
Set Theory (MATH 6730)
Mateo Muro

HOMEWORK 1

Problems:

1. Let Γ ∪ {ϕ, ψ} be a set of LC-formulas.
(i) Show that the following conditions on ϕ and ψ are equivalent:

(a) Γ ∪ {ϕ} ` ψ and Γ ∪ {ψ} ` ϕ;
(b) Γ ` ϕ ↔ ψ.

(ii) Prove that for any variables x, y,
• ∀x ∀y ϕ and ∀y ∀xϕ are provably equivalent, and
• ∃x ∃y ϕ and ∃y ∃xϕ are provably equivalent.

Proof. To prove (i) first, assume that Γ ∪ {ϕ} ` ψ and Γ ∪ {ψ} ` ϕ. The Deduction
Theorem tells us that Γ ` ϕ → ψ and Γ ` ψ → ϕ. For brevity, we will write
α ≡ ϕ→ ψ and β ≡ ψ → ϕ. We show that Γ ∪ {α, β} ` α ∧ β.

(1) α→ (β → (α ∧ β)) Ax1
(2) α hypothesis
(3) β hypothesis
(4) β → (α ∧ β) MP(1)(2)
(5) α ∧ β MP(3)(4)

Let ∆ = {α, β}. We have Γ ∪ ∆ ` α ∧ β and Γ ` δ for every δ ∈ ∆. So by
Metatheorem(ii) we have Γ ` α ∧ β. Remember that α ∧ β is a short notation for
(ϕ→ ψ) ∧ (ψ → ϕ), which in turn is abbreviated as ϕ ↔ ψ.

Now we prove the converse. Assume that Γ ` (ϕ → ψ) ∧ (ψ → ϕ). Since Γ ⊂
Γ ∪ {ϕ}, by Metatheorem(i), we have Γ ∪ {ϕ} ` (ϕ → ψ) ∧ (ψ → ϕ). To conclude
that Γ ∪ {ϕ} ` ψ, it suffices to verify (by Metatheorems(i)-(ii)) that

{ϕ, (ϕ→ ψ) ∧ (ψ → ϕ)} ` ψ,
which can be done as follows.

(1) ((ϕ→ ψ) ∧ (ψ → ϕ)) hypothesis
(2) ((ϕ→ ψ) ∧ (ψ → ϕ))→ (ϕ→ ψ) (Ax1)
(3) ϕ→ ψ MP(1)(2)
(4) ϕ hypothesis
(5) ψ MP(3)(4)

A similar proof, using the tautology ((ϕ → ψ) ∧ (ψ → ϕ)) → (ψ → ϕ), gives us
Γ ∪ {ψ} ` ϕ.
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We now prove the statements in (ii). By (i), we have that it suffices to show
that ∀x∀yϕ ` ∀y∀xϕ and ∀y∀xϕ ` ∀x∀yϕ. We will show ∀x∀yϕ ` ∀y∀xϕ, as the
arguments are symmetric. We first want to explain that Subf xx(θ) ≡ θ for all formulas
θ and variables x. This is because any free occurrence of x in θ is being substituted
with x, and so the formulas read the same. Therefore, we will write ∀xθ → θ for any
axiom of the form ∀xθ → Subf xx(θ) in axiom group (Ax2). Note also that substituting
x for x will always satisfy the restriction on (Ax2), since x is a variable such that no
quantifier ∀x in θ can have a free occurrence of x in its scope. We now show that
∀x∀yϕ ` ϕ

(1) ∀x∀yϕ→ ∀yϕ (Ax2)
(2) ∀x∀yϕ hypothesis
(3) ∀yϕ MP(1)(2)
(4) ∀yϕ→ ϕ (Ax2)
(5) ϕ MP(4)(5)

We have that x has no free occurrence in ∀x∀yϕ, so by Metatheorem(iv) we have
∀x∀yϕ ` ∀xϕ. Applying the metatheorem again gives the desired result ∀x∀yϕ `
∀y∀xϕ.

We know that ∃xϕ is an abbreviation for ¬∀x¬ϕ. We then have ∃x∃yϕ ≡
¬∀x(¬∃yϕ) ≡ ¬∀x(¬¬∀y¬ϕ) and ∃y∃xϕ ≡ ¬∀y(¬¬∀x¬ϕ). We then want to show

(*) ¬∀x(¬¬∀y¬ϕ) ` ¬∀y(¬¬∀x¬ϕ).

By Metatheorem (v), it suffices to show

(**) ∀y(¬¬∀x¬ϕ) ` ¬¬∀x(¬¬∀y¬ϕ).

We first show that ∀y(¬¬∀x¬ϕ) ` ¬ϕ.

(1) ∀y(¬¬∀x¬ϕ) hypothesis
(2) (∀y(¬¬∀x¬ϕ))→ ¬¬∀x¬ϕ (Ax2)
(3) ¬¬∀x¬ϕ MP(1)(2)
(4) ¬¬∀x¬ϕ→ ∀x¬ϕ (Ax1)
(5) ∀x¬ϕ MP(3)(4)
(6) ∀x¬ϕ→ ¬ϕ (Ax2)
(7) ¬ϕ MP(5)(6)

There is no free occurrence of y in ∀y(¬¬∀x¬ϕ), so by Metathoerem(iv), we have
∀y(¬¬∀x¬ϕ) ` ∀y¬ϕ.
We need a small result here that for any formula α we have α ` ¬¬α.

(1) α hypothesis
(2) α→ ¬¬α (Ax1)
(3) ¬¬α MP(1)(2)

This shows that ∀y¬ϕ ` ¬¬∀y¬ϕ. By Metatheorem(i) we have {∀y¬ϕ}∪{∀y(¬¬∀x¬ϕ)} `
¬¬∀y¬ϕ. We have also that ∀y(¬¬∀x¬ϕ) ` ∀y¬ϕ and so by Metatheorem(ii) we
have ∀y(¬¬∀x¬ϕ) ` ¬¬∀y¬ϕ. There is no free occurrence of x in ∀y(¬¬∀x¬ϕ), so
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by Metatheorem(iv), we have that ∀y¬¬∀x¬ϕ ` ∀x¬¬∀y¬ϕ. We can argue similarly
to show (**). Since (*) follows from (**), and what we wanted to prove was an ab-
breviation for (*), we have shown that ∃x∃yϕ ` ∃y∃xϕ. The proof of ∃y∃x ` ∃x∃yϕ
follows similarly.
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