HOMEWORK 1

RAYMOND BAKER

Formal Proof That $\{C m p r$, Pair $\} \vdash$ Pair\#
Statements Used:

$$
\begin{aligned}
& \text { Pair } \equiv \forall x \forall y \exists z(x \in z \wedge y \in z) \\
& \text { Cmpr }^{p} \equiv \forall x \forall w_{1} \forall w_{2} \exists z \forall t\left(t \in z \leftrightarrow\left(\left(t=w_{1} \vee t=w_{2}\right) \wedge t \in x\right)\right)
\end{aligned}
$$

Premises Used:

$$
\begin{aligned}
& \Gamma=\{C m p r, \text { Pair }\} \\
& \Gamma^{*}=\Gamma \cup\{a \in d \wedge b \in d\} \\
& \Gamma^{* *}=\Gamma^{*} \cup\{\forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d))\} \\
& \Gamma^{\prime}=\Gamma^{* *} \cup\{v \in g\} \\
& \Gamma^{\prime \prime}=\Gamma^{* *} \cup\{v=a\} \\
& \Gamma^{\prime \prime \prime}=\Gamma^{* *} \cup\{v=a \vee v=b\}
\end{aligned}
$$

Proof. Let $\Gamma=\{C m p r$, Pair $\}$, where $C p m r$ is all the axioms in the scheme's form. It follows that $C m p r r^{p} \in\{C m p r, P a i r\}$. To apply generalization of constants, define \mathcal{L}^{\prime} by adding the constant symbols a and b to the signature of \mathcal{L}. Now, in order to apply Existential Instantiation, define $\mathcal{L}^{\prime \prime}$ by adding a constant symbol d to the language \mathcal{L}. Define the set of premises $\Gamma^{*}=\Gamma \cup\{a \in d \wedge b \in d\}$. Taking on one more augmentation of the language and premises, let $\mathcal{L}^{\prime \prime \prime}=\mathcal{L}_{\cup\{g\}}^{\prime \prime}$, where g is a constant not in the signature of $\mathcal{L}^{\prime \prime}$. Let $\Gamma^{* *}=\Gamma^{*} \cup\{\forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d))\}$. Take $\mathcal{L}^{\prime \prime \prime}$ and $\Gamma^{* *}$ to be our language and our set of premises. We will see first what is provable from $\Gamma^{* *}$ in $\mathcal{L}^{\prime \prime \prime}$ and then look to apply Existential Instantiation. We will then repeat the process with Γ^{*} in the language $\mathcal{L}^{\prime \prime}$.

Let v be a variable. We are looking to show

$$
\Gamma^{* *} \vdash \forall v(v \in g \leftrightarrow(v=a \vee v=b))
$$

We will do this with two successive applications of the deduction theorem to conclude that $\Gamma^{* *} \vdash$ $v \in g \rightarrow(v=a \vee v=b)$, as well as the converse of this statement. To begin the first deduction, take as premises $\Gamma^{\prime}=\Gamma^{* *} \cup\{v \in g\}$:

$$
\begin{array}{ll}
\Gamma^{\prime} \vdash \forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d)) \rightarrow(v \in g \leftrightarrow((v=a \vee v=b) \wedge v \in d)) & \text { Ax } 2 \\
\Gamma^{\prime} \vdash \forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d)) & \Gamma^{\prime} \\
\Gamma^{\prime} \vdash v \in g \leftrightarrow((v=a \vee v=b) \wedge v \in d) & \text { MP } 1,2 \\
\Gamma^{\prime} \vdash v \in g & \Gamma^{\prime} \\
\Gamma^{\prime} \vdash(v=a \vee v=b) \wedge v \in d & \text { MP } 3,4 \\
\Gamma^{\prime} \vdash((v=a \vee v=b) \wedge v \in d) \rightarrow(v=a \vee v=b) & \text { Ax } 1 \\
\Gamma^{\prime} \vdash v=a \vee v=b & \text { MP } 5,6
\end{array}
$$

An application of the deduction theorem allows us to conclude that

$$
\begin{equation*}
\Gamma^{* *} \vdash v \in g \rightarrow(v=a \vee v=b) \tag{8}
\end{equation*}
$$

DT

Now, we look to show that $\Gamma^{* *}$ proves the converse of this statement. This will involve two subproofs using the deduction theorem and a few subsequent deductions. Take the premises $\Gamma^{\prime \prime}=\Gamma^{* *} \cup\{a=v\}$:

$$
\begin{array}{ll}
\Gamma^{\prime \prime} \vdash a \in d \wedge b \in d & \Gamma^{\prime \prime} \\
\Gamma^{\prime \prime} \vdash(a \in d \wedge b \in d) \rightarrow a \in d & \text { Ax } 1 \\
\Gamma^{\prime \prime} \vdash a \in d & \text { MP } 9,10 \\
\Gamma^{\prime \prime} \vdash \forall z(z=v \rightarrow(z \in d \rightarrow v \in d)) & \operatorname{Ax} 6 \\
\Gamma^{\prime \prime} \vdash[\forall z(z=v \rightarrow(z \in d \rightarrow v \in d))] \rightarrow[a=v \rightarrow(a \in d \rightarrow v \in d)] & \operatorname{Ax} 2 \\
\Gamma^{\prime \prime} \vdash a=v \rightarrow(a \in d \rightarrow v \in d) & \text { MP } 12,13 \\
\Gamma^{\prime \prime} \vdash a=v & \Gamma^{\prime \prime} \\
\Gamma^{\prime \prime} \vdash v \in d & \text { MP } 15,1] \tag{16}
\end{array}
$$

$\Gamma^{\prime \prime}$
Ax 1

Ax 6
Ax 2
MP 12, 13
$\Gamma^{\prime \prime}$
MP 15, 11, 14

Applying the deduction theorem, we obtain

$$
\begin{equation*}
\Gamma^{* *} \vdash v=a \rightarrow v \in d \tag{17}
\end{equation*}
$$

Repeating the steps 9-16 with the constant symbol b instead of a allows us to conclude that

$$
\begin{equation*}
\Gamma^{* *} \vdash v=b \rightarrow v \in d \tag{18}
\end{equation*}
$$

DT 9*-16*
Now we have

$$
\begin{align*}
& \Gamma^{* *} \vdash[v=a \rightarrow v \in d] \rightarrow[(v=b \rightarrow v \in d) \rightarrow((v=a \vee v=b) \rightarrow v \in d)] \tag{19}\\
& \Gamma^{* *} \vdash(v=a \vee v=b) \rightarrow v \in d \tag{20}
\end{align*}
$$

To finally prove the desired converse, take the set of premises $\Gamma^{\prime \prime \prime}=\Gamma^{* *} \cup\{v=a \vee v=b\}$
(21) $\Gamma^{\prime \prime \prime} \vdash v=a \vee v=b$
$\Gamma^{\prime \prime \prime}$
(22) $\Gamma^{\prime \prime \prime} \vdash v \in d$

MP 21, 20
(23) $\Gamma^{\prime \prime \prime} \vdash(v=a \vee v=b) \rightarrow(v \in d \rightarrow((v=a \vee v=b) \wedge v \in d))$

Ax 1
(24) $\Gamma^{\prime \prime \prime} \vdash(v=a \vee v=b) \wedge v \in d$

MP 21,22,23
(25) $\Gamma^{\prime \prime \prime} \vdash \forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d))$
$\Gamma^{\prime \prime \prime}$
(26) $\Gamma^{\prime \prime \prime} \vdash \forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d)) \rightarrow(v \in g \leftrightarrow((v=a \vee v=b) \wedge v \in d)) \quad$ Ax 2
(27) $\Gamma^{\prime \prime} \vdash v \in g \leftrightarrow((v=a \vee v=b) \wedge v \in d)$

MP 25, 26
(28) $\Gamma^{\prime \prime} \vdash[v \in g \leftrightarrow((v=a \vee v=b) \wedge v \in d)] \rightarrow[((v=a \vee v=b) \wedge v \in d) \rightarrow v \in g]$

Ax 1
(29) $\Gamma^{\prime \prime} \vdash((v=a \vee v=b) \wedge v \in d) \rightarrow v \in g$

MP 27, 28
(30) $\Gamma^{\prime \prime} \vdash v \in g$

MP 24, 29
Now, discharging our added premise and applying the deduction theorem, we have that

$$
\begin{align*}
& \Gamma^{* *} \vdash(v=a \vee v=b) \rightarrow v \in g \tag{31}\\
& \Gamma^{* *} \vdash[(v=a \vee v=b) \rightarrow v \in g] \rightarrow[(v \in g \rightarrow(v=a \vee v=b)) \tag{32}\\
& \quad \rightarrow(v \in g \leftrightarrow(v=a \vee v=b))] \tag{33}\\
& \Gamma^{* *} \vdash(v \in g \leftrightarrow(v=a \vee v=b)) \tag{34}
\end{align*}
$$

DT 21-30

Ax 1
MP 31, 8, 32/33

Since v is a variable not free in any $\gamma \in \Gamma^{* *}$, as every γ is a sentence, it follows from the generalization theorem that,

$$
\begin{equation*}
\Gamma^{* *} \vdash \forall v(v \in g \leftrightarrow(v=a \vee v=b)) \tag{35}
\end{equation*}
$$

GT

Now we look to establish the existential portion of our statement:
(36) $\Gamma^{* *} \vdash[\forall z \neg(\forall v(v \in z \leftrightarrow(v=a \vee v=b)))] \rightarrow[\neg \forall v(v \in g \leftrightarrow(v=a \vee v=b))]$

Ax 2
(37) $\Gamma^{* *} \vdash[[\forall z \neg \forall v(v \in z \leftrightarrow(v=a \vee v=b))] \rightarrow[\neg \forall v(v \in g \leftrightarrow(v=a \vee v=b))]]$
$\rightarrow[[\neg \neg \forall v(v \in g \leftrightarrow(v=a \vee v=b))] \rightarrow[\neg \forall z \neg \forall v(v \in z \leftrightarrow(v=a \vee v=b))]$ Ax 1
(39) $\Gamma^{* *} \vdash[\neg \neg \forall v(v \in g \leftrightarrow(v=a \vee v=b))] \rightarrow[\neg \forall z \neg \forall v(v \in z \leftrightarrow(v=a \vee v=b))]$

MP 36, 37/38
(40) $\Gamma^{* *} \vdash \forall v(v \in g \leftrightarrow(v=a \vee v=b)) \rightarrow \neg \neg \forall v(v \in g \leftrightarrow(v=a \vee v=b))$

Ax 1
(41) $\Gamma^{* *} \vdash \neg \neg \forall v(v \in g \leftrightarrow(v=a \vee v=b))$

MP 35, 40
(42) $\Gamma^{* *} \vdash \neg \forall z \neg(\forall v(v \in z \leftrightarrow(v=a \vee v=b)))$

MP 41, 39
But, an abbreviation for the above is just

$$
\begin{equation*}
\Gamma^{* *} \vdash \exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b)) \tag{43}
\end{equation*}
$$

Now, we have just shown that

$$
\Gamma^{*} \cup\{\forall t(t \in g \leftrightarrow((t=a \vee t=b) \wedge t \in d))\} \vdash \exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b))
$$

in the language $\mathcal{L}^{\prime \prime \prime}$. Since d is not in the signature of $\mathcal{L}^{\prime \prime}$, we may apply the meta-theorem Existential Instantiation, allowing us to conclude that $\Gamma^{*} \cup\{\exists z \forall t(t \in z \leftrightarrow((t=a \vee t=b) \wedge t \in d))\} \vdash \exists z \forall v(v \in$ $z \leftrightarrow(v=a \vee v=b))$ in the language $\mathcal{L}^{\prime \prime}$. Thus, the deduction theorem implies that

$$
\begin{equation*}
\Gamma^{*} \vdash[\exists z \forall t(t \in z \leftrightarrow((t=a \vee t=b) \wedge t \in d))] \rightarrow[\exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b))] \tag{44}
\end{equation*}
$$

Now apply (Ax2) to $C m p r^{p}$ with the substitutions d for x, a for w_{1}, and b for w_{2}. This gives us

$$
\begin{array}{ll}
\left.\Gamma^{*} \vdash \forall x \forall w_{1} \forall w_{2} \exists z \forall t\left(t \in z \leftrightarrow\left(\left(t=w_{1} \vee t=w_{2}\right) \wedge t \in x\right)\right)\right] & \Gamma^{*} \\
\left.\Gamma^{*} \vdash \forall x \forall w_{1} \forall w_{2} \exists z \forall t\left(t \in z \leftrightarrow\left(\left(t=w_{1} \vee t=w_{2}\right) \wedge t \in x\right)\right)\right] & \\
\quad \rightarrow[\exists z \forall t(t \in z \leftrightarrow((t=a \vee t=b) \wedge t \in d))] & \text { Ax } 2 \\
\Gamma^{*} \vdash \exists z \forall t(t \in z \leftrightarrow((t=a \vee t=b) \wedge t \in d)) & \text { MP } 45,46 / 47 \tag{48}
\end{array}
$$

Thus, we have shown that

$$
\Gamma^{*}=\Gamma \cup\{a \in d \wedge b \in d\} \vdash \exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b))
$$

in the language $\mathcal{L}^{\prime \prime}$. But, since d is not in the signature of \mathcal{L}^{\prime}, we may apply existential instantiation to obtain that $\Gamma \cup\{\exists z(a \in z \wedge b \in z)\} \vdash \exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b))$ in the language \mathcal{L}^{\prime}. We may apply the deduction theorem to obtain

$$
\begin{array}{ll}
\Gamma \vdash \exists z(a \in z \wedge b \in z) \rightarrow \exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b)) & \text { DT } \\
\Gamma \vdash \forall x \forall y \exists z(x \in z \wedge y \in z) & \Gamma \\
\Gamma \vdash[\forall x \forall y \exists z(x \in z \wedge y \in z)] \rightarrow[\exists z(a \in z \wedge b \in z)] & \text { Ax 2, twice } \\
\Gamma \vdash \exists z(a \in z \wedge b \in z) & \text { MP 50, } 51 \\
\Gamma \vdash \exists z \forall v(v \in z \leftrightarrow(v=a \vee v=b)) & \text { MP 49,52 }
\end{array}
$$

But, since a, b are not in the signature of \mathcal{L}, we may apply Generalization on Constants to conclude that $\Gamma \vdash \forall x \forall y \exists z \forall v(v \in z \leftrightarrow(v=x \vee v=y)) \equiv$ Pair\# in the original language \mathcal{L}. Thus $\{C m p r$, Pair $\} \vdash$ Pair\#.

