The Poincaré Model

Axiom (B4) and Congruence for Segments and Angles

April 22, 2020
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The points of the Poincaré model, called P-points, are the points of Π_F inside Γ.

The lines of the Poincaré model, called P-lines, are the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is P-between A and C, denoted $A \ast_P B \ast_P C$, if A, B, C are distinct P-points on a P-line λ, and

- if $\lambda = \ell_P$ for a line ℓ through O (in Π_F), then $A \ast_B C$ (in Π_F), while
- if $\lambda = \gamma_P$ for a circle $\gamma \perp \Gamma$ with center \hat{O}, (in Π_F), then $\overrightarrow{\hat{O}B}$ is in the interior of $\angle A\hat{O}C$ (in Π_F).

Theorem. In the Poincaré model, the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold, but Playfair's axiom (P) fails.
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

- The *lines of the Poincaré model*, called *P-lines*, are the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is P-between A and C, denoted $A \ast_P B \ast_P C$, if A, B, C are distinct P-points on a P-line λ, and

- if $\lambda = \ell_P$ for a line ℓ through O (in Π_F), then $A \ast_P B \ast_P C$ (in Π_F), while
- if $\lambda = \gamma_P$ for a circle $\gamma \perp \Gamma$ with center \hat{O} (in Π_F), then $\vec{\hat{O}B}$ is in the interior of $\angle A \hat{O} C$ (in Π_F).

Theorem. In the Poincaré model the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold, but Playfair’s axiom (P) fails.
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

The *lines of the Poincaré model*, called *P-lines*, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O;
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is P-between A and C, denoted $A^P B^P C$, if A, B, C are distinct P-points on a P-line λ, and

- if $\lambda = \ell_P$ for a line ℓ through O (in Π_F), then $A^P B^P C$ (in Π_F), while
- if $\lambda = \gamma_P$ for a circle γ perpendicular to Γ with center \hat{O}, (in Π_F), then $\overrightarrow{\hat{O}B}$ is in the interior of $\angle A\hat{O}C$ (in Π_F).

Theorem. In the Poincaré model, the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold, but Playfair's axiom (P) fails.
Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

The *lines of the Poincaré model*, called *P-lines*, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Theorem. In the Poincaré model:
- the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold,
- but Playfair's axiom (P) fails.
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The points of the Poincaré model, called P-points, are the points of Π_F inside Γ.

The lines of the Poincaré model, called P-lines, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Theorem. In the Poincaré model, the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold, but Playfair's axiom (P) fails.
Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

The *lines of the Poincaré model*, called *P-lines*, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is *P-between* A and C, denoted $A \ast_P B \ast_P C$, if A, B, C are distinct P-points on a P-line λ, and
Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

The *lines of the Poincaré model*, called *P-lines*, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is *P-between* A and C, denoted $A \ast_P B \ast_P C$, if A, B, C are distinct P-points on a P-line λ, and

- if $\lambda = \ell_P$ for a line ℓ through O (in Π_F), then $A \ast B \ast C$ (in Π_F), while
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

The *lines of the Poincaré model*, called *P-lines*, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is *P-between* A and C, denoted $A \ast_P B \ast_P C$, if A, B, C are distinct P-points on a P-line λ, and

- if $\lambda = \ell_P$ for a line ℓ through O (in Π_F), then $A \ast B \ast C$ (in Π_F), while
- if $\lambda = \gamma_P$ for a circle $\gamma \perp \Gamma$ with center \hat{O}, (in Π_F), then \overrightarrow{OB} is in the interior of $\angle A\hat{O}C$ (in Π_F).
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let \(\Pi_F \) be a Cartesian plane \(\Pi_F \) over a Euclidean ordered field \((F; <)\), and let \(\Gamma \) be a fixed circle in \(\Pi_F \) with center \(O \).

Definition. The *points of the Poincaré model*, called *P-points*, are the points of \(\Pi_F \) inside \(\Gamma \).

The *lines of the Poincaré model*, called *P-lines*, are

- the sets \(\ell_P \) of P-points of lines \(\ell \) (in \(\Pi_F \)) that pass through \(O \); and
- the sets \(\gamma_P \) of P-points of circles \(\gamma \) (in \(\Pi_F \)) that are perpendicular to \(\Gamma \).

Definition. For P-points \(A, B, C \), \(B \) is *P-between* \(A \) and \(C \), denoted \(A *_{P} B *_{P} C \), if \(A, B, C \) are distinct P-points on a P-line \(\lambda \), and

- if \(\lambda = \ell_P \) for a line \(\ell \) through \(O \) (in \(\Pi_F \)), then \(A *_{P} B *_{P} C \) (in \(\Pi_F \)), while
- if \(\lambda = \gamma_P \) for a circle \(\gamma \perp \Gamma \) with center \(\hat{O} \) (in \(\Pi_F \)), then \(\overrightarrow{OB} \) is in the interior of \(\angle A\hat{O}C \) (in \(\Pi_F \)).

Theorem. In the Poincaré model

- the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold,
Recall: The Poincaré Model (Points, Lines, and Betweenness)

Let Π_F be a Cartesian plane Π_F over a Euclidean ordered field $(F; <)$, and let Γ be a fixed circle in Π_F with center O.

Definition. The *points of the Poincaré model*, called *P-points*, are the points of Π_F inside Γ.

The *lines of the Poincaré model*, called *P-lines*, are

- the sets ℓ_P of P-points of lines ℓ (in Π_F) that pass through O; and
- the sets γ_P of P-points of circles γ (in Π_F) that are perpendicular to Γ.

Definition. For P-points A, B, C, B is *P-between* A and C, denoted $A \star_P B \star_P C$, if A, B, C are distinct P-points on a P-line λ, and

- if $\lambda = \ell_P$ for a line ℓ through O (in Π_F), then $A \star B \star C$ (in Π_F), while
- if $\lambda = \gamma_P$ for a circle $\gamma \perp \Gamma$ with center \hat{O}, (in Π_F), then \overrightarrow{OB} is in the interior of $\angle A\hat{O}C$ (in Π_F).

Theorem. In the Poincaré model

- the incidence and betweenness axioms (I1)–(I3), (B1)–(B3) hold,
- but Playfair’s axiom (P) fails.
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the P-sides of a P-line as follows:

- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

- (i) A, B are on different P-sides of λ;
- (ii) there is a P-point L ∈ λ such that A ∗ P L ∗ P B.

Idea of Proof of PSThm when λ = γ_P and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D. (γ_P ̸= δ_P ⇒ C ̸= D.)

- (i) ⇒ γ, δ meet at L ̸= L′ (in Π_F) [axiom (E)], L′ = ρΓ(L) [as γ, δ ⊥ Γ].
- (1) γ_P, δ_P meet at a P-point L, and (2) line CD is outside Γ (in Π_F) (so γ_P ∪ δ_P is on the same side of CD in Π_F).
- (ii) ⇒ (1), (2) as well.

Hence:

- (i) ⇔ CA < CL < CB (in Π_F) (I.24,25) ⇔ ∠CDA < ∠CDL < ∠CDB (in Π_F) ±, < for ∠s ⇔ (ii).
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:

- **P-sides of** ℓ_{P}: the sets of P-points on the two sides of ℓ (in Π_F);
- **P-sides of** γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

(i) A, B are on different P-sides of λ;

(ii) there is a P-point $L \in \lambda$ such that $A^*P L^*P B$.

Idea of Proof of PSThm when $\lambda = \gamma_P$ and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D. ($\gamma_P \neq \delta_P \Rightarrow C \neq D$).

- (i) \Rightarrow γ, δ meet at $L \neq L'$ (in Π_F) \[axiom (E)\], $L' = \rho_{\Gamma}(L)$ [as $\gamma, \delta \perp \Gamma$].

- $\Rightarrow (1)$ γ_P, δ_P meet at a P-point L, and (2) line CD is outside Γ (in Π_F) (so $\gamma_P \cup \delta_P$ is on the same side of CD in Π_F).

- (ii) $\Rightarrow (1), (2)$ as well.

Hence:

- (i) $\iff CA <_P CL <_P CB$ (in Π_F) \[I.24, 25\] $\iff \angle CDA <_P \angle CDL <_P \angle CDB$ (in Π_F) $\pm, <$ for \angles \iff (ii).
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
Recall that for a geometry satisfying (I1)–(I3),(B1)–(B3) we have that (B4) \iff PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

(i) A, B are on different P-sides of λ;

(ii) there is a P-point $L \in \lambda$ such that $A \ast \lambda \ast B$.

Idea of Proof of PSThm when $\lambda = \gamma_P$ and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D.

- (i) $\implies \gamma, \delta$ meet at $L \neq L'$ (in Π_F) [axiom (E)], $L' = \rho_{\Gamma}(L)$ [as $\gamma, \delta \perp \Gamma$].

- (ii) \implies (1), (2) as well.

Hence:

- (i) $\iff CA < CL < CB$ (in Π_F) (I.24,25) $\iff \angle CDA < \angle CDL < \angle CDB$ (in Π_F) $\pm, <$ for \angles \iff (ii).
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) \iff PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of \(\ell_P \): the sets of P-points on the two sides of \(\ell \) (in \(\Pi_F \));
- P-sides of \(\gamma_P \): the sets of P-points inside, resp., outside \(\gamma \) (in \(\Pi_F \)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda \) and for any two P-points \(A, B \) not on \(\lambda \), the following are equivalent:

1. \(A, B \) are on different P-sides of \(\lambda \);
2. There is a P-point \(L \in \lambda \) such that \(A \not< \lambda \leq P L \leq P B \).

Idea of Proof of PSThm when \(\lambda = \gamma_P \) and the unique P-line containing \(A, B \) is \(\delta_P \) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta \) be \(C, D \).

- \((i) \implies (2) \): \(\gamma, \delta \) meet at \(L \neq L' \) (in \(\Pi_F \)) \[axiom (E)\], \(L' = \rho_{\Gamma}(L) \) \[as \(\gamma, \delta \perp \Gamma \)\].
- \((ii) \implies (1), (2) \) as well.

Hence:

- \((i) \iff CA < \lambda < CL < CB \) (in \(\Pi_F \)) \[I.24,25\]
- \(\angle CDA < \lambda < \angle CDL < \angle CDB \) (in \(\Pi_F \)) \[\pm, < \text{for } \angle s \iff (ii)\].
Recall that for a geometry satisfying (I1)–(I3),(B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

(i) A, B are on different P-sides of λ;

(II) there is a P-point $L \in \lambda$ such that $A \not\in P L \not\in B$.

Idea of Proof of PSThm when $\lambda = \gamma_P$ and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D. ($\gamma_P \neq \delta_P \Rightarrow C \neq D$).

• (i) $\Rightarrow \gamma, \delta$ meet at $L \neq L'$ (in Π_F) [axiom (E)],

• (ii) $\Rightarrow (1)$ as well. Hence:

• (i) $\iff CA < CL < CB$ (in Π_F) (I.24,25) $\iff \angle CDA < \angle CDL < \angle CDB$ (in Π_F) \pm, $<$ for \angles \iff (ii).
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the **P-sides** of a P-line as follows:
- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

(i) A, B are on different P-sides of λ;

(ii) there is a P-point $L \in \lambda$ such that $A \ast_P L \ast_P B$.

\[\begin{array}{c}
\text{Diagram showing the Poincaré Disk model with P-line and points.}
\end{array} \]
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) \iff PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:
- (i) A, B are on different P-sides of λ;
- (ii) there is a P-point $L \in \lambda$ such that $A \ast_P L \ast_P B$.

Idea of Proof of PSThm when $\lambda = \gamma_P$ and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D. ($\gamma_P \neq \delta_P \Rightarrow C \neq D$.)
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that \((B4) \iff \text{PSThm} \). Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:

- P-sides of \(\ell_P \): the sets of P-points on the two sides of \(\ell \) (in \(\Pi_F \));
- P-sides of \(\gamma_P \): the sets of P-points inside, resp., outside \(\gamma \) (in \(\Pi_F \)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda \) and for any two P-points \(A, B \) not on \(\lambda \), the following are equivalent:

1. \(A, B \) are on different P-sides of \(\lambda \);
2. there is a P-point \(L \in \lambda \) such that \(A \ast_P L \ast_P B \).

Idea of Proof of PSThm when \(\lambda = \gamma_P \) and the unique P-line containing \(A, B \) is \(\delta_P \) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta \) be \(C, D \). (\(\gamma_P \neq \delta_P \Rightarrow C \neq D \).)

- (i) \(\Rightarrow \gamma, \delta \) meet at \(L \neq L' \) (in \(\Pi_F \)) [axiom (E)],
Recall that for a geometry satisfying (I1)–(I3),(B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

(i) A, B are on different P-sides of λ;
(ii) there is a P-point $L \in \lambda$ such that $A \ast_P L \ast_P B$.

Idea of Proof of PSThm when $\lambda = \gamma_P$ and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D. ($\gamma_P \neq \delta_P \Rightarrow C \neq D.$)

- (i) \Rightarrow γ, δ meet at $L \neq L'$ (in Π_F) [axiom (E)],

- $L' = \rho_{\Gamma}(L)$ [as $\gamma, \delta \perp \Gamma$].
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:

- **P-sides of** \(\ell_P \): the sets of P-points on the two sides of \(\ell \) (in \(\Pi_F \));
- **P-sides of** \(\gamma_P \): the sets of P-points inside, resp., outside \(\gamma \) (in \(\Pi_F \)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda \) and for any two P-points \(A, B \) not on \(\lambda \), the following are equivalent:

(i) \(A, B \) are on different P-sides of \(\lambda \);

(ii) there is a P-point \(L \in \lambda \) such that \(A * P L * P B \).

Idea of Proof of PSThm when \(\lambda = \gamma_P \) and the unique P-line containing \(A, B \) is \(\delta_P \) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta \) be \(C, D \). (\(\gamma_P \neq \delta_P \Rightarrow C \neq D \).)

- (i) \(\Rightarrow \) \(\gamma, \delta \) meet at \(L \neq L' \) (in \(\Pi_F \)) [axiom (E)],
- \(L' = \rho_\Gamma (L) \) [as \(\gamma, \delta \perp \Gamma \)].
- \(\Rightarrow \) (1) \(\gamma_P, \delta_P \) meet at a P-point \(L \), and
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of \(\ell_P \): the sets of P-points on the two sides of \(\ell \) (in \(\Pi_F \));
- P-sides of \(\gamma_P \): the sets of P-points inside, resp., outside \(\gamma \) (in \(\Pi_F \)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda \) and for any two P-points \(A, B \) not on \(\lambda \), the following are equivalent:
1. \(A, B \) are on different P-sides of \(\lambda \);
2. there is a P-point \(L \in \lambda \) such that \(A \ast_P L \ast_P B \).

Idea of Proof of PSThm when \(\lambda = \gamma_P \) and the unique P-line containing \(A, B \) is \(\delta_P \) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta \) be \(C, D \). (\(\gamma_P \neq \delta_P \Rightarrow C \neq D \).)
- (i) \(\Rightarrow \) \(\gamma, \delta \) meet at \(L \neq L' \) (in \(\Pi_F \)) [axiom (E)],
 \[L' = \rho_\Gamma (L) \] [as \(\gamma, \delta \perp \Gamma \)].
- \(\Rightarrow \) (1) \(\gamma_P, \delta_P \) meet at a P-point \(L \), and
 (2) line \(CD \) is outside \(\Gamma \) (in \(\Pi_F \))
 (so \(\gamma_P \cup \delta_P \) is on the same side of \(CD \) in \(\Pi_F \)).
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that \((\text{B4}) \iff \text{PSThm}\). Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:

- P-sides of \(\ell_P\): the sets of P-points on the two sides of \(\ell\) (in \(\Pi_F\));
- P-sides of \(\gamma_P\): the sets of P-points inside, resp., outside \(\gamma\) (in \(\Pi_F\)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda\) and for any two P-points \(A, B\) not on \(\lambda\), the following are equivalent:

(i) \(A, B\) are on different P-sides of \(\lambda\);

(ii) there is a P-point \(L \in \lambda\) such that \(A \ast_P L \ast_P B\).

Idea of Proof of PSThm when \(\lambda = \gamma_P\) and the unique P-line containing \(A, B\) is \(\delta_P\) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta\) be \(C, D\). (\(\gamma_P \neq \delta_P \Rightarrow C \neq D\).)

- (i) \(\Rightarrow\) \(\gamma, \delta\) meet at \(L \neq L'\) (in \(\Pi_F\)) [axiom (E)],
 \[L' = \rho_{\Gamma}(L)\] [as \(\gamma, \delta \perp \Gamma\)].
 \(\Rightarrow\) (1) \(\gamma_P, \delta_P\) meet at a P-point \(L\), and
 (2) line \(CD\) is outside \(\Gamma\) (in \(\Pi_F\))
 (so \(\gamma_P \cup \delta_P\) is on the same side of \(CD\) in \(\Pi_F\)).
- (ii) \(\Rightarrow\) (1), (2) as well.
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:
- P-sides of \(\ell_P \): the sets of P-points on the two sides of \(\ell \) (in \(\Pi_F \));
- P-sides of \(\gamma_P \): the sets of P-points inside, resp., outside \(\gamma \) (in \(\Pi_F \)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda \) and for any two P-points \(A, B \) not on \(\lambda \), the following are equivalent:

(i) \(A, B \) are on different P-sides of \(\lambda \);
(ii) there is a P-point \(L \in \lambda \) such that \(A \perp_P L \perp_P B \).

Idea of Proof of PSThm when \(\lambda = \gamma_P \) and the unique P-line containing \(A, B \) is \(\delta_P \) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta \) be \(C, D \). \((\gamma \neq \delta \Rightarrow C \neq D.)\)

- (i) \(\Rightarrow \gamma, \delta \text{ meet at } L \neq L' \) (in \(\Pi_F \)) [axiom (E)],
 \[L' = \rho_{\Gamma}(L) \text{ [as } \gamma, \delta \perp \Gamma]. \]
 \(\Rightarrow \) (1) \(\gamma_P, \delta_P \text{ meet at a P-point } L \), and
 (2) line \(CD \) is outside \(\Gamma \) (in \(\Pi_F \))
 (so \(\gamma_P \cup \delta_P \) is on the same side of \(CD \) in \(\Pi_F \)).

- (ii) \(\Rightarrow \) (1), (2) as well.

Hence:

- (i) \(\Leftrightarrow \overline{CA} \leq \overline{CL} \leq \overline{CB} \) (in \(\Pi_F \))
Recall that for a geometry satisfying (I1)–(I3), (B1)–(B3) we have that (B4) ⇔ PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:

- P-sides of \(\ell_P \): the sets of P-points on the two sides of \(\ell \) (in \(\Pi_F \));
- P-sides of \(\gamma_P \): the sets of P-points inside, resp., outside \(\gamma \) (in \(\Pi_F \)).

Plane Separation Theorem for the P-model. For every P-line \(\lambda \) and for any two P-points \(A, B \) not on \(\lambda \), the following are equivalent:

(i) \(A, B \) are on different P-sides of \(\lambda \);

(ii) there is a P-point \(L \in \lambda \) such that \(A \not\in_P L \not\in_P B \).

Idea of Proof of PSThm when \(\lambda = \gamma_P \) and the unique P-line containing \(A, B \) is \(\delta_P \) (the other cases are similar, but easier). Let the centers of \(\gamma, \delta \) be \(C, D \). (\(\gamma_P \neq \delta_P \Rightarrow C \neq D \).)

- (i) \(\Rightarrow \gamma, \delta \) meet at \(L \neq L' \) (in \(\Pi_F \)) [axiom (E)],
 \(L' = \rho_\Gamma(L) \) [as \(\gamma, \delta \perp \Gamma \)].
 \(\Rightarrow (1) \gamma_P, \delta_P \) meet at a P-point \(L \), and
 (2) line \(CD \) is outside \(\Gamma \) (in \(\Pi_F \))
 (so \(\gamma_P \cup \delta_P \) is on the same side of \(CD \) in \(\Pi_F \)).

- (ii) \(\Rightarrow (1), (2) \) as well.

Hence:

- (i) \(\iff \triangle CA \lesssim \triangle CL \lesssim \triangle CB \) (in \(\Pi_F \))
 (I.24,25)
- \(\iff \angle CDA \lesssim \angle CDL \lesssim \angle CDB \) (in \(\Pi_F \))
Recall that for a geometry satisfying (I1)–(I3),(B1)–(B3) we have that (B4) \Leftrightarrow PSThm. Hence, to show that (B4) holds in the P-model, it suffices to show that PSThm holds.

Definition. Define the *P-sides* of a P-line as follows:

- P-sides of ℓ_P: the sets of P-points on the two sides of ℓ (in Π_F);
- P-sides of γ_P: the sets of P-points inside, resp., outside γ (in Π_F).

Plane Separation Theorem for the P-model. For every P-line λ and for any two P-points A, B not on λ, the following are equivalent:

(i) A, B are on different P-sides of λ;

(ii) there is a P-point $L \in \lambda$ such that $A \ast_P L \ast_P B$.

Idea of Proof of PSThm when $\lambda = \gamma_P$ and the unique P-line containing A, B is δ_P (the other cases are similar, but easier). Let the centers of γ, δ be C, D. ($\gamma_P \neq \delta_P \Rightarrow C \neq D$.)

- (i) \Rightarrow γ, δ meet at $L \neq L'$ (in Π_F) [axiom (E)],
 $L' = \rho_\Gamma (L)$ [as $\gamma, \delta \perp \Gamma$].

 \Rightarrow (1) γ_P, δ_P meet at a P-point L, and
 (2) line CD is outside Γ (in Π_F)
 (so $\gamma_P \cup \delta_P$ is on the same side of CD in Π_F).

- (ii) \Rightarrow (1), (2) as well.

Hence:

- (i) \Leftrightarrow $CA \lesssim CL \lesssim CB$ (in Π_F)

 (I.24,25)

 \Leftrightarrow $\angle CDA \lesssim \angle CDL \lesssim \angle CDB$ (in Π_F) \pm, \leq for $\angle s$ (ii).
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called *P-segments*, *P-rays*, *P-angles*, *P-triangles*, are defined using P-betweenness.

\[\mu(AB)^P = (AB, PQ)^{-1} = (AB, PQ) \]

where \(P, Q \) are obtained as follows: for the unique P-line \(\lambda = \ell_P \) or \(\gamma_P \) through \(A, B \), \(\ell, \gamma \), resp. meets \(\Gamma \) (in \(\Pi_F \)) at \(P, Q \), and the labelling is chosen so that \(P \) is closer to \(A \) than to \(B \).

Why don’t we define \(\mu(AB)^P \), without inversion, by \(\mu(AB)^P = (AB, PQ) \)?

Example. Let \(A, B \) be distinct P-points on a P-line \(\lambda = \ell_P \), and let \(P, Q \) be defined as before. Then, in \(\Pi_F \), \(A, B \in PQ \{ P, Q \} \), and \(A \sim B \sim Q \).

By the solution to the problem on WSH26, if \(A \) is fixed on \(\ell_P \) (i.e., \(P, Q, A \) are fixed), then in \(\Pi_F \\
\bullet A \sim B \sim Q \) if and only if \(0 < (AB, PQ) < 1 \), and
\[\text{as } 0 < k := (AB, PQ) < 1 \text{ increases, the length of } PB = PA + k \cdot AQ \cdot PQ \text{ decreases} \]

(and hence so does the length of \(AB \)).
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called \(P\text{-segments} \), \(P\text{-rays} \), \(P\text{-angles} \), \(P\text{-triangles} \), are defined using P-betweenness.

Notation: \(\overrightarrow{AB}^P \), \(
\overrightarrow{AB}^P \), \(\angle P\,BAC \), \(\triangle P\,ABC \).

Definition. For distinct P-points \(A \), \(B \), let
\[
\mu(\overrightarrow{AB}) = (\overrightarrow{AB}, \overrightarrow{PQ})^{-1} = (\overrightarrow{AB}, \overrightarrow{PQ})
\]
where \(P \), \(Q \) are obtained as follows:
for the unique P-line \(\lambda = \ell^P \) or \(\gamma^P \) through \(A \), \(B \), \(\ell \), resp. \(\gamma \), meets \(\Gamma \) (in \(\Pi^F \)) at \(P \), \(Q \), and the labelling is chosen so that \(P \) is closer to \(A \) than to \(B \).

Why don't we define \(\mu(\overrightarrow{AB}) \), without inversion, by \(\mu(\overrightarrow{AB}) = (\overrightarrow{AB}, \overrightarrow{PQ}) \)?

Example. Let \(A \), \(B \) be distinct P-points on a P-line \(\lambda = \ell^P \), and let \(P \), \(Q \) be defined as before. Then, in \(\Pi^F \), \(A \), \(B \in \overrightarrow{PQ} \{P, Q\} \), and \(A^* B^* Q \).

By the solution to the problem on WSH26, if \(A \) is fixed on \(\ell^P \) (i.e., \(P \), \(Q \), \(A \) are fixed), then in \(\Pi^F \):

- \(A^* B^* Q \) if and only if \(0 < (\overrightarrow{AB}, \overrightarrow{PQ}) < 1 \), and
- as \(0 < k := (\overrightarrow{AB}, \overrightarrow{PQ}) < 1 \) increases, the length of \(PB = PA + k \cdot AQ \cdot PQ \) decreases (and hence so does the length of \(AB \)).

Definition. Two P-segments \(\overrightarrow{AB}^P \) and \(\overrightarrow{A'B'}^P \) are P-congruent, denoted \(\overrightarrow{AB}^P \sim P \overrightarrow{A'B'}^P \), if \(\mu(\overrightarrow{AB}) = \mu(\overrightarrow{A'B'}) \).
Segments, rays, angles, triangles in the P-model, called P-segments, P-rays, P-angles, P-triangles, are defined using P-betweenness.

Notation: \overrightarrow{AB}^P, \overrightarrow{AB}^P, $\angle_P BAC$, $\triangle_P ABC$.

Definition. For distinct P-points A, B, let
\[\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)} \]
where P, Q are obtained as follows:

Why don't we define $\mu(AB)$, without inversion, by $\mu(AB) = (AB, PQ)$ as above?

Example. Let A, B be distinct P-points on a P-line $\lambda = \ell_P$, and let P, Q be defined as before. Then, in Π_F, $A, B \in PQ \setminus \{P, Q\}$, and $A \neq B \neq Q$.

By the solution to the problem on WSH26, if A is fixed on ℓ_P (i.e., P, Q, A are fixed), then in Π_F:

- $A \neq B \neq Q$ if and only if $0 < (AB, PQ) < 1$,
- as $0 < k := (AB, PQ) < 1$ increases, the length of $PB = PA + k \cdot AQ \cdot PQ$ decreases (and hence so does the length of AB).

Definition. Two P-segments AB^P and $A'B'^P$ are P-congruent, denoted $AB^P \sim P A'B'^P$, if $\mu(AB) = \mu(A'B')$.

Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called \textit{P-segments}, \textit{P-rays}, \textit{P-angles}, \textit{P-triangles}, are defined using P-betweenness.

Notation: \overline{AB}^P, \overrightarrow{AB}^P, $\angle_P BAC$, $\triangle_P ABC$.

Definition. For distinct P-points A, B, let $\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)}$ where P, Q are obtained as follows: for the unique P-line $\lambda (= \ell_P$ or γ_P) through A, B, ℓ, resp. γ, meets Γ (in Π_F) at P, Q,

Why don't we define $\mu(AB)$, without inversion, by $\mu(AB) = (AB, PQ)$ (P, Q as above)?

Example. Let A, B be distinct P-points on a P-line $\lambda_\ell = \ell_P$, and let P, Q be defined as before. Then, in Π_F, $A, B \in PQ \setminus \{P, Q\}$, and $A^* B^* Q$.

By the solution to the problem on WSH26, if A is fixed on ℓ_P (i.e., P, Q, A are fixed), then in Π_F:

- $A^* B^* Q$ if and only if $0 < (AB, PQ) < 1$,
- as $0 < k := (AB, PQ) < 1$ increases, the length of $PB = PA + k \cdot AQ \cdot PQ$ decreases (and hence so does the length of AB).

Definition. Two P-segments AB^P and $A'B'^P$ are P-congruent, denoted $AB^P \sim P A'B'^P$, if $\mu(AB) = \mu(A'B')$.

The Poincaré Model
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called \textit{P-segments}, \textit{P-rays}, \textit{P-angles}, \textit{P-triangles}, are defined using P-betweenness.

\textbf{Notation:} \overline{AB}^P, \overrightarrow{AB}^P, $\angle_P BAC$, $\triangle_P ABC$.

\textbf{Definition.} For distinct P-points A, B, let
\[\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)} \]
where P, Q are obtained as follows: for the unique P-line $\lambda (= \ell_P$ or γ_P) through A, B, ℓ, resp. γ, meets Γ (in Π_F) at P, Q, and the labelling is chosen so that P is closer to A than to B.

\[\text{Why don't we define } \mu(AB), \text{ without inversion, by } \mu(AB) = (AB, PQ) \text{?} \]

\textbf{Example.} Let A, B be distinct P-points on a P-line $\lambda = \ell_P$, and let P, Q be defined as before. Then, in Π_F, $A, B \in PQ \{P, Q\}$, and $A \ast B \ast Q$.

\text{By the solution to the problem on WSH26, if A is fixed on ℓ_P (i.e., P, Q, A are fixed), then in Π_F:}

- $A \ast B \ast Q$ if and only if $0 < (AB, PQ) < 1$,
- as $0 < k := (AB, PQ) < 1$ increases, the length of $PB = PA + k \cdot AQ \cdot PQ$ decreases (and hence so does the length of AB).
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called P-segments, P-rays, P-angles, P-triangles, are defined using P-betweenness.

Notation: \overrightarrow{AB}_P, $\overrightarrow{A\!B}_P$, $\angle_P BAC$, $\triangle_P ABC$.

Definition. For distinct P-points A, B, let
\[\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)} \]
where P, Q are obtained as follows: for the unique P-line $\lambda (= \ell_P$ or γ_P) through A, B, ℓ, resp. γ, meets Γ (in Π_F) at P, Q, and the labelling is chosen so that P is closer to A than to B.

Why don’t we define $\mu(AB)$, without inversion, by $\mu(AB) = (AB, PQ) (P, Q$ as above)?
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called *P-segments*, *P-rays*, *P-angles*, *P-triangles*, are defined using P-betweenness.

Notation: \(\overline{AB}^P, \overrightarrow{AB}^P, \angle_P BAC, \triangle_P ABC \).

Definition. For distinct P-points \(A, B \), let
\[
\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)}
\]
where \(P, Q \) are obtained as follows: for the unique P-line \(\lambda (= \ell_P \text{ or } \gamma_P) \) through \(A, B \), \(\ell, \text{ resp. } \gamma \), meets \(\Gamma \) (in \(\Pi_F \)) at \(P, Q \), and the labelling is chosen so that \(P \) is closer to \(A \) than to \(B \).

Why don’t we define \(\mu(AB) \), without inversion, by \(\mu(AB) = (AB, PQ) \) (\(P, Q \) as above)?

Example. Let \(A, B \) be distinct P-points on a P-line \(\lambda = \ell_P \), and let \(P, Q \) be defined as before. Then, in \(\Pi_F \), \(A, B \in \overline{PQ} \setminus \{P, Q\} \), and \(A \ast B \ast Q \).
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called P-segments, P-rays, P-angles, P-triangles, are defined using P-betweenness.

Notation: \overline{AB}^P, \overrightarrow{AB}^P, $\angle_P BAC$, $\triangle_P ABC$.

Definition. For distinct P-points A, B, let
\[
\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)}
\]
where P, Q are obtained as follows: for the unique P-line $\lambda (= \ell_P$ or $\gamma_P)$ through A, B, ℓ, resp. γ, meets Γ (in Π_F) at P, Q, and the labelling is chosen so that P is closer to A than to B.

Why don’t we define $\mu(AB)$, without inversion, by $\mu(AB) = (AB, PQ)$ (P, Q as above)?

Example. Let A, B be distinct P-points on a P-line $\lambda = \ell_P$, and let P, Q be defined as before. Then, in Π_F, $A, B \in \overline{PQ} \setminus \{P, Q\}$, and $A \ast B \ast Q$. By the solution to the problem on WSH26, if A is fixed on ℓ_P (i.e., P, Q, A are fixed), then in Π_F:
- $A \ast B \ast Q$ if and only if $0 < (AB, PQ) < 1$, and
Definition of Congruence for Line Segments

Segments, rays, angles, triangles in the P-model, called \(P\text{-segments} \), \(P\text{-rays} \), \(P\text{-angles} \), \(P\text{-triangles} \), are defined using P-betweenness.

Notation: \(\overrightarrow{AB}^P \), \(\overrightarrow{A\overline{B}}^P \), \(\angle_P BAC \), \(\triangle_P ABC \).

Definition. For distinct P-points \(A, B \), let
\[
\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)}
\]
where \(P, Q \) are obtained as follows: for the unique P-line \(\lambda (= \ell_P \text{ or } \gamma_P) \) through \(A, B \), \(\ell \), resp. \(\gamma \), meets \(\Gamma \) (in \(\Pi_F \)) at \(P, Q \), and the labelling is chosen so that \(P \) is closer to \(A \) than to \(B \).

Why don’t we define \(\mu(AB) \), without inversion, by \(\mu(AB) = (AB, PQ) \ (P, Q \text{ as above}) \)?

Example. Let \(A, B \) be distinct P-points on a P-line \(\lambda = \ell_P \), and let \(P, Q \) be defined as before. Then, in \(\Pi_F \), \(A, B \in \overline{PQ} \setminus \{P, Q\} \), and \(A \ast B \ast Q \). By the solution to the problem on WSH26, if \(A \) is fixed on \(\ell_P \) (i.e., \(P, Q, A \) are fixed), then in \(\Pi_F \):

- \(A \ast B \ast Q \) if and only if \(0 < (AB, PQ) < 1 \), and
- as \(0 < k := (AB, PQ) < 1 \) increases, the length of \(\overline{PB} = \frac{PA}{PA+k\cdot AQ} \cdot \overline{PQ} \) decreases (and hence so does the length of \(\overline{AB} \)).
Segments, rays, angles, triangles in the P-model, called \textit{P-segments}, \textit{P-rays}, \textit{P-angles}, \textit{P-triangles}, are defined using P-betweenness.

\textbf{Notation:} \(\overrightarrow{AB}^P\), \(\overrightarrow{AB}^P\), \(\angle_P BAC\), \(\triangle_P ABC\).

\textbf{Definition.} For distinct P-points \(A, B\), let
\[\mu(AB) = (AB, PQ)^{-1} = \frac{1}{(AB, PQ)}\]
where \(P, Q\) are obtained as follows: for the unique P-line \(\lambda (= \ell_P\) or \(\gamma_P\)) through \(A, B\), \(\ell\), resp. \(\gamma\), meets \(\Gamma\) (in \(\Pi_F\)) at \(P, Q\), and the labelling is chosen so that \(P\) is closer to \(A\) than to \(B\).

Why don’t we define \(\mu(AB)\), without inversion, by \(\mu(AB) = (AB, PQ)\) (\(P, Q\) as above)?

\textbf{Example.} Let \(A, B\) be distinct P-points on a P-line \(\lambda = \ell_P\), and let \(P, Q\) be defined as before. Then, in \(\Pi_F\), \(A, B \in PQ \setminus \{P, Q\}\), and \(A \ast B \ast Q\). By the solution to the problem on WSH26, if \(A\) is fixed on \(\ell_P\) (i.e., \(P, Q, A\) are fixed), then in \(\Pi_F\):
- \(A \ast B \ast Q\) if and only if \(0 < (AB, PQ) < 1\), and
- as \(0 < k := (AB, PQ) < 1\) increases, the length of \(PB = \frac{PA}{PA + k \cdot AQ} \cdot PQ\) decreases (and hence so does the length of \(AB\)).

\textbf{Definition.} Two P-segments \(\overrightarrow{AB}^P\) and \(\overrightarrow{A'B'}^P\) are \textit{P-congruent}, denoted \(\overrightarrow{AB}^P \cong_P \overrightarrow{A'B'}^P\), if \(\mu(AB) = \mu(A'B')\).
Lemma.
(1) $\mu(AB) = \mu(BA)$ for any distinct P-points A, B.

(C2) and (C3) Hold in the P-Model
Lemma.
(1) \(\mu(AB) = \mu(BA) \) for any distinct P-points \(A, B \).
(2) \(\mu(AB) > 1 \) for any distinct P-points \(A, B \).
(C2) and (C3) Hold in the P-Model

Lemma.
(1) $\mu(AB) = \mu(BA)$ for any distinct P-points A, B.
(2) $\mu(AB) > 1$ for any distinct P-points A, B.
(3) μ behaves like a ‘multiplicative distance function’, i.e., if A, B, C are P-points such that $A \triangleright_P B \triangleright_P C$, then
 \[\mu(AB) \cdot \mu(BC) = \mu(AC). \]
Lemma.
(1) $\mu(AB) = \mu(BA)$ for any distinct P-points A, B.
(2) $\mu(AB) > 1$ for any distinct P-points A, B.
(3) μ behaves like a ‘multiplicative distance function’, i.e.,
if A, B, C are P-points such that $A \ast_p B \ast_p C$, then
$$\mu(AB) \cdot \mu(BC) = \mu(AC).$$

Proof. (1) $\mu(AB) = (AB, PQ)^{-1} = \frac{AQ}{AP} \cdot \frac{BP}{BQ} = (BA, QP)^{-1} = \mu(BA)$.

(C2) and (C3) Hold in the P-Model

The Poincaré Model

MATH 3210: Euclidean and Non-Euclidean Geometry
(C2) and (C3) Hold in the P-Model

Lemma.
(1) \(\mu(AB) = \mu(BA) \) for any distinct P-points \(A, B \).
(2) \(\mu(AB) > 1 \) for any distinct P-points \(A, B \).
(3) \(\mu \) behaves like a ‘multiplicative distance function’, i.e., if \(A, B, C \) are P-points such that \(A \neq_P B \neq_P C \), then
\[
\mu(AB) \cdot \mu(BC) = \mu(AC).
\]

Proof. (1) \(\mu(AB) = (AB, PQ)^{-1} = \frac{AQ}{AP} \cdot \frac{BP}{BQ} = (BA, QP)^{-1} = \mu(BA) \).
(2) \(\mu(AB) = \frac{AQ}{AP} \cdot \frac{BP}{BQ} > 1 \) because \(AP < BP, BQ < AQ \).
Lemma.

(1) \(\mu(AB) = \mu(BA) \) for any distinct P-points \(A, B \).
(2) \(\mu(AB) > 1 \) for any distinct P-points \(A, B \).
(3) \(\mu \) behaves like a ‘multiplicative distance function’, i.e., if \(A, B, C \) are P-points such that \(A \sim P B \sim P C \), then
\[
\mu(AB) \cdot \mu(BC) = \mu(AC).
\]

Proof.

(1) \(\mu(AB) = (AB, PQ)^{-1} = \frac{AQ}{AP} \cdot \frac{BP}{BQ} = (BA, QP)^{-1} = \mu(BA) \).
(2) \(\mu(AB) = \frac{AQ}{AP} \cdot \frac{BP}{BQ} > 1 \) because \(AP < BP, BQ < AQ \).
(3) \(\mu(AB) \cdot \mu(BC) = (AB, PQ)^{-1} \cdot (BC, PQ)^{-1} \)
\[
= \left(\frac{AQ}{AP} \cdot \frac{BP}{BQ} \right) \cdot \left(\frac{BQ}{BP} \cdot \frac{CP}{CQ} \right) = \frac{AQ}{AP} \cdot \frac{CP}{CQ} = (AC, PQ)^{-1} = \mu(AC).\]
Lemma.
(1) \(\mu(AB) = \mu(BA) \) for any distinct P-points \(A, B \).
(2) \(\mu(AB) > 1 \) for any distinct P-points \(A, B \).
(3) \(\mu \) behaves like a ‘multiplicative distance function’, i.e., if \(A, B, C \) are P-points such that \(A \ast_P B \ast_P C \), then

\[
\mu(AB) \cdot \mu(BC) = \mu(AC).
\]

Proof. (1) \(\mu(AB) = (AB, PQ)^{-1} = \frac{AQ}{AP} \cdot \frac{BP}{BQ} = (BA, QP)^{-1} = \mu(BA) \).
(2) \(\mu(AB) = \frac{AQ}{AP} \cdot \frac{BP}{BQ} > 1 \) because \(AP < BP, BQ < AQ \).
(3) \(\mu(AB) \cdot \mu(BC) = (AB, PQ)^{-1} \cdot (BC, PQ)^{-1} \)

\[
= (\frac{AQ}{AP} \cdot \frac{BP}{BQ}) \cdot (\frac{BQ}{BP} \cdot \frac{CP}{CQ}) = \frac{AQ}{AP} \cdot \frac{CP}{CQ} = (AC, PQ)^{-1} = \mu(AC).
\]

The Definition of \(\cong_P \) (in terms of \(\mu \)) and the Lemma above immediately imply that
Lemma.

1. \(\mu(AB) = \mu(BA) \) for any distinct P-points \(A, B \).
2. \(\mu(AB) > 1 \) for any distinct P-points \(A, B \).
3. \(\mu \) behaves like a ‘multiplicative distance function’, i.e., if \(A, B, C \) are P-points such that \(A \neq P \) and \(B \neq P \), then
 \[\mu(AB) \cdot \mu(BC) = \mu(AC). \]

Proof. (1) \(\mu(AB) = (AB, PQ)^{-1} = \frac{AQ}{AP} \cdot \frac{BP}{BQ} = (BA, QP)^{-1} = \mu(BA). \)

(2) \(\mu(AB) = \frac{AQ}{AP} \cdot \frac{BP}{BQ} > 1 \) because \(AP < BP, BQ < AQ \).

(3) \(\mu(AB) \cdot \mu(BC) = (AB, PQ)^{-1} \cdot (BC, PQ)^{-1} \)
 \[= \left(\frac{AQ}{AP} \cdot \frac{BP}{BQ} \right) \cdot \left(\frac{BQ}{BP} \cdot \frac{CP}{CQ} \right) = \frac{AQ}{AP} \cdot \frac{CP}{CQ} = (AC, PQ)^{-1} = \mu(AC). \]

The Definition of \(\cong_P \) (in terms of \(\mu \)) and the Lemma above immediately imply that

(C2) holds: If \(AB \cong_P CD \) and \(AB \cong_P EF \), then \(CD \cong_P EF \).

Also, every P-segment is P-congruent to itself.
(C2) and (C3) Hold in the P-Model

Lemma.
(1) $\mu(AB) = \mu(BA)$ for any distinct P-points A, B.
(2) $\mu(AB) > 1$ for any distinct P-points A, B.
(3) μ behaves like a ‘multiplicative distance function’, i.e., if A, B, C are P-points such that $A \ast_P B \ast_P C$, then

$$\mu(AB) \cdot \mu(BC) = \mu(AC).$$

Proof. (1) $\mu(AB) = (AB, PQ)^{-1} = \frac{AQ}{AP} \cdot \frac{BP}{BQ} = (BA, QP)^{-1} = \mu(BA)$.
(2) $\mu(AB) = \frac{AQ}{AP} \cdot \frac{BP}{BQ} > 1$ because $AP < BP, BQ < AQ$.
(3) $\mu(AB) \cdot \mu(BC) = (AB, PQ)^{-1} \cdot (BC, PQ)^{-1}$

$$= \left(\frac{AQ}{AP} \cdot \frac{BP}{BQ} \right) \cdot \left(\frac{BQ}{BP} \cdot \frac{CP}{CQ} \right) = \frac{AQ}{AP} \cdot \frac{CP}{CQ} = (AC, PQ)^{-1} = \mu(AC).$$

The Definition of \cong_P (in terms of μ) and the Lemma above immediately imply that

(C2) holds: If $\overline{AB}^P \cong_P \overline{CD}^P$ and $\overline{AB}^P \cong_P \overline{EF}^P$, then $\overline{CD}^P \cong_P \overline{EF}^P$.

Also, every P-segment is P-congruent to itself.

(C3) holds: If A, B, C and A', B', C' are P-points s.t. $A \ast_P B \ast_P C, A' \ast_P B' \ast_P C'$, $\overline{AB}^P \cong_P \overline{A'B'}^P, \overline{BC}^P \cong_P \overline{B'C'}^P$, then $\overline{AC}^P \cong_P \overline{A'C'}^P$.

The Poincaré Model
Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F.

It follows easily from the Definition that (C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \sim_P = \beta_P$ and $\alpha_P \sim_P = \beta'_P$, then $\beta_P \sim_P = \beta'_P$. Also, any P-angle is P-congruent to itself.

(C4) holds: For any P-angle α_P, for any P-ray $\overrightarrow{DF_P}$, and for each P-side of the P-line $\lambda = DF_P$ there exists a unique P-ray $\overrightarrow{DE_P}$ on the given P-side of λ such that $\alpha_P \sim_P = \angle_P EDF_P$.

Idea of Proof. In Π_F:
- \exists unique ray on the given side which forms angle α with the tangent ray to $\overrightarrow{DF_P}$.
- \exists unique circle γ tangent to this ray, and passing through D and $D' = \rho(\gamma, D)$.

This yields the unique P-ray $\overrightarrow{DE_P}$ on γ_P satisfying the requirements.
Definition. Two P-angles are P-congruent if the angles formed by their tangent rays are congruent in Π_F.

It follows easily from the definition that (C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \sim P \beta_P$ and $\alpha_P \sim P \beta'_P$, then $\beta_P \sim P \beta'_P$. Also, any P-angle is P-congruent to itself.

(C4) holds: For any P-angle α_P, for any P-ray \vec{DF}_P, and for each P-side of the P-line $\lambda = DF_P$ there exists a unique P-ray \vec{DE}_P on the given P-side of λ such that $\alpha_P \sim P \angle PEDF$.

Idea of Proof. In Π_F:

- \exists unique ray on the given side which forms angle α with the tangent ray to \vec{DF}_P.
- \exists unique circle γ tangent to this ray, and passing through D and $D' = \rho(\gamma(D))$.

This yields the unique P-ray \vec{DE}_P on γ_P satisfying the requirements.
Definition. Two P-angles are \textit{P-congruent} if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB} lying on a P-line ℓ_P is \overrightarrow{AB}.)
Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB}^P lying on a P-line ℓ_P is \overrightarrow{AB}.)

It follows easily from the Definition that

(C4) holds: For any P-angle α_P, for any P-ray \overrightarrow{DF}^P, and for each P-side of the P-line $\lambda = \overrightarrow{DF}^P$ there exists a unique P-ray \overrightarrow{DE}^P on the given P-side of λ such that $\alpha_P \sim_P \angle PEDF$.

Idea of Proof. In Π_F:

- \exists unique ray on the given side which forms angle α with the tangent ray to \overrightarrow{DF}^P.
- \exists unique circle γ tangent to this ray, and passing through D and $D' = \rho \Gamma(D)$.

This yields the unique P-ray \overrightarrow{DE}^P on γ satisfying the requirements.
Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB} lying on a P-line ℓ_P is \overrightarrow{AB}.)

It follows easily from the Definition that

(C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \cong_P \beta_P$ and $\alpha_P \cong_P \beta'_P$, then $\beta_P \cong_P \beta'_P$. Also, any P-angle is P-congruent to itself.
Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB}^P lying on a P-line ℓ_P is \overrightarrow{AB}.)

It follows easily from the Definition that

(C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \cong_P \beta_P$ and $\alpha_P \cong_P \beta'_P$, then $\beta_P \cong_P \beta'_P$. Also, any P-angle is P-congruent to itself.

(C4) holds: For any P-angle α_P, for any P-ray \overrightarrow{DF}^P, and for each P-side of the P-line $\lambda = DF^P$.
Definition. Two \(P \)-angles are \emph{\(P \)-congruent} if the angles formed by their tangent rays are congruent in \(\Pi_F \). (The tangent ray of a \(P \)-ray \(\overrightarrow{AB} \) lying on a \(P \)-line \(\ell_P \) is \(\overrightarrow{AB} \).)

It follows easily from the Definition that

\textbf{(C5) holds:} For any three \(P \)-angles \(\alpha_P, \beta_P, \beta_P' \), if \(\alpha_P \cong_P \beta_P \) and \(\alpha_P \cong_P \beta_P' \), then \(\beta_P \cong_P \beta_P' \). Also, any \(P \)-angle is \(P \)-congruent to itself.

\textbf{(C4) holds:} For any \(P \)-angle \(\alpha_P \), for any \(P \)-ray \(\overrightarrow{DF} \), and for each \(P \)-side of the \(P \)-line \(\lambda = DF_P \) there exists a unique \(P \)-ray \(\overrightarrow{DE} \) on the given \(P \)-side of \(\lambda \) such that \(\alpha_P \cong_P \angle_P EDF \).
Definition of Congruence for Angles; (C4) and (C5) Hold

Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB} lying on a P-line l_P is \overrightarrow{AB}.)

It follows easily from the Definition that

(C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \cong_P \beta_P$ and $\alpha_P \cong_P \beta'_P$, then $\beta_P \cong_P \beta'_P$. Also, any P-angle is P-congruent to itself.

(C4) holds: For any P-angle α_P, for any P-ray \overrightarrow{DF}, and for each P-side of the P-line $\lambda = DF^P$ there exists a unique P-ray \overrightarrow{DE} on the given P-side of λ such that $\alpha_P \cong_P \angle_P EDF$.

Idea of Proof. In Π_F:

- \exists unique ray on the given side which forms angle α with the tangent ray to \overrightarrow{DF}.
Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB} lying on a P-line ℓ_P is \overrightarrow{AB}.)

It follows easily from the Definition that

(C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \cong \beta_P$ and $\alpha_P \cong \beta'_P$, then $\beta_P \cong \beta'_P$. Also, any P-angle is P-congruent to itself.

(C4) holds: For any P-angle α_P, for any P-ray \overrightarrow{DF}, and for each P-side of the P-line $\lambda = DF^P$ there exists a unique P-ray \overrightarrow{DE} on the given P-side of λ such that $\alpha_P \cong \angle_P EDF$.

Idea of Proof. In Π_F:
- \exists unique ray on the given side which forms angle α with the tangent ray to \overrightarrow{DF}.
- \exists unique circle γ tangent to this ray, and passing through D and $D' = \rho_F(D)$.
Definition. Two P-angles are *P-congruent* if the angles formed by their tangent rays are congruent in Π_F. (The tangent ray of a P-ray \overrightarrow{AB} lying on a P-line ℓ_P is \overrightarrow{AB}.)

It follows easily from the Definition that

(C5) holds: For any three P-angles $\alpha_P, \beta_P, \beta'_P$, if $\alpha_P \cong_P \beta_P$ and $\alpha_P \cong_P \beta'_P$, then $\beta_P \cong_P \beta'_P$. Also, any P-angle is P-congruent to itself.

(C4) holds: For any P-angle α_P, for any P-ray \overrightarrow{DF}, and for each P-side of the P-line $\lambda = DF^P$ there exists a unique P-ray \overrightarrow{DE} on the given P-side of λ such that $\alpha_P \cong_P \angle_P EDF$.

Idea of Proof. In Π_F:

- \exists unique ray on the given side which forms angle α with the tangent ray to \overrightarrow{DF}.
- \exists unique circle γ tangent to this ray, and passing through D and $D' = \rho_\Gamma(D)$.

This yields the unique P-ray \overrightarrow{DE} on γ_P satisfying the requirements.
Problem. Let Γ be the circle with equation $x^2 + y^2 = 1$ in Π_R.
In the Poincaré model for Γ, consider the P-points
$A = (0, 0)$ and $B = (b, 0)$ ($0 < b < 1$).

(1) Find $\mu(AB)$.

(2) Find a P-point M on \overline{AB} such that $\overline{AM} \cong_P \overline{MB}$ (a P-midpoint of \overline{AB}).