
Identifying groups of finite Morley rank with a split
BN-pair of rank 1

Josh Wiscons

University of Colorado, Boulder

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Intro: groups of finite Morley rank (fMr)

Structures of fMr

Groups of fMr

Affine algebraic
groups

GLn(K1)× GLn(K2)

Zp∞

GLn(K)

PSLn(K)

Groups of fMr

Simple groups of fMr

?

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Intro: groups of finite Morley rank (fMr)

Structures of fMr

Groups of fMr

Affine algebraic
groups

GLn(K1)× GLn(K2)

Zp∞

GLn(K)

PSLn(K)

Groups of fMr

Simple groups of fMr

?

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Intro: groups of finite Morley rank (fMr)

Structures of fMr

Groups of fMr

Affine algebraic
groups

GLn(K1)× GLn(K2)

Zp∞

GLn(K)

PSLn(K)

Groups of fMr

Simple groups of fMr

?

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Intro: groups of finite Morley rank (fMr)

Structures of fMr

Groups of fMr

Affine algebraic
groups

GLn(K1)× GLn(K2)

Zp∞

GLn(K)

PSLn(K)

Groups of fMr

Simple groups of fMr

?

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Morley rank

Fix a first order language L and a (ω-saturated) L-structureM. Morley rank
assigns to each definable set, X, either −1, an ordinal, or∞ denoted RM(X):

RM(X) ≥ 0 iff X is non-empty;

RM(X) ≥ α+ 1 iff there exists definable Yi, 1 ≤ i < ω, such that

≥ α ≥ α ≥ α

X

Y1 Y2 · · · Yi · · ·

RM(X) ≥ λ for λ a limit ordinal iff RM(X) ≥ α for all α < λ;

RM(X) =∞ iff RM(X) ≥ α for all ordinals α.

RM(M) is defined to be RM(M).
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Groups of finite Morley rank

Definition
A group of finite Morley rank is an expansion of a “pure group”, i.e.
(G; ·,−1 , 1, . . .), that has finite Morley rank (fMr).

RM (together with Morley degree) gives DCC on definable subgroups.

This only requires RM(G) 6=∞.

(Cherlin-Macintyre) An infinite division ring has fMr iff it is an
algebraically closed field.

Structures interpretable in structures of fMr have fMr.

Examples

1 Affine algebraic groups over an algebraically closed field, K, have fMr:
GLn(K), PSLn(K), finite groups, . . .

2 Z does NOT have fMr because Z 	 2Z 	 4Z 	 8Z 	 · · ·
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Cherlin-Zil’ber Conjecture

Conjecture (Cherlin-Zil’ber)
An infinite simple group of finite Morley rank is isomorphic to an (affine)
algebraic group over an algebraically closed field.

The analysis breaks into 4 types based on the structure of a Sylow
2-subgroup, S. The types are

Degenerate: S◦ = 1,

Odd: S◦ is nontrivial, divisible, and abelian (S◦ is a 2-torus),

Even: S◦ is nontrivial, nilpotent, and of bounded exponent (S◦ is
2-unipotent), and

Mixed: S◦ contains a 2-torus and a 2-unipotent subgroup.

Theorem (Altınel-Borovik-Cherlin)
There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Cherlin-Zil’ber Conjecture

Conjecture (Cherlin-Zil’ber)
An infinite simple group of finite Morley rank is isomorphic to an (affine)
algebraic group over an algebraically closed field.

The analysis breaks into 4 types based on the structure of a Sylow
2-subgroup, S. The types are

Degenerate: S◦ = 1,

Odd: S◦ is nontrivial, divisible, and abelian (S◦ is a 2-torus),

Even: S◦ is nontrivial, nilpotent, and of bounded exponent (S◦ is
2-unipotent), and

Mixed: S◦ contains a 2-torus and a 2-unipotent subgroup.

Theorem (Altınel-Borovik-Cherlin)
There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Cherlin-Zil’ber Conjecture

Conjecture (Cherlin-Zil’ber)
An infinite simple group of finite Morley rank is isomorphic to an (affine)
algebraic group over an algebraically closed field.

The analysis breaks into 4 types based on the structure of a Sylow
2-subgroup, S. The types are

Degenerate: S◦ = 1,

Odd: S◦ is nontrivial, divisible, and abelian (S◦ is a 2-torus),

Even: S◦ is nontrivial, nilpotent, and of bounded exponent (S◦ is
2-unipotent), and

Mixed: S◦ contains a 2-torus and a 2-unipotent subgroup.

Theorem (Altınel-Borovik-Cherlin)
There are no infinite simple groups of finite Morley rank of mixed type and
those of even type are indeed algebraic.

Josh Wiscons Groups of finite Morley rank with a split BN-pair of rank 1



Theorem of Altınel, Borovik, and Cherlin

Odd? Deg.?

Groups of fMr

Affine algebraic
groups

Simple groups of fMr

We consider the following inductive frameworks.

K∗-groups: groups in which every proper definable simple section is
an algebraic group.

L∗-groups: groups in which every proper definable simple section of
odd type is an algebraic group.
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Recognizing algebraic groups

Theorem (Kramer-Tent-Van Maldeghem)
An infinite simple group of finite Morley rank with an irreducible BN-pair of
Tits rank at least 3 is isomorphic to an algebraic group over an algebraically
closed field. The same holds for Tits rank 2 if the associated polygon is
Moufang.

Question
What can be said about the Tits rank 1 case?

BN-pairs for a group give rise to a geometry on which the group acts.

In Tits rank 1, the geometry degenerates, and we simply have a group
acting 2-transitively on a set.

We focus on groups with a split BN-pair of Tits rank 1.
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Split BN-pairs of Tits rank 1
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The main result

Theorem (W)
Let G be an infinite simple L∗-group of finite Morley rank with a split BN-pair
of Tits rank 1. If U is infinite and abelian, then G ∼= PSL2(K) for K an
algebraically closed field.

An outline.
0 The focal points are B = U o H and N − H.

We hope U ∼= K+, H ∼= K×, and N − H consists entirely of involutions.

1 U has the structure of a vector space.

May assume that char(U) > 2 (using De Medts and Tent; Wiscons).

2 In a minimal counterexample:

i. H has no infinite normal solvable subgroups (using De Medts and Tent);
ii. H has a definable normal quasisimple subgroup Q;

iii. Q has infinite 2-subgroups, so Q is algebraic by the L∗-hypothesis;
iv. H = Q, so H is algebraic;
v. a Borel subgroup of H has an infinite centralizer CONTRADICTING (i).
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Summary and questions

We have that for G an infinite simple L∗-group of fMr. . .

G

B N

U H

{1}

2 +
U is abelian

H is arbitrary

=⇒ G ∼= PSL2(K)

solvablearbitrary

abelian

?

E

Questions

Q1: Can we generalize to U solvable (or nilpotent) and H arbitrary?

Q2: Can we address when U is arbitrary and H is abelian?

Q3: Can we apply the main result to simple groups with Prüfer 2-rank 1?
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