Tutorial on Universal Algebra, Mal'cev Conditions, and Finite Relational Structures: Lecture I

Ross Willard

University of Waterloo, Canada

BLAST 2010

Boulder, June 2010

Outline - Lecture 1

0. Apology

PART I: Basic universal algebra

- 1. Algebras, terms, identities, varieties
- 2. Interpretations of varieties
- 3. The lattice \mathcal{L} , filters, Mal'cev conditions

 $\operatorname{PART}\,$ II: Duality between finite algebras and finite relational structures

- 4. Relational structures and the pp-interpretability ordering
- 5. Polymorphisms and the connection to algebra

Outline (continued) – Lecture 2

PART III: The Constraint Satisfaction Problem

- 6. The CSP dichotomy conjecture of Feder and Vardi
- 7. Connections to $(\mathcal{R}_{\mathrm{fin}},\leq_{\mathrm{pp}})$ and Mal'cev conditions
- 8. New Mal'cev conditions (Maróti, McKenzie; Barto, Kozik)
- 9. New proof of an old theorem of Hell-Nešetřil via algebra (Barto, Kozik)
- 10. Current status, open problems.

0. Apology

I'm sorry

algebra: a structure $A = (A; \{fundamental operations\})^1$

term: expression $t(\mathbf{x})$ built from fundamental operations and variables.

• term t in n variables defines an n-ary term operation t^{A} on A.

Definition

TermOps(
$$\mathbf{A}$$
) = { $t^{\mathbf{A}}$: t a term in $n \ge 1$ variables}.

Definition

A, **B** are **term-equivalent** if they have the same universe and same term operations.

¹Added post-lecture: For these notes, algebras are *not* permitted nullary operations Ross Willard (Waterloo) Universal Algebra tutorial BLAST 2010 5 / 25

identity: first-order sentence of the form $\forall \mathbf{x}(s = t)$ with s, t terms.

• Notation: $s \approx t$.

Definition

A variety (or equational class) is any class of algebras (in a fixed language) axiomatizable by identities.

Examples:

- {semigroups}; {groups} (in language $\{\cdot, -1\}$).
- $var(\mathbf{A}) := variety$ axiomatized by all identities true in \mathbf{A} .

Definition

Say varieties V, W are **term-equivalent**, and write $V \equiv W$, if:

• Every $\mathbf{A} \in V$ is term-equivalent to some $\mathbf{B} \in W$ and vice versa ...

• . . . "uniformly and mutually inversely."

Example: {boolean algebras} \equiv {idempotent ($x^2 \approx x$) rings}.

Definition

Given an algebra $\mathbf{A} = (A; F)$ and a subset $S \subseteq \text{TermOps}(\mathbf{A})$, the algebra (A; S) is a **term reduct** of \mathbf{A} .

Definition

Given varieties V, W, write $V \to W$ and say that V is **interpretable** in W if every member of W has a term reduct belonging to V.

Examples:

 $\begin{array}{rcl} \mathrm{Groups} & \to & \mathrm{Rings}, & \mathsf{but} & \mathrm{Rings} \not\rightarrow & \mathrm{Groups} \\ & & \mathrm{Groups} & \to & \mathrm{AbelGrps} \end{array}$ $\begin{array}{rcl} \mathsf{More \ generally,} & V & \to & W & \mathsf{whenever} \ W \subseteq V \\ & & \mathrm{Sets} & \to & V & \mathsf{for \ any \ variety} \ V \\ & & \mathrm{Semigrps} & \to & \mathrm{Sets} \end{array}$

Intuition: $V \to W$ if it is "at least as hard" to construct a nontrivial member of W as it is for V. ("Nontrivial" = universe has ≥ 2 elements.)

The relation \rightarrow on varieties is a pre-order (reflexive and transitive). So we get a partial order in the usual way:

$$V \sim W \quad \text{iff} \quad V \to W \to V$$
$$[V] = \{W : V \sim W\}$$
$$\mathcal{L} = \{[V] : V \text{ a variety}\}$$
$$V] \leq [W] \quad \text{iff} \quad V \to W.$$

Remarks:

- (L, ≤) defined by W.D. Neumann (1974); studied by Garcia, Taylor (1984).
- \mathcal{L} is a proper class.
- (\mathcal{L}, \leq) is a complete lattice.
- L_κ := {[V] : the language of V has card ≤ κ} is a set and a sublattice of L.

Also note: every algebra **A** "appears" in \mathcal{L} , i.e. as $[var(\mathbf{A})]$.

Of particular interest: $A_{fin} := \{ [var(\mathbf{A})] : \mathbf{A} \text{ a finite algebra} \}.$

• \mathcal{A}_{fin} is a countable \wedge -closed sub-poset of \mathcal{L}_{ω} .

Thesis: "good" classes of varieties invariably form **filters** in \mathcal{L} of a special kind: they are generated by a set of **finitely presented varieties**².

Definition

Such a filter in \mathcal{L} (or the class of varieties represented in the filter) is called a **Mal'cev class** (or **condition**).

Bad example of a Mal'cev class: the class C of varieties V which, for some n, have a 2n-ary term $t(x_1, \ldots, x_{2n})$ satisfying

$$V \models t(x_1, x_2, \ldots, x_{2n}) \approx t(x_{2n}, \ldots, x_2, x_1).$$

If we let U_n have a single 2n-ary operation f and a single axiom $f(x_1, \ldots, x_{2n}) \approx f(x_{2n}, \ldots, x_1)$, then \mathcal{C} corresponds to the filter in \mathcal{L} generated by $\{[U_n] : n \ge 1\}$.

²finite language and axiomatized by finitely many identities

Better example: congruence modularity

Every algebra **A** has an associated lattice $Con(\mathbf{A})$, called its **congruence lattice**, analogous to the lattice of normal subgroups of a group, or the lattice of ideals of a ring.

The **modular** [lattice] **law** is the distributive law restricted to non-antichain triples x, y, z.

Definition

A variety is **congruence modular** (CM) if all of its congruence lattices are modular.

Ross Willard (Waterloo)

Universal Algebra tutorial

Easy Proposition

The class of congruence modular varieties forms a filter in \mathcal{L} .

Proof.

Assume $[V] \leq [W]$ and suppose V is CM.

- Fix $\mathbf{B} \in W$.
- Choose a term reduct $\mathbf{A} = (B, S)$ of \mathbf{B} with $\mathbf{A} \in V$.
- Con(**B**) is a sublattice of Con(**A**).
- Modular lattices are closed under forming sublattices.
- Hence Con(B) is modular, proving W is CM.

A similar proof shows that if V, W are CM, then the canonical variety representing $[V] \land [W]$ is CM; the key property of modular lattices used is that they are closed under forming products.

Theorem (A. Day, 1969)

The CM filter in \mathcal{L} is generated by a countable sequence D_1, D_2, \ldots of finitely presented varieties; i.e., it is a Mal'cev class.

More Mal'cev classes

relational structure: a structure $\mathbf{H} = (H; \{relations\}).$

Primitive positive (pp) formula: a first-order formula of the form $\exists \mathbf{y}[\alpha_1(\mathbf{x}, \mathbf{y}) \land \cdots \land \alpha_k(\mathbf{x}, \mathbf{y})]$ where each α_i is atomic.

• pp-formula $\varphi(\mathbf{x})$ in *n* free variables defines an *n*-ary relation $\varphi^{\mathbf{H}}$ on *H*.

Definition

$$\operatorname{Rel}_{\operatorname{pp}}(\mathsf{H}) = \{ \varphi^{\mathsf{H}} : \varphi \text{ a pp-formula in } n \geq 1 \text{ free variables} \}.$$

Definition

 ${\bf G}, {\bf H}$ are ${\bf pp}\text{-}{\bf equivalent}$ if they have the same universe and the same pp-definable relations.

Pp-interpretations

Definition

Given two relational structures \mathbf{G} , \mathbf{H} in the languages L, L' respectively, we say that \mathbf{G} is **pp-interpretable** in \mathbf{H} if:

for some $k \ge 1$ there exist

- **Q** a pp-L'-formula $\Delta(\mathbf{x})$ in k free variables;
- **2** a pp-L'-formula $E(\mathbf{x}, \mathbf{y})$ in 2k free variables;
- for each *n*-ary relation symbol *R* ∈ *L*, a pp-*L*'-formula φ_R(x₁,...,x_n) in *nk* free variables;

such that

• E^{H} is an equivalence relation on Δ^{H} ;

• For each *n*-ary $R \in L$, φ_R^{H} is an *n*-ary E^{H} -invariant relation on Δ^{H} ;

• $(\Delta^{\mathbf{H}}/E^{\mathbf{H}}, (\varphi_{R}^{\mathbf{H}}/E^{\mathbf{H}})_{R \in L})$ is isomorphic to **G**.

Notation: $\mathbf{G} \prec_{\mathrm{pp}} \mathbf{H}$.

Examples

- If **G** is a reduct of $(H, \operatorname{Rel}_{pp}(\mathbf{H}))$, then $\mathbf{G} \prec_{pp} \mathbf{H}$.
- If **G** is a substructure of **H** and the universe of *G* is a pp-definable relation of **H**, then $\mathbf{G} \prec \mathbf{H}$.
- For any $n \ge 3$, if \mathbf{K}_n is the complete graph on n vertices, then $\mathbf{G} \prec_{\mathrm{pp}} \mathbf{K}_n$ for every **finite** relational structure \mathbf{G} .
- If **G** is a 1-element structure³, then **G** $\prec_{\rm pp}$ **H** for every **H**.

³Added post-lecture: and the language of **G** is empty

For the rest of this tutorial, we consider only **finite** relational structures (added post-lecture) all of whose fundamental relations are non-empty.

The relation $\prec_{\rm pp}$ on finite relational structures^4 is a pre-order (reflexive and transitive).

So we get a partial order in the usual way:

$$\begin{split} \mathbf{G} \sim_{\mathrm{pp}} \mathbf{H} & \text{iff} \quad \mathbf{G} \prec_{\mathrm{pp}} \mathbf{H} \prec_{\mathrm{pp}} \mathbf{G} \\ [\mathbf{H}] &= \{\mathbf{G} : \mathbf{G} \sim_{\mathrm{pp}} \mathbf{H}\} \\ \mathcal{R}_{\mathrm{fin}} &= \{[\mathbf{H}] : \mathbf{H} \text{ a finite relational structure}\} \\ [\mathbf{G}] \leq_{\mathrm{pp}} [\mathbf{H}] & \text{iff} \quad \mathbf{G} \prec_{\mathrm{pp}} \mathbf{H}. \end{split}$$

⁴Added post-lecture: all of whose fundamental operations are non-empty

Connection to algebra

Definition

Let **H** be a finite relational structure and $n \ge 1$. An *n*-ary polymorphism of **H** is a homomorphism $\mathbf{H}^n \to \mathbf{H}$.

(In particular, a unary polymorphism is an endomorphism of H.)

Definition

Let \mathbf{H} be a finite relational structure.

- $Pol(\mathbf{H}) = \{all polymorphisms of \mathbf{H}\}.$
- The polymorphism algebra of H is

 $\operatorname{PolAlg}(\mathbf{H}) := (H; \operatorname{Pol}(\mathbf{H})).$

Definition

Let **H** be a finite relational structure and V a variety of algebras. We say that **H** admits V if some term reduct of PolAlg(H) is in V.

Proposition (new?)

Suppose G, H are finite relational structures. TFAE:

- **1** $\mathbf{G} \prec_{\mathrm{pp}} \mathbf{H}$.
- ② $var(PolAlg(\mathbf{H})) \rightarrow var(PolAlg(\mathbf{G})).$
- **3 G** admits $var(PolAlg(\mathbf{H}))$.
- **G** admits every finitely presented variety admitted by **H**.

Corollary

The map $[\mathbf{H}] \mapsto [var(\operatorname{PolAlg}(\mathbf{H}))]$ is a well-defined order anti-isomorphism from $(\mathcal{R}_{\operatorname{fin}}, \leq_{\operatorname{pp}})$ into (\mathcal{L}, \leq) , with image $\mathcal{A}_{\operatorname{fin}}$.

Summary

- Interpretation relation on varieties gives us \mathcal{L} .
- Sitting inside ${\cal L}$ is the countable $\wedge\mbox{-closed}$ sub-poset ${\cal A}_{fin}.$
- Pp-definability relation on finite structures gives us $\mathcal{R}_{\mathrm{fin}}.$
- $\mathcal{R}_{\mathrm{fin}}$ and $\mathcal{A}_{\mathrm{fin}}$ are anti-isomorphic
- Mal'cev classes in \mathcal{L} induce filters on $\mathcal{A}_{\mathrm{fin}}$, and hence ideals on $\mathcal{R}_{\mathrm{fin}}$.