η.

For ε > 0,

A |=ε Σ,

will mean that there exist operations Ft on A satisfying Σ and
whose discontinuities are no greater than ε.

(Of course we also study A |=ε
η Σ!)
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The use of A |=η Σ and A |=ε Σ.

I We said a lot about |=η in “Approximate satisfaction of
identities,” and have spoken on it at various times.

I Today’s talk will be about |=ε.

I Paralleling our previous work, we define

µ(A, Σ) = inf {ε : A |=ε Σ }.

I One hopes that some further understanding of |= will
come out of |=ε and µ.

I E.g. recursive enumerability of A |=η Σ.
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(δ, ε)-constraints.

Let (A, d) and (B , e) be metric spaces.

Given F :B −→ A (not necessarily continuous) and δ, ε > 0,
we say that F is (δ, ε)-constrained it satisfies: for all
b, b′ ∈ B , if e(b, b′) < δ, then d(F (b), F (b′)) < ε.

We say that F is n-constrained by (δ0, δn) iff there exist
0 < δ0 ≤ δ1 ≤ · · · ≤ δn such that F is (δ0, δ1)-constrained and
(δ1, δ2)-constrained, and so on, up to (δn−1, δn)-constrained.

(If F is uniformly continuous, then for every ε > 0 there exists
δ > 0 so that F is n-constrained by (δ, ε).)
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The intermediate-value theorem, revisited.

Lemma
Suppose that f maps a convex subset of R into R, and that f
is (δ, ε)-constrained with δ, ε > 0. If a < c and s is between
f (a) and f (c), then there exists b with a ≤ b ≤ c and with
d(f (b), s) < ε/2.



Definition of |=ε
n and µn(A, Σ)

A |=ε
n Σ

means that there exists an algebra A = (A, F t)t∈T modeling
Σ and a real number δ0 > 0 such that each F t is
n-constrained by (δ0, ε).

We define

µn(A, Σ) = inf {ε : A |=ε
n Σ}.

It is not hard to see that

0 ≤ µ1(A, Σ) ≤ µ2(A, Σ) ≤ · · · ≤ diam(A).
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n and µn(A, Σ) with A |= Σ

We repeat the definition:

A |=ε
n Σ

means that there exists an algebra A = (A, F t)t∈T modeling
Σ and a real number δ0 > 0 such that each F t is
n-constrained by (δ0, ε).

Thus if A |= Σ, then A |=ε
n Σ for every n and every ε > 0,

and hence

µn(A, Σ) = inf {ε : A |=ε
n Σ} = 0

for every n.
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“G is a one-one binary operation on A.”

Σ will be this pair of equations:

F0(G (x0, x1)) ≈ x0, F1(G (x0, x1)) ≈ x1.

A model of Σ has

A2 G−→ A
F−→ A2 = identity,

where F has F 0 and F 1 as its component functions. Thus G
must be one-one and F must be onto.
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µ1([0, 1], Σ) = 0

Repeating Σ: A2 G−→ A
F−→ A2 = identity

So let F be a Peano curve: continuous from [0, 1] onto [0, 1]2,
and let G be any left-inverse to F . G is perforce
discontinuous. For arbitrary ε > 0, define

G ′(a0, b0) = ε G (a0, b0); F ′(a) = F (1 ∧ (a/ε)).

Now the discontinuities of G ′ are no larger than ε, and F ′

remains continuous, while F ′ and G ′ still satisfy Σ. Thus
A |=ε

1 for every ε > 0; hence µ1([0, 1], Σ) = 0.
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µ2([0, 1], Σ) = 1

We consider (A; G , F 0, F 1) modeling Σ, with the operations
(δ0, δ1)-constrained and (δ1, δ2)-constrained. We will show
that δ2 ≥ 1.

Let {a0, a1} = {b0, b1} = {0, 1}. Compare the four values
G (ai , bj); w.l.o.g. G (a0, b0) is the smallest. Again w.l.o.g. we
have G (a1, b0) ≤ G (a0, b1). In other words,

G (a0, b0) ≤ G (a1, b0) ≤ G (a0, b1).

We consider the real function H(x) = G (a0, x). By the
Lemma (IVT), there exists e ∈ [0, 1] with

d
(
G (a0, e), G (a1, b0)

)
) < δ1.
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µ2([0, 1], Σ) = 1, concluded

Repeat: d
(
G (a0, e), G (a1, b0)

)
) < δ1.

Because {a0, a1} = {0, 1}, because of Σ, and because the
function F 0 is (δ1, δ2)-constrained, we now have:

1 = d(a0, a1) = d
(
F 0(G (a0, e)), F 0(G (a1, b0))

)
≤ δ2.

Thus µ2([0, 1], Σ), being the infimum of such δ2’s, must be 1.
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Four sections of the talk.

Basics

More nearly precise definitions.

An example: µ1(A, Σ) = 0; µ2(A, Σ) = diam(A).

Some further results



Some further results . . .

I µ2([0, 1]2, same Σ) = 1 — uses Borsuk-Ulam Theorem.

I µ2(R, Groups + xn ≈ 1) ≥ radius(R).

I µ2([0, 1]n, Groups) = diameter([0, 1]n).

I µ3(Y , Lattices) ≥ 0.5.

(Here Y stands for a Y-shaped one-dimensional space with
each arm of unit length.)
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. . . and two more

Here Σ stands for the equations defining a binary operation
with left-zero and left-one, or defining a commutative
idempotent binary operation, or defining a ternary majority
operation.

I µ1(S
1, Σ) = 2/3.

I µ1(S
2, Σ) ≥ 2/3.
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