HOMEWORK 1

Problems:

1. Let $\Gamma \cup \{\varphi, \psi\}$ be a set of \mathcal{L}_C -formulas.

- (i) Show that the following conditions on φ and ψ are equivalent:
 - (a) $\Gamma \cup \{\varphi\} \vdash \psi$ and $\Gamma \cup \{\psi\} \vdash \varphi$;
 - (b) $\Gamma \vdash \varphi \leftrightarrow \psi$.
- (ii) Prove that for any variables x, y,
 - $\forall x \forall y \varphi$ and $\forall y \forall x \varphi$ are provably equivalent, and
 - $\exists x \exists y \varphi$ and $\exists y \exists x \varphi$ are provably equivalent.

Proof. To prove (i) first, assume that $\Gamma \cup \{\varphi\} \vdash \psi$ and $\Gamma \cup \{\psi\} \vdash \varphi$. The Deduction Theorem tells us that $\Gamma \vdash \varphi \rightarrow \psi$ and $\Gamma \vdash \psi \rightarrow \varphi$. For brevity, we will write $\alpha \equiv \varphi \rightarrow \psi$ and $\beta \equiv \psi \rightarrow \varphi$. We show that $\Gamma \cup \{\alpha, \beta\} \vdash \alpha \land \beta$.

- (1) $\alpha \to (\beta \to (\alpha \land \beta))$ Ax1
- (2) α hypothesis
- (3) β hypothesis
- (4) $\beta \to (\alpha \land \beta)$ MP(1)(2)
- (5) $\alpha \wedge \beta \quad MP(3)(4)$

Let $\Delta = \{\alpha, \beta\}$. We have $\Gamma \cup \Delta \vdash \alpha \land \beta$ and $\Gamma \vdash \delta$ for every $\delta \in \Delta$. So by Metatheorem(ii) we have $\Gamma \vdash \alpha \land \beta$. Remember that $\alpha \land \beta$ is a short notation for $(\varphi \rightarrow \psi) \land (\psi \rightarrow \varphi)$, which in turn is abbreviated as $\varphi \leftrightarrow \psi$.

Now we prove the converse. Assume that $\Gamma \vdash (\varphi \to \psi) \land (\psi \to \varphi)$. Since $\Gamma \subset \Gamma \cup \{\varphi\}$, by Metatheorem(i), we have $\Gamma \cup \{\varphi\} \vdash (\varphi \to \psi) \land (\psi \to \varphi)$. To conclude that $\Gamma \cup \{\varphi\} \vdash \psi$, it suffices to verify (by Metatheorems(i)-(ii)) that

$$\{\varphi, (\varphi \to \psi) \land (\psi \to \varphi)\} \vdash \psi,$$

which can be done as follows.

(1)
$$((\varphi \to \psi) \land (\psi \to \varphi))$$
 hypothesis
(2) $((\varphi \to \psi) \land (\psi \to \varphi)) \to (\varphi \to \psi)$ (Ax1)
(3) $\varphi \to \psi$ MP(1)(2)
(4) φ hypothesis
(5) ψ MP(3)(4)

A similar proof, using the tautology $((\varphi \to \psi) \land (\psi \to \varphi)) \to (\psi \to \varphi)$, gives us $\Gamma \cup \{\psi\} \vdash \varphi$.

We now prove the statements in (ii). By (i), we have that it suffices to show that $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$ and $\forall y \forall x \varphi \vdash \forall x \forall y \varphi$. We will show $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$, as the arguments are symmetric. We first want to explain that $\operatorname{Subf}_x^x(\theta) \equiv \theta$ for all formulas θ and variables x. This is because any free occurrence of x in θ is being substituted with x, and so the formulas read the same. Therefore, we will write $\forall x \theta \to \theta$ for any axiom of the form $\forall x \theta \to \operatorname{Subf}_x^x(\theta)$ in axiom group (Ax2). Note also that substituting x for x will always satisfy the restriction on (Ax2), since x is a variable such that no quantifier $\forall x$ in θ can have a free occurrence of x in its scope. We now show that $\forall x \forall y \varphi \vdash \varphi$

> (1) $\forall x \forall y \varphi \rightarrow \forall y \varphi$ (Ax2) (2) $\forall x \forall y \varphi$ hypothesis (3) $\forall y \varphi$ MP(1)(2) (4) $\forall y \varphi \rightarrow \varphi$ (Ax2) (5) φ MP(4)(5)

We have that x has no free occurrence in $\forall x \forall y \varphi$, so by Metatheorem(iv) we have $\forall x \forall y \varphi \vdash \forall x \varphi$. Applying the metatheorem again gives the desired result $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$.

We know that $\exists x\varphi$ is an abbreviation for $\neg \forall x \neg \varphi$. We then have $\exists x \exists y\varphi \equiv \neg \forall x(\neg \exists y\varphi) \equiv \neg \forall x(\neg \neg \forall y \neg \varphi)$ and $\exists y \exists x\varphi \equiv \neg \forall y(\neg \neg \forall x \neg \varphi)$. We then want to show

(*)
$$\neg \forall x (\neg \neg \forall y \neg \varphi) \vdash \neg \forall y (\neg \neg \forall x \neg \varphi).$$

By Metatheorem (v), it suffices to show

$$\forall y(\neg\neg\forall x\neg\varphi) \vdash \neg\neg\forall x(\neg\neg\forall y\neg\varphi).$$

We first show that $\forall y(\neg \neg \forall x \neg \varphi) \vdash \neg \varphi$.

(1)
$$\forall y(\neg\neg\forall x\neg\varphi)$$
 hypothesis
(2) $(\forall y(\neg\neg\forall x\neg\varphi)) \rightarrow \neg\neg\forall x\neg\varphi$ (Ax2)
(3) $\neg\neg\forall x\neg\varphi$ MP(1)(2)
(4) $\neg\neg\forall x\neg\varphi \rightarrow \forall x\neg\varphi$ (Ax1)
(5) $\forall x\neg\varphi$ MP(3)(4)
(6) $\forall x\neg\varphi \rightarrow \neg\varphi$ (Ax2)
(7) $\neg\varphi$ MP(5)(6)

There is no free occurrence of y in $\forall y(\neg \neg \forall x \neg \varphi)$, so by Metathoerem(iv), we have $\forall y(\neg \neg \forall x \neg \varphi) \vdash \forall y \neg \varphi$.

We need a small result here that for any formula α we have $\alpha \vdash \neg \neg \alpha$.

(1) α hypothesis (2) $\alpha \rightarrow \neg \neg \alpha$ (Ax1) (3) $\neg \neg \alpha$ MP(1)(2)

This shows that $\forall y \neg \varphi \vdash \neg \neg \forall y \neg \varphi$. By Metatheorem(i) we have $\{\forall y \neg \varphi\} \cup \{\forall y (\neg \neg \forall x \neg \varphi)\} \vdash \neg \neg \forall y \neg \varphi$. We have also that $\forall y (\neg \neg \forall x \neg \varphi) \vdash \forall y \neg \varphi$ and so by Metatheorem(ii) we have $\forall y (\neg \neg \forall x \neg \varphi) \vdash \neg \neg \forall y \neg \varphi$. There is no free occurrence of x in $\forall y (\neg \neg \forall x \neg \varphi)$, so

(**)

by Metatheorem(iv), we have that $\forall y \neg \neg \forall x \neg \varphi \vdash \forall x \neg \neg \forall y \neg \varphi$. We can argue similarly to show (**). Since (*) follows from (**), and what we wanted to prove was an abbreviation for (*), we have shown that $\exists x \exists y \varphi \vdash \exists y \exists x \varphi$. The proof of $\exists y \exists x \vdash \exists x \exists y \varphi$ follows similarly.

3