Tutorial on Universal Algebra, Mal'cev Conditions, and Finite Relational Structures: Lecture II

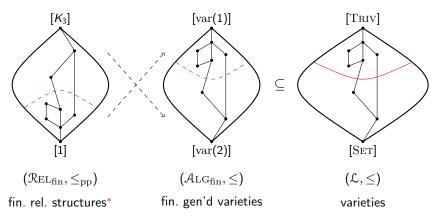
Ross Willard

University of Waterloo, Canada

BLAST 2010

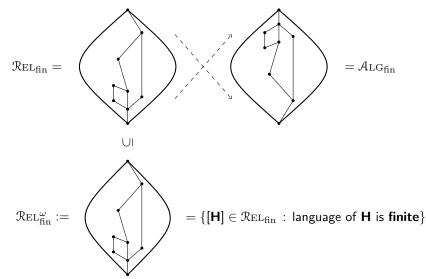
Boulder, June 2010

Recap



- Interpretation relation on varieties gives us \mathcal{L} .
- Sitting inside \mathcal{L} is the countable (??) \wedge -closed sub-poset $\mathcal{A}_{LG_{fin}}$.
- Pp-definability relation on finite structures gives us $\mathcal{R}\mathrm{EL}_\mathrm{fin}.$
- \Re_{ELfin} and $\mathcal{A}_{\mathrm{LGfin}}$ are anti-isomorphic via $[\mathbf{H}] \mapsto [\mathrm{var}(\mathrm{PolAlg}(\mathbf{H}))]$.
- Mal'cev classes in ${\cal L}$ induce filters on ${\cal A}_{\rm LG_{fin}}$ and ideals on ${\cal R}_{\rm EL_{fin}}.$

One more set to define:



Convention: henceforth, all mentioned relational structures under consideration have **finite** languages.

Theorem (Hell, Nešetřil, 1990)

Suppose **G** is a finite undirected graph (without loops).

- If **G** is bipartite, then CSP(G) is in *P*.
- Otherwise, CSP(G) is NP-complete.

What the heck is "CSP(G)"?

Definition

Given a finite relational structure **G** with finite language *L*, the **constraint satisfaction problem with fixed template G**, written CSP(G), is the following decision problem:

Input: an arbitrary finite *L*-structure **I**. **Question**: does there exist a homomorphism $I \rightarrow G$?

Also called the G-homomorphism (or G-coloring) problem.

Some context

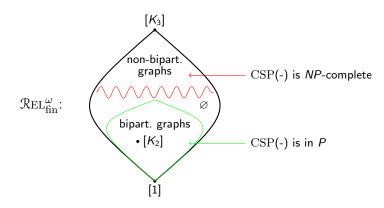
- [Classical]: $\operatorname{CSP}(K_2) \equiv$ checking bipartiteness, which is in *P*. $\operatorname{CSP}(K_n) \equiv$ graph *n*-colorability, which is *NP*-complete for $n \geq 3$ (Karp).
- Key fact [Essentially due to Bulatov & Jeavons, unpubl.]:

If G, H are finite structures in finite languages and $G \prec_{pp} H$, then $\mathrm{CSP}(G)$ is no harder than $\mathrm{CSP}(H)$.

Consequences:

- If CSP(G) is in *P* [resp. *NP*-complete], then same is true $\forall H \in [G]$.
- $\{[\mathbf{G}] : \operatorname{CSP}(\mathbf{G}) \text{ is in } P\}$ is a down-set in $\operatorname{Rel}_{\operatorname{fin}}^{\omega}$.
- $\{[G] : CSP(G) \text{ is } NP\text{-complete}\} \text{ is an up-set in } \mathcal{R}_{EL_{fin}}^{\omega}$.
- In fact:
 - $\{[G] : CSP(G) \text{ is in } P\}$ is an ideal in $(\Re EL_{fin}^{\omega}, \lor)$. (Not hard)

Pictorially:



Hell-Nešetřil theorem: there is **dichotomy** for undirected graphs.

The CSP dichotomy conjecture (Feder, Vardi (1998) There is general dichotomy. I.e., for every finite relational structure **G** in a finite language, CSP(G) is either in *P* or is *NP*-complete.

Ross Willard (Waterloo)

Universal Algebra tutorial

Initial steps towards a proof of the Dichotomy Conjecture

1. Reduction to cores.

Definition

Let ${\boldsymbol{\mathsf{G}}}, {\boldsymbol{\mathsf{H}}}$ be finite relational structures in the same language.

• G is core if all of its endomorphisms are automorphisms.

• G is a core of H if G is core and is a retract of H.

Facts:

- Every finite relational structure **H** has a core, which is unique up to isomorphism; call it core(**H**).
- $\operatorname{CSP}(\mathbf{H}) = \operatorname{CSP}(\operatorname{core}(\mathbf{H})).$

Hence when testing dichotomy, we need only consider cores.

2. Reduction to the endo-rigid case.

Definition

Let $\mathbf{H} = (H, \{relations\})$ be a relational structure.

- **H** is endo-rigid if its only endomorphism is id_H .
- $\mathbf{H}^c := (H, \{\text{relations}\} \cup \{\{a\} : a \in H\}).$ ("**H** with constants")

Facts:

- Endo-rigid \Rightarrow core.
- **H**^c is endo-rigid.

Proposition (Bulatov, Jeavons, Krokhin, 2005)

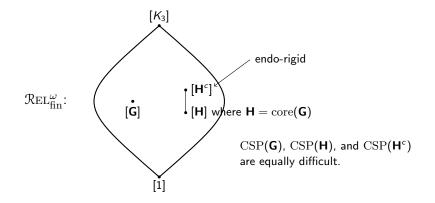
If **H** is core, then $CSP(\mathbf{H})$ and $CSP(\mathbf{H}^{c})$ have the same difficulty.

Hence when testing general dichotomy, we need only consider structures with constants (equivalently, endo-rigid structures).

Ross Willard (Waterloo)

Universal Algebra tutorial

The reductions in pictures:

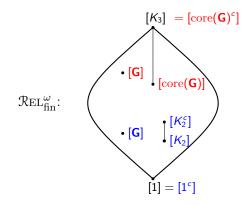


"When testing general dichotomy, we need only consider endo-rigid structures."

 \therefore To establish general dichotomy, it suffices to establish dichotomy in \mathcal{E} .

Question: Where in \mathcal{E} should the "dividing line" be?

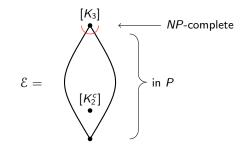
Consider the situation for graphs.



Hell-Nešetřil explained: for a finite graph G,

- **G** bipartite \Rightarrow core(**G**) = K_2 or 1.
- **G** non-bipartite \Rightarrow ... [core(**G**)^{*c*}] = [\mathcal{K}_3].

Question: Where in \mathcal{E} should the "dividing line" be?



The Algebraic CSP Dichotomy Conjecture (BKJ 2000)

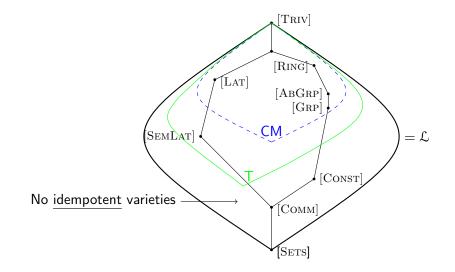
We have dichotomy in \mathcal{E} ; moreover, the "dividing line" separating P from NP-complete is between $\mathcal{E} \setminus \{[K_3]\}$ and $\{[K_3]\}$.

Back to algebra: the **Taylor class** T.

Definition

 $T = \text{the class of varieties } V \text{ such that } \exists n \ge 1, \exists \text{ term } t(x_1, \dots, x_n) \text{ s.t.}$ $\forall 1 \le i \le n, \exists \text{ an identity of the form}$ $V \models t(\text{vars, } x \text{ , vars}) \approx t(\text{vars, } y \text{ , vars});$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ $V \models t(x, x, \dots, x) \approx x. \quad ("t \text{ is idempotent."})$ Jargon: such a term t (witnessing $V \in T$) is called a Taylor term for V.

Fact: T forms a filter in \mathcal{L} (and hence is a Mal'cev class).



Theorem (Taylor, 1977)

For any **idempotent** variety V (i.e., all basic operations are idempotent), either [V] = [SETS] or $V \in T$.

Ross Willard (Waterloo)

Universal Algebra tutorial

Now suppose H is a finite endo-rigid structure.

Then every basic operation of $PolAlg(\mathbf{H})$ is idempotent.

• PROOF: $f \in \mathsf{Pol}(\mathsf{H}) \Rightarrow f(x, x, \dots, x)$ is an endomorphism of H $\Rightarrow f(x, x, \dots, x) \approx x$ (H is endo-rigid).

Hence $V := var(PolAlg(\mathbf{H}))$ is an idempotent variety.

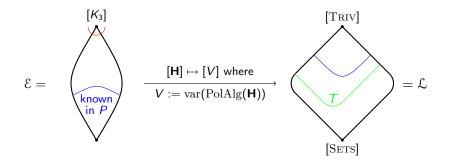
As $[\mathbf{H}] = [K_3]$ in \mathcal{E} iff [V] = [SETS] in \mathcal{L} , we get

Corollary

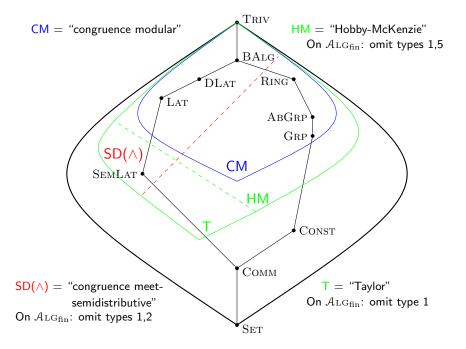
Suppose $[H] \in \mathcal{E}$.

- If $[\mathbf{H}] \neq [K_3]$, then $\operatorname{var}(\operatorname{PolAlg}(\mathbf{H})) \in T$ (i.e., \mathbf{H} has a "Taylor polymorphism").
- Hence the Algebraic Dichotomy Conjecture is equivalent to
 H endo-rigid and has a Taylor polymorphism ⇒ CSP(H) ∈ P.

How close are we to verifying the Algebraic CSP Dichotomy Conjecture?



- Measure progress (i.e., the portion of & \ {[K₃]} known to be in P) via its image in L.
- Thesis: progress is "robust" if its image in \mathcal{L} "is" a Mal'cev class.



Another theme: finding "good" Taylor terms.

Definition

f

An operation f of arity $k \ge 2$ is called a **WNU** operation if it satisfies

$$f(y,x,x,\ldots,x) \approx f(x,y,x,\ldots,x) \approx f(x,x,y,\ldots,x) \approx \cdots$$

and

$$f(x,x,\ldots,x) \approx x.$$

Observe: any WNU is a Taylor operation.

Theorem (Maróti, McKenzie, 2008, verifying a conjecture of Valeriote) Suppose **A** is a finite algebra and $V = var(\mathbf{A})$. If V has a Taylor term, then V has a WNU term.

Definition

An operation f of arity $k \ge 2$ is called a **cyclic** operation if it satisfies

$$f(x_1, x_2, x_3, \ldots, x_k) \approx f(x_2, x_3, \ldots, x_k, x_1)$$

and

 $f(x,x,\ldots,x) \approx x.$

 $\ensuremath{\textbf{Observe}}\xspace$ any cyclic operation is a WNU, since we can specialize the first identity to get

$$f(y,x,x,\ldots,x) \approx f(x,y,x,\ldots,x) \approx f(x,x,y,\ldots,x) \approx \cdots$$

Theorem (Barto, Kozik, 201?)

Suppose **A** is a finite algebra and $V = var(\mathbf{A})$. If V has a Taylor term, then V has a cyclic term. (In fact, has a p-ary cyclic term for every prime p > |A|.)

Easy proof of the Hell-Nešetřil theorem, using cyclic terms. (Due to Barto, Kozik?)

Let $\mathbf{G} = (G, E)$ be a finite graph; assume that it is core and not bipartite. We must show that $[\mathbf{G}^c] = [K_3]$.

Assume the contrary. Then \mathbf{G}^{c} (and hence also \mathbf{G}) has a Taylor polymorphism.

So by the Barto-Kozik theorem, **G** has a cyclic polymorphism of arity p for every prime p > |G|.

G not bipartite \Rightarrow **G** contains an odd cycle, and hence contains cycles of every odd length > |G|.

Pick a prime p > |G| and a cycle a_1, a_2, \ldots, a_p in **G** of length p. That is,

$$(a_1, a_2), (a_2, a_3), \ldots, (a_{p-1}, a_p), (a_p, a_1) \in E.$$

Pick a cyclic polymorphism f of **G** of arity p.

Observe that if

$$\mathbf{u} = (a_1, a_2, \dots, a_{p-1}, a_p) \mathbf{v} = (a_2, a_3, \dots, a_p, a_1),$$

then (\mathbf{u}, \mathbf{v}) is an edge of \mathbf{G}^{p} .

As f is a homomorphism $\mathbf{G}^{p} \to \mathbf{G}$, we get that $(f(\mathbf{u}), f(\mathbf{v}))$ is an edge of \mathbf{G} .

But $f(\mathbf{u}) = f(\mathbf{v})$ because f is cyclic. So $(f(\mathbf{u}), f(\mathbf{v}))$ is a loop. Contradiction!! In conclusion:

- Good progress is being made on the CSP Dichotomy Conjecture, with essential help from universal algebra.
- The conjecture is motivating new purely algebraic conjectures, some of which have been recently proved.

Thank you!