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Compatibility: A =X

Given a topological space A and a set ¥ of equations in
operation symbols F;, we write

Ak T,

and say that A and & are compatible, iff there exist
continuous operations F; on A satisfying ¥.

Examples: Groups on S!, $% and R, various matrix groups,
many H-spaces, a lattice on [0, 1], a ternary median operation
on Y, simple X on absolute-retract A, Sets” on any space A",
a unital ring on S! x Z, a Boolean algebra on {0,1}™. Even,
for any A and ¥, the Swierczkowski free algebra F4(X) (based
on a set larger than A).
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A = ¥ is a mysterious, sparse relation

Experientially, A = ¥ occurs only sporadically, whereas it
can in many cases be proved false.

v

v

But A [~ X does not seem to have any uniform method
of proof.

E.g. the sphere S” =X only for trivial £ or for
n=1,3,7. (Hard algebraic topology to prove this.)
There is no algorithm that settles R = ¥ for finite X.
(Uses Matiasevich solution of Hilbert's Tenth Problem.)
Thus |= is not too sparse.

v
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A = ¥ demands operations F, that satisfy & exactly and are
continuous. We can relax those demands in two ways: we
can consider approximate satisfaction, and we can consider
approximate continuity.
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Approximate replacements for A = X

For (A, d) a metric space, and n > 0
A b, T

will mean that there exist continuous operations F; on A
satisfying * within 1. For ¢ > 0,

AT,

will mean that there exist operations F, on A satisfying ¥ and
whose discontinuities are no greater than ¢.

(Of course we also study A |=; 2!)
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We said a lot about =, in "Approximate satisfaction of
identities,” and have spoken on it at various times.

Today's talk will be about |=°.

Paralleling our previous work, we define
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u(AX) = inf{e : AL}

» One hopes that some further understanding of = will
come out of [=° and p.

» E.g. recursive enumerability of A =, X
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(0, €)-constraints.

Let (A, d) and (B, e) be metric spaces.

Given F:B — A (not necessarily continuous) and 4, > 0,
we say that F is (0, ¢)-constrained it satisfies: for all
b,b € B, if e(b, b') < 4, then d(F(b), F(V)) < <.

We say that F is n-constrained by_(éo, dp) iff there exist
0<do <9y <--- <4, such that F is (do, d1)-constrained and
(01, 62)-constrained, and so on, up to (d,_1, d,)-constrained.

(If Fis uniformly continuous, then for every ¢ > 0 there exists
d > 0 so that F is n-constrained by (d,¢).)



The intermediate-value theorem, revisited.

Lemma

Suppose that f maps a convex subset of R into R, and that f
is (6, €)-constrained with §,e > 0. If a < ¢ and s is between
f(a) and f(c), then there exists b with a < b < ¢ and with
d(f(b),s) < ¢e/2.
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Definition of =5 and (A, X)

AESY

means that there exists an algebra A = (A, F_t)tey— modeling
> and a real number 6y > 0 such that each F; is
n-constrained by (0, €).

We define
pn(AX) = inf{e: A, X}

It is not hard to see that

0 < m(AY) < mw(AX) < -+ < diam(A).
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Connection of =5 and p,(A, X) with A = X

We repeat the definition:
AEY

means that there exists an algebra A = (Ayf_t)tET modeling
Y and a real number 6y > 0 such that each F, is
n-constrained by (0o, €).

Thus if A=X, then A =5 X for every n and every ¢ > 0,
and hence

pn(AX) = inf{e : A, X} =0

for every n.
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“G is a one-one binary operation on A.”

> will be this pair of equations:
Fo(G(x0,x1)) =~ xo, F1(G(x0,x1)) =~ xi.
A model of X has
A2 S AL A2 = identity,

where F has Fg and F; as its component functions. Thus G
must be one-one and F must be onto.
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Repeating ¥: A2 Ny BN - identity

So let f_be a Peano curve: continuous from [0, 1] onto [0, 1]?,
and let G be any left-inverse to F. G is perforce
discontinuous. For arbitrary € > 0, define

G'(ag, bo) = £G(ag, bo); F'(a) = F(1A(a/e)).

Now the discontinuities of G’ are no larger than ¢, and F’
remains continuous, while F’ and G’ still satisfy . Thus
A =7 for every € > 0; hence p;1([0,1],X) = 0. 1
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We consider (A; G, Fo, F1) modeling ¥, with the operations
(0o, 01)-constrained and (d1, d,)-constrained. We will show
that 52 Z 1.

Let {ao, a1} = {bo, b1} = {0,1}. Compare the four values
G(aj, bj); w.lo.g. G(ao, bo) is the smallest. Again w.l.o.g. we
have G(ay, by) < G(ao, by). In other words,

G(ag, bo) < G(a1,bp) < G(ao, by).
We consider the real function H(x) = G(ap,x). By the
Lemma (IVT), there exists e € [0, 1] with

d(E(ao,e),E(al,bo))) < 0.
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12([0,1],X) = 1, concluded

Repeat:  d(G(ao, €), G(a1, bo))) < 1.

Because {ao, a1} = {0, 1}, because of I, and because the
function Fg is (d1, d2)-constrained, we now have:

1 = d(ao,al) = d(Fo(C(ao,e)), Fo(z(al,bo))) S 52.

Thus 12([0, 1], X), being the infimum of such &,'s, must be 1.
i
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Some further results . ..

» 12([0,1]?,same ¥) = 1 — uses Borsuk-Ulam Theorem.
» 1z(R, Groups + x" ~ 1) > radius(R).

» 12([0,1]", Groups) = diameter([0, 1]").

» u3(Y, Lattices) > 0.5.

(Here Y stands for a Y-shaped one-dimensional space with
each arm of unit length.)
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...and two more

Here ¥ stands for the equations defining a binary operation
with left-zero and left-one, or defining a commutative
idempotent binary operation, or defining a ternary majority
operation.

> /1,1(5172) = 2/3

> Nl(sz,Z) > 2/3
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