Nick Jamesson
Set Theory Homework 1
Problem 5
We claim that $\{\mathbf{C m p r}$, Pset $\} \vdash$ Pset $^{\sharp}$.
Proof: First let's write down the formal formulas for the above:
We let $\mathbf{C} \equiv \forall x \forall w_{1} \exists y \forall z\left(z \in y \leftrightarrow\left(z \in x \wedge z \subseteq w_{1}\right)\right)$ and note that \mathbf{C} is a member of Cmpr.
We have Pset $\equiv \forall A \exists Z \forall x(x \subseteq A \rightarrow x \in Z)$ and Pset $^{\sharp} \equiv \forall A \exists P \forall x(x \in P \leftrightarrow x \subseteq A)$.
We apply metatheorem 3.11(i) to conclude that it suffices to show $\{\mathbf{C}$, Pset $\} \vdash$ Pset $^{\sharp}$.
Note that no variables occur free in the formulas \mathbf{C} and $\mathbf{P s e t}$. In particular the variable A does not occur free. So by the generalization theorem, if we can show that

$$
\{\mathbf{C}, \mathbf{P s e t}\} \vdash \exists P \forall x(x \in P \leftrightarrow x \subseteq A)
$$

then we will have $\{\mathbf{C}$, Pset $\} \vdash$ Pset $^{\sharp}$. Let $\varphi \equiv \exists P \forall x(x \in P \leftrightarrow x \subseteq A)$.
We will use the following metatheorem:
FACT 1: Let Γ be a set of formulas and let α, β, γ be formulas. If $\Gamma \vdash \alpha, \Gamma \vdash \beta$ and $\{\alpha, \beta\} \vdash \gamma$, then $\Gamma \vdash \gamma$.

Proof: By applying the deduction theorem to $\{\alpha, \beta\} \vdash \gamma$ twice, we obtain $\emptyset \vdash \alpha \rightarrow \beta \rightarrow \gamma$. Using metatheorem 3.11(i), we therefore have $\Gamma \vdash \alpha \rightarrow \beta \rightarrow \gamma$. So let the sequence ($\gamma_{1}, \ldots, \alpha \rightarrow \beta \rightarrow \gamma$) be a Γ deduction. By hypothesis, we also have Γ deductions: $\left(\alpha_{1}, \ldots, \alpha\right)$ and $\left(\beta_{1}, \ldots, \beta\right)$. Then

$$
\left(\alpha_{1}, \ldots, \alpha, \beta_{1}, \ldots, \beta, \gamma_{1}, \ldots, \alpha \rightarrow \beta \rightarrow \gamma\right)
$$

is a Γ deduction. But then

$$
\left(\alpha_{1}, \ldots, \alpha, \beta_{1}, \ldots, \beta, \gamma_{1}, \ldots, \alpha \rightarrow \beta \rightarrow \gamma, \beta \rightarrow \gamma, \gamma\right)
$$

is a Γ deduction where we have applied modus ponens in the last two steps. This finishes the proof. Note that this also implies that if $\Gamma \vdash \alpha$ and $\alpha \vdash \gamma$, then $\Gamma \vdash \gamma$ as this is just the case where $\alpha \equiv \beta$.

We have $\{\mathbf{C}$, Pset $\} \vdash \mathbf{C}$ (a one line deduction).
Also we have $\{\mathbf{C}$, Pset $\} \vdash \exists Z \forall x(x \subseteq A \rightarrow x \in Z)$ by the following deduction:
(1) $\forall A \exists Z \forall x(x \subseteq A \rightarrow x \in Z) \quad$ by hypothesis as this formula is Pset.
(2) $\forall A \exists Z \forall x(x \subseteq A \rightarrow x \in Z) \rightarrow \exists Z \forall x(x \subseteq A \rightarrow x \in Z) \quad$ by Ax 2 .
(3) $\exists Z \forall x(x \subseteq A \rightarrow x \in Z) \quad$ by (1), (2) and modus ponens.

By fact 1, it now suffices to show that $\{\mathbf{C}, \exists Z \forall x(x \subseteq A \rightarrow x \in Z)\} \vdash \varphi$. We may now introduce a new constant symbol c to our language and apply existential instantiation. So it suffices to show that $\{\mathbf{C}, \forall x(x \subseteq A \rightarrow x \in c)\} \vdash \varphi$.

Now note that $\{\mathbf{C}, \forall x(x \subseteq A \rightarrow x \in c)\} \vdash \forall x(x \subseteq A \rightarrow x \in c)$ (another one line deduction). We also have $\{\mathbf{C}, \forall x(x \subseteq A \rightarrow x \in c)\} \vdash \exists y \forall z(z \in y \leftrightarrow(z \in c \wedge z \subseteq A))$ by the following deduction:
(1) $\forall x \forall w_{1} \exists y \forall z\left(z \in y \leftrightarrow\left(z \in x \wedge z \subseteq w_{1}\right)\right) \quad$ by hypothesis as this formula is \mathbf{C}.
(2) $\forall x \forall w_{1} \exists y \forall z\left(z \in y \leftrightarrow\left(z \in x \wedge z \subseteq w_{1}\right)\right) \rightarrow \forall w_{1} \exists y \forall z\left(z \in y \leftrightarrow\left(z \in c \wedge z \subseteq w_{1}\right)\right) \quad$ by Ax. 2.
(3) $\forall w_{1} \exists y \forall z\left(z \in y \leftrightarrow\left(z \in c \wedge z \subseteq w_{1}\right)\right) \quad$ by (1), (2) and modus ponens.
(4) $\forall w_{1} \exists y \forall z\left(z \in y \leftrightarrow\left(z \in c \wedge z \subseteq w_{1}\right)\right) \rightarrow \exists y \forall z(z \in y \leftrightarrow(z \in c \wedge z \subseteq A)) \quad$ by Ax. 2 .
(5) $\exists y \forall z(z \in y \leftrightarrow(z \in c \wedge z \subseteq A))$ by (3), (4) and modus ponens.

Note in step (4) that we substituted A for w_{1}, which is valid as no quantifier $\forall A$ has a free occurence of w_{1} in its scope (in fact $\forall A$ doesn't occur in our formula at all). Now by fact 1 it suffices to show that

$$
\{\exists y \forall z(z \in y \leftrightarrow(z \in c \wedge z \subseteq A)), \forall x(x \subseteq A \rightarrow x \in c)\} \vdash \varphi .
$$

Now we introduce another constant $d \neq c$ to our language and apply existential instantiation again. So it suffices to show that

$$
\{\forall z(z \in d \leftrightarrow(z \in c \wedge z \subseteq A)), \forall x(x \subseteq A \rightarrow x \in c)\} \vdash \varphi
$$

As a first step, we have

$$
\{\forall z(z \in d \leftrightarrow(z \in c \wedge z \subseteq A)), \forall x(x \subseteq A \rightarrow x \in c)\} \vdash x \in d \leftrightarrow x \subseteq A
$$

by the following deduction:
(1) $\forall z(z \in d \leftrightarrow(z \in c \wedge z \subseteq A)) \quad$ by hypothesis.
(2) $\forall z(z \in d \leftrightarrow(z \in c \wedge z \subseteq A)) \rightarrow(x \in d \leftrightarrow(x \in c \wedge x \subseteq A)) \quad$ by Ax. 2 (this is valid as $\forall x$ does not occur in the formula, so a free occurence of z does not occur in the scope of a $\forall x$ quantifier).
(3) $x \in d \leftrightarrow(x \in c \wedge x \subseteq A)$ by (1), (2) and modus ponens.
(4) $\forall x(x \subseteq A \rightarrow x \in c) \quad$ by hypothesis.
(5) $\forall x(x \subseteq A \rightarrow x \in c) \rightarrow(x \subseteq A \rightarrow x \in c)$ by Ax. 2 .
(6) $x \subseteq A \rightarrow x \in c$ by (4), (5) and modus ponens.

Letting $\alpha \equiv x \subseteq A, \beta \equiv x \in c$ and $\gamma \equiv x \in d$ for readability, we continue our deduction:
(7) $(\alpha \rightarrow \beta) \rightarrow[(\gamma \leftrightarrow(\beta \wedge \alpha)) \rightarrow(\gamma \leftrightarrow \alpha)] \quad$ tautology (Ax. 1).
(8) $(\gamma \leftrightarrow(\beta \wedge \alpha)) \rightarrow(\gamma \leftrightarrow \alpha) \quad$ by (6), (7) and modus ponens as (6) is $\alpha \rightarrow \beta$.
(9) $\gamma \leftrightarrow \alpha$ by (3), (8) and modus ponens as (3) is $\gamma \leftrightarrow(\beta \wedge \alpha)$.

This finishes the deduction as $\gamma \leftrightarrow \alpha \equiv x \in d \leftrightarrow x \subseteq A$. Now observe that x does not occur free in any formula in $\{\forall z(z \in d \leftrightarrow(z \in c \wedge z \subseteq A)), \forall x(x \subseteq A \rightarrow x \in c)\}$, so that by the generalization theorem, we have

$$
\{\forall z(z \in d \leftrightarrow(z \in c \wedge z \subseteq A)), \forall x(x \subseteq A \rightarrow x \in c)\} \vdash \forall x(x \in d \leftrightarrow x \subseteq A) .
$$

If we can show that $\forall x(x \in d \leftrightarrow x \subseteq A) \vdash \varphi$, then we are done by applying FACT 1 again. To show
this, note that by definition of \exists, it suffices to show that

$$
\forall x(x \in d \leftrightarrow x \subseteq A) \vdash \neg \forall P \neg \forall x(x \in P \leftrightarrow x \subseteq A)
$$

It suffices by the contraposition metatheorem to show that

$$
\forall P \neg \forall x(x \in P \leftrightarrow x \subseteq A) \vdash \neg \forall x(x \in d \leftrightarrow x \subseteq A) .
$$

Here is a deduction that shows the above:
(1) $\forall P \neg \forall x(x \in P \leftrightarrow x \subseteq A) \quad$ by hypothesis.
(2) $\forall P \neg \forall x(x \in P \leftrightarrow x \subseteq A) \rightarrow \neg \forall x(x \in d \leftrightarrow x \subseteq A) \quad$ by Ax. 2 .
(3) $\neg \forall x(x \in d \leftrightarrow x \subseteq A)$ by (1), (2) and modus ponens.

This concludes the proof that $\{\mathbf{C m p r}$, Pset $\} \vdash$ Pset $^{\sharp}$.

