
Tutorial on Universal Algebra, Mal’cev Conditions,
and Finite Relational Structures: Lecture I

Ross Willard

University of Waterloo, Canada

BLAST 2010

Boulder, June 2010

Ross Willard (Waterloo) Universal Algebra tutorial BLAST 2010 1 / 25



Outline - Lecture 1

0. Apology

Part I: Basic universal algebra

1. Algebras, terms, identities, varieties

2. Interpretations of varieties

3. The lattice L, filters, Mal’cev conditions

Part II: Duality between finite algebras and finite relational structures

4. Relational structures and the pp-interpretability ordering

5. Polymorphisms and the connection to algebra

Ross Willard (Waterloo) Universal Algebra tutorial BLAST 2010 2 / 25



Outline (continued) – Lecture 2

Part III: The Constraint Satisfaction Problem

6. The CSP dichotomy conjecture of Feder and Vardi

7. Connections to (Rfin,≤pp) and Mal’cev conditions

8. New Mal’cev conditions (Maróti, McKenzie; Barto, Kozik)

9. New proof of an old theorem of Hell-Nešeťril via algebra (Barto, Kozik)

10. Current status, open problems.
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0. Apology

I’m sorry
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Part I. Basic universal algebra

algebra: a structure A = (A; {fundamental operations})1

term: expression t(x) built from fundamental operations and variables.

term t in n variables defines an n-ary term operation tA on A.

Definition

TermOps(A) = {tA : t a term in n ≥ 1 variables}.

Definition

A,B are term-equivalent if they have the same universe and same term
operations.

1Added post-lecture: For these notes, algebras are not permitted nullary operations
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identity: first-order sentence of the form ∀x(s = t) with s, t terms.

Notation: s ≈ t.

Definition

A variety (or equational class) is any class of algebras (in a fixed
language) axiomatizable by identities.

Examples:

{semigroups}; {groups} (in language {·, −1}).
var(A) := variety axiomatized by all identities true in A.

Definition

Say varieties V ,W are term-equivalent, and write V ≡ W , if:

Every A ∈ V is term-equivalent to some B ∈ W and vice versa . . .

. . . “uniformly and mutually inversely.”

Example: {boolean algebras} ≡ {idempotent (x2 ≈ x) rings}.
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Definition

Given an algebra A = (A;F ) and a subset S ⊆ TermOps(A), the algebra
(A;S) is a term reduct of A.

Definition

Given varieties V ,W , write V → W and say that V is interpretable in
W if every member of W has a term reduct belonging to V .

Examples:

Groups → Rings, but Rings 6→ Groups

Groups → AbelGrps

More generally, V → W whenever W ⊆ V

Sets → V for any variety V

Semigrps → Sets

Intuition: V → W if it is “at least as hard” to construct a nontrivial
member of W as it is for V . (“Nontrivial” = universe has ≥ 2 elements.)
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The relation → on varieties is a pre-order (reflexive and transitive).

So we get a partial order in the usual way:

V ∼ W iff V → W → V

[V ] = {W : V ∼ W }
L = {[V ] : V a variety}

[V ] ≤ [W ] iff V → W .
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(L,≤)
[Set]

[Comm]

[Const]

[Grp]

[AbGrp]

[Ring]

[BAlg]

[Triv]

[Lat]

[SemLat]

[DLat]
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Remarks:

(L,≤) defined by W.D. Neumann (1974); studied by Garcia, Taylor
(1984).

L is a proper class.

(L,≤) is a complete lattice.

Lκ := {[V ] : the language of V has card ≤ κ} is a set and a
sublattice of L.

Also note: every algebra A “appears” in L, i.e. as [var(A)].

Of particular interest: Afin := {[var(A)] : A a finite algebra}.

Afin is a countable ∧-closed sub-poset of Lω.
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Some elements of Afin

Set

Comm

Const

Grp

AbGrp

Ring

BAlg

Triv

Lat

SemLat

DLat
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Thesis: “good” classes of varieties invariably form filters in L of a special
kind: they are generated by a set of finitely presented varieties2.

Definition

Such a filter in L (or the class of varieties represented in the filter) is
called a Mal’cev class (or condition).

Bad example of a Mal’cev class: the class C of varieties V which, for some
n, have a 2n-ary term t(x1, . . . , x2n) satisfying

V |= t(x1, x2, . . . , x2n) ≈ t(x2n, . . . , x2, x1).

If we let Un have a single 2n-ary operation f and a single axiom
f (x1, . . . , x2n) ≈ f (x2n, . . . , x1), then C corresponds to the filter in L

generated by {[Un] : n ≥ 1}.

2finite language and axiomatized by finitely many identities
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Better example: congruence modularity

Every algebra A has an associated lattice Con(A), called its congruence
lattice, analogous to the lattice of normal subgroups of a group, or the
lattice of ideals of a ring.

The modular [lattice] law is the distributive law restricted to
non-antichain triples x , y , z .

modular not modular

Definition

A variety is congruence modular (CM) if all of its congruence lattices are
modular.
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Set

Comm

Const

Grp

AbGrp

Ring

BAlg

Triv

Lat

SemLat
CM

DLat
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Easy Proposition

The class of congruence modular varieties forms a filter in L.

Proof.

Assume [V ] ≤ [W ] and suppose V is CM.

Fix B ∈ W .

Choose a term reduct A = (B,S) of B with A ∈ V .

Con(B) is a sublattice of Con(A).

Modular lattices are closed under forming sublattices.

Hence Con(B) is modular, proving W is CM.

A similar proof shows that if V ,W are CM, then the canonical variety
representing [V ] ∧ [W ] is CM; the key property of modular lattices used is
that they are closed under forming products.
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Theorem (A. Day, 1969)

The CM filter in L is generated by a countable sequence D1,D2, . . . of
finitely presented varieties; i.e., it is a Mal’cev class.

Grp

AbGrp

Ring

BAlg

Triv

Lat

CM

D1

D2
D3

DLat

Dn has n basic operations,

defined by 2n simple identities
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More Mal’cev classes

CM

Set

Comm

Const

Grp

AbGrp

Ring

BAlg

Triv

Lat

SemLat

DLat

CM = “congruence modular”

HM

HM = “Hobby-McKenzie”

On Afin: omit types 1,5

Kearnes & Kiss book

T

T = “Taylor”

On Afin: omit type 1
(Defined in 2nd lecture)

WTWT = “weak Taylor”

(2nd lecture)
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Part II: finite relational structures

relational structure: a structure H = (H; {relations}).

Primitive positive (pp) formula: a first-order formula of the form
∃y[α1(x, y) ∧ · · · ∧ αk(x, y)] where each αi is atomic.

pp-formula ϕ(x) in n free variables defines an n-ary relation ϕH on H.

Definition

Relpp(H) = {ϕH : ϕ a pp-formula in n ≥ 1 free variables}.

Definition

G,H are pp-equivalent if they have the same universe and the same
pp-definable relations.
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Pp-interpretations

Definition

Given two relational structures G,H in the languages L, L′ respectively, we
say that G is pp-interpretable in H if:
for some k ≥ 1 there exist

1 a pp-L′-formula ∆(x) in k free variables;

2 a pp-L′-formula E (x, y) in 2k free variables;

3 for each n-ary relation symbol R ∈ L, a pp-L′-formula ϕR(x1, . . . , xn)
in nk free variables;

such that

4 EH is an equivalence relation on ∆H;

5 For each n-ary R ∈ L, ϕH
R is an n-ary EH-invariant relation on ∆H;

6 (∆H/EH, (ϕH
R/EH)R∈L) is isomorphic to G.

Notation: G ≺pp H.
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Examples

If G is a reduct of (H,Relpp(H)), then G ≺pp H.

If G is a substructure of H and the universe of G is a pp-definable
relation of H, then G ≺ H.

For any n ≥ 3, if Kn is the complete graph on n vertices, then
G ≺pp Kn for every finite relational structure G.

If G is a 1-element structure3, then G ≺pp H for every H.

3Added post-lecture: and the language of G is empty
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For the rest of this tutorial, we consider only finite relational structures
(added post-lecture) all of whose fundamental relations are non-empty.

The relation ≺pp on finite relational structures4 is a pre-order (reflexive
and transitive).

So we get a partial order in the usual way:

G ∼pp H iff G ≺pp H ≺pp G

[H] = {G : G ∼pp H}
Rfin = {[H] : H a finite relational structure}

[G] ≤pp [H] iff G ≺pp H.

4Added post-lecture: all of whose fundamental operations are non-empty
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(Rfin,≤pp)
(1; ∅)

(2; ∅)

(2; Add)

(2;≤)

K2 = (2; 6=)

(2;≤, 6=)

K3 = (3; 6=)

(2; NAND,≤)

(2; all 0-respecting)

Add = {(x , y , z) : x + y = z}

NAND = {0, 1}2 \ {(1, 1)}
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Connection to algebra

Definition

Let H be a finite relational structure and n ≥ 1. An n-ary polymorphism
of H is a homomorphism Hn → H.

(In particular, a unary polymorphism is an endomorphism of H.)

Definition

Let H be a finite relational structure.

Pol(H) = {all polymorphisms of H}.
The polymorphism algebra of H is

PolAlg(H) := (H; Pol(H)).
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Definition

Let H be a finite relational structure and V a variety of algebras. We say
that H admits V if some term reduct of PolAlg(H) is in V .

Proposition (new?)

Suppose G,H are finite relational structures. TFAE:

1 G ≺pp H.

2 var(PolAlg(H)) → var(PolAlg(G)).

3 G admits var(PolAlg(H)).

4 G admits every finitely presented variety admitted by H.

Corollary

The map [H] 7→ [var(PolAlg(H))] is a well-defined order anti-isomorphism
from (Rfin,≤pp) into (L,≤), with image Afin.
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Summary

[1]

[K3]

(Rfin,≤pp)

fin. rel. structures

[var(2)]

[var(1)]

⊆

(Afin,≤)

fin. gen’d varieties

[Set]

[Triv]

(L,≤)

varieties

Interpretation relation on varieties gives us L.

Sitting inside L is the countable ∧-closed sub-poset Afin.

Pp-definability relation on finite structures gives us Rfin.

Rfin and Afin are anti-isomorphic

Mal’cev classes in L induce filters on Afin, and hence ideals on Rfin.
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