Set Theory (MATH 6730)

Mateo Muro

HOMEWORK 1

Problems:

1. Let $\Gamma \cup\{\varphi, \psi\}$ be a set of \mathcal{L}_{C}-formulas.
(i) Show that the following conditions on φ and ψ are equivalent:
(a) $\Gamma \cup\{\varphi\} \vdash \psi$ and $\Gamma \cup\{\psi\} \vdash \varphi$;
(b) $\Gamma \vdash \varphi \leftrightarrow \psi$.
(ii) Prove that for any variables x, y,

- $\forall x \forall y \varphi$ and $\forall y \forall x \varphi$ are provably equivalent, and
- $\exists x \exists y \varphi$ and $\exists y \exists x \varphi$ are provably equivalent.

Proof. To prove (i) first, assume that $\Gamma \cup\{\varphi\} \vdash \psi$ and $\Gamma \cup\{\psi\} \vdash \varphi$. The Deduction Theorem tells us that $\Gamma \vdash \varphi \rightarrow \psi$ and $\Gamma \vdash \psi \rightarrow \varphi$. For brevity, we will write $\alpha \equiv \varphi \rightarrow \psi$ and $\beta \equiv \psi \rightarrow \varphi$. We show that $\Gamma \cup\{\alpha, \beta\} \vdash \alpha \wedge \beta$.

$$
\begin{aligned}
& \text { (1) } \alpha \rightarrow(\beta \rightarrow(\alpha \wedge \beta)) \mathrm{Ax} 1 \\
& \text { (2) } \alpha \text { hypothesis } \\
& \text { (3) } \beta \text { hypothesis } \\
& \text { (4) } \beta \rightarrow(\alpha \wedge \beta) \operatorname{MP}(1)(2) \\
& \text { (5) } \alpha \wedge \beta \quad \operatorname{MP}(3)(4)
\end{aligned}
$$

Let $\Delta=\{\alpha, \beta\}$. We have $\Gamma \cup \Delta \vdash \alpha \wedge \beta$ and $\Gamma \vdash \delta$ for every $\delta \in \Delta$. So by Metatheorem(ii) we have $\Gamma \vdash \alpha \wedge \beta$. Remember that $\alpha \wedge \beta$ is a short notation for $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$, which in turn is abbreviated as $\varphi \leftrightarrow \psi$.

Now we prove the converse. Assume that $\Gamma \vdash(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$. Since $\Gamma \subset$ $\Gamma \cup\{\varphi\}$, by Metatheorem(i), we have $\Gamma \cup\{\varphi\} \vdash(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$. To conclude that $\Gamma \cup\{\varphi\} \vdash \psi$, it suffices to verify (by Metatheorems(i)-(ii)) that

$$
\{\varphi,(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)\} \vdash \psi
$$

which can be done as follows.
(1) $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi))$ hypothesis
(2) $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)) \rightarrow(\varphi \rightarrow \psi) \quad(\operatorname{Ax} 1)$
(3) $\varphi \rightarrow \psi \quad \operatorname{MP}(1)(2)$
(4) φ hypothesis
(5) $\psi \quad \mathrm{MP}(3)(4)$

A similar proof, using the tautology $((\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)) \rightarrow(\psi \rightarrow \varphi)$, gives us $\Gamma \cup\{\psi\} \vdash \varphi$.

We now prove the statements in (ii). By (i), we have that it suffices to show that $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$ and $\forall y \forall x \varphi \vdash \forall x \forall y \varphi$. We will show $\forall x \forall y \varphi \vdash \forall y \forall x \varphi$, as the arguments are symmetric. We first want to explain that $\operatorname{Subf}_{x}^{x}(\theta) \equiv \theta$ for all formulas θ and variables x. This is because any free occurrence of x in θ is being substituted with x, and so the formulas read the same. Therefore, we will write $\forall x \theta \rightarrow \theta$ for any axiom of the form $\forall x \theta \rightarrow \operatorname{Subf}_{x}^{x}(\theta)$ in axiom group (Ax2). Note also that substituting x for x will always satisfy the restriction on (Ax2), since x is a variable such that no quantifier $\forall x$ in θ can have a free occurrence of x in its scope. We now show that $\forall x \forall y \varphi \vdash \varphi$

$$
\begin{aligned}
& \text { (1) } \forall x \forall y \varphi \rightarrow \forall y \varphi \quad(\mathrm{Ax} 2) \\
& \text { (2) } \forall x \forall y \varphi \text { hypothesis } \\
& \text { (3) } \forall y \varphi \quad \operatorname{MP}(1)(2) \\
& \text { (4) } \forall y \varphi \rightarrow \varphi \quad \text { (Ax2) } \\
& \text { (5) } \varphi \quad \operatorname{MP}(4)(5)
\end{aligned}
$$

We have that x has no free occurrence in $\forall x \forall y \varphi$, so by Metatheorem(iv) we have $\forall x \forall y \varphi \vdash \forall x \varphi$. Applying the metatheorem again gives the desired result $\forall x \forall y \varphi \vdash$ $\forall y \forall x \varphi$.

We know that $\exists x \varphi$ is an abbreviation for $\neg \forall x \neg \varphi$. We then have $\exists x \exists y \varphi \equiv$ $\neg \forall x(\neg \exists y \varphi) \equiv \neg \forall x(\neg \neg \forall y \neg \varphi)$ and $\exists y \exists x \varphi \equiv \neg \forall y(\neg \neg \forall x \neg \varphi)$. We then want to show

$$
\begin{equation*}
\neg \forall x(\neg \neg \forall y \neg \varphi) \vdash \neg \forall y(\neg \neg \forall x \neg \varphi) . \tag{*}
\end{equation*}
$$

By Metatheorem (v), it suffices to show

$$
\begin{equation*}
\forall y(\neg \neg \forall x \neg \varphi) \vdash \neg \neg \forall x(\neg \neg \forall y \neg \varphi) . \tag{**}
\end{equation*}
$$

We first show that $\forall y(\neg \neg \forall x \neg \varphi) \vdash \neg \varphi$.
(1) $\forall y(\neg \neg \forall x \neg \varphi) \quad$ hypothesis
(2) $(\forall y(\neg \neg \forall x \neg \varphi)) \rightarrow \neg \neg \forall x \neg \varphi$
(3) $\neg \neg \forall x \neg \varphi \operatorname{MP}(1)(2)$
(4) $\neg \neg \forall x \neg \varphi \rightarrow \forall x \neg \varphi \quad(\mathrm{Ax} 1)$
(5) $\forall x \neg \varphi \quad \operatorname{MP}(3)(4)$
(6) $\forall x \neg \varphi \rightarrow \neg \varphi \quad(\mathrm{Ax} 2)$
(7) $\neg \varphi \quad \operatorname{MP}(5)(6)$

There is no free occurrence of y in $\forall y(\neg \neg \forall x \neg \varphi)$, so by Metathoerem(iv), we have $\forall y(\neg \neg \forall x \neg \varphi) \vdash \forall y \neg \varphi$.
We need a small result here that for any formula α we have $\alpha \vdash \neg \neg \alpha$.

$$
\begin{aligned}
& \text { (1) } \alpha \quad \text { hypothesis } \\
& \text { (2) } \alpha \rightarrow \neg \neg \alpha \quad(\mathrm{Ax} 1) \\
& \text { (3) } \neg \neg \alpha \quad \operatorname{MP}(1)(2)
\end{aligned}
$$

This shows that $\forall y \neg \varphi \vdash \neg \neg \forall y \neg \varphi$. By Metatheorem(i) we have $\{\forall y \neg \varphi\} \cup\{\forall y(\neg \neg \forall x \neg \varphi)\} \vdash$ $\neg \neg \forall y \neg \varphi$. We have also that $\forall y(\neg \neg \forall x \neg \varphi) \vdash \forall y \neg \varphi$ and so by Metatheorem(ii) we have $\forall y(\neg \neg \forall x \neg \varphi) \vdash \neg \neg \forall y \neg \varphi$. There is no free occurrence of x in $\forall y(\neg \neg \forall x \neg \varphi)$, so
by Metatheorem(iv), we have that $\forall y \neg \neg \forall x \neg \varphi \vdash \forall x \neg \neg \forall y \neg \varphi$. We can argue similarly to show $\left({ }^{* *}\right)$. Since $\left({ }^{*}\right)$ follows from $\left({ }^{* *}\right)$, and what we wanted to prove was an abbreviation for $\left(^{*}\right)$, we have shown that $\exists x \exists y \varphi \vdash \exists y \exists x \varphi$. The proof of $\exists y \exists x \vdash \exists x \exists y \varphi$ follows similarly.

