
Nick Jamesson
Set Theory Homework 1
Problem 5

We claim that {Cmpr,Pset} ` Pset].

proof: First let’s write down the formal formulas for the above:

We let C ≡ ∀x∀w1∃y∀z(z ∈ y ↔ (z ∈ x ∧ z ⊆ w1)) and note that C is a member of Cmpr.

We have Pset ≡ ∀A∃Z∀x(x ⊆ A→ x ∈ Z) and Pset] ≡ ∀A∃P∀x(x ∈ P ↔ x ⊆ A).

We apply metatheorem 3.11(i) to conclude that it suffices to show {C,Pset} ` Pset].

Note that no variables occur free in the formulas C and Pset. In particular the variable A does
not occur free. So by the generalization theorem, if we can show that

{C,Pset} ` ∃P∀x(x ∈ P ↔ x ⊆ A)

then we will have {C,Pset} ` Pset]. Let ϕ ≡ ∃P∀x(x ∈ P ↔ x ⊆ A).

We will use the following metatheorem:

fact 1: Let Γ be a set of formulas and let α, β, γ be formulas. If Γ ` α, Γ ` β and {α, β} ` γ,
then Γ ` γ.

proof: By applying the deduction theorem to {α, β} ` γ twice, we obtain ∅ ` α→ β → γ. Using
metatheorem 3.11(i), we therefore have Γ ` α → β → γ. So let the sequence (γ1, ..., α → β → γ)
be a Γ deduction. By hypothesis, we also have Γ deductions: (α1, ..., α) and (β1, ..., β). Then

(α1, ..., α, β1, ..., β, γ1, ..., α→ β → γ)

is a Γ deduction. But then

(α1, ..., α, β1, ..., β, γ1, ..., α→ β → γ, β → γ, γ)

is a Γ deduction where we have applied modus ponens in the last two steps. This finishes the proof.
Note that this also implies that if Γ ` α and α ` γ, then Γ ` γ as this is just the case where α ≡ β.

We have {C,Pset} ` C (a one line deduction).
Also we have {C,Pset} ` ∃Z∀x(x ⊆ A→ x ∈ Z) by the following deduction:

(1) ∀A∃Z∀x(x ⊆ A→ x ∈ Z) by hypothesis as this formula is Pset.
(2) ∀A∃Z∀x(x ⊆ A→ x ∈ Z)→ ∃Z∀x(x ⊆ A→ x ∈ Z) by Ax 2.
(3) ∃Z∀x(x ⊆ A→ x ∈ Z) by (1), (2) and modus ponens.

By fact 1, it now suffices to show that {C, ∃Z∀x(x ⊆ A → x ∈ Z)} ` ϕ. We may now in-
troduce a new constant symbol c to our language and apply existential instantiation. So it suffices
to show that {C, ∀x(x ⊆ A→ x ∈ c)} ` ϕ.
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Now note that {C,∀x(x ⊆ A → x ∈ c)} ` ∀x(x ⊆ A → x ∈ c) (another one line deduction).
We also have {C, ∀x(x ⊆ A→ x ∈ c)} ` ∃y∀z(z ∈ y ↔ (z ∈ c∧z ⊆ A)) by the following deduction:

(1) ∀x∀w1∃y∀z(z ∈ y ↔ (z ∈ x ∧ z ⊆ w1)) by hypothesis as this formula is C.
(2) ∀x∀w1∃y∀z(z ∈ y ↔ (z ∈ x ∧ z ⊆ w1))→ ∀w1∃y∀z(z ∈ y ↔ (z ∈ c ∧ z ⊆ w1)) by Ax. 2.
(3) ∀w1∃y∀z(z ∈ y ↔ (z ∈ c ∧ z ⊆ w1)) by (1), (2) and modus ponens.
(4) ∀w1∃y∀z(z ∈ y ↔ (z ∈ c ∧ z ⊆ w1))→ ∃y∀z(z ∈ y ↔ (z ∈ c ∧ z ⊆ A)) by Ax. 2.
(5) ∃y∀z(z ∈ y ↔ (z ∈ c ∧ z ⊆ A)) by (3), (4) and modus ponens.

Note in step (4) that we substituted A for w1, which is valid as no quantifier ∀A has a free
occurence of w1 in its scope (in fact ∀A doesn’t occur in our formula at all). Now by fact 1 it
suffices to show that

{∃y∀z(z ∈ y ↔ (z ∈ c ∧ z ⊆ A)), ∀x(x ⊆ A→ x ∈ c)} ` ϕ.

Now we introduce another constant d 6= c to our language and apply existential instantiation again.
So it suffices to show that

{∀z(z ∈ d↔ (z ∈ c ∧ z ⊆ A)), ∀x(x ⊆ A→ x ∈ c)} ` ϕ.

As a first step, we have

{∀z(z ∈ d↔ (z ∈ c ∧ z ⊆ A)), ∀x(x ⊆ A→ x ∈ c)} ` x ∈ d↔ x ⊆ A

by the following deduction:

(1) ∀z(z ∈ d↔ (z ∈ c ∧ z ⊆ A)) by hypothesis.
(2) ∀z(z ∈ d↔ (z ∈ c ∧ z ⊆ A))→ (x ∈ d↔ (x ∈ c ∧ x ⊆ A)) by Ax. 2 (this is valid as ∀x does
not occur in the formula, so a free occurence of z does not occur in the scope of a ∀x quantifier).
(3) x ∈ d↔ (x ∈ c ∧ x ⊆ A) by (1), (2) and modus ponens.
(4) ∀x(x ⊆ A→ x ∈ c) by hypothesis.
(5) ∀x(x ⊆ A→ x ∈ c)→ (x ⊆ A→ x ∈ c) by Ax. 2.
(6) x ⊆ A→ x ∈ c by (4), (5) and modus ponens.

Letting α ≡ x ⊆ A, β ≡ x ∈ c and γ ≡ x ∈ d for readability, we continue our deduction:

(7) (α→ β)→ [(γ ↔ (β ∧ α))→ (γ ↔ α)] tautology (Ax. 1).
(8) (γ ↔ (β ∧ α))→ (γ ↔ α) by (6), (7) and modus ponens as (6) is α→ β.
(9) γ ↔ α by (3), (8) and modus ponens as (3) is γ ↔ (β ∧ α).

This finishes the deduction as γ ↔ α ≡ x ∈ d ↔ x ⊆ A. Now observe that x does not occur
free in any formula in {∀z(z ∈ d ↔ (z ∈ c ∧ z ⊆ A)), ∀x(x ⊆ A → x ∈ c)}, so that by the
generalization theorem, we have

{∀z(z ∈ d↔ (z ∈ c ∧ z ⊆ A)), ∀x(x ⊆ A→ x ∈ c)} ` ∀x(x ∈ d↔ x ⊆ A).

If we can show that ∀x(x ∈ d↔ x ⊆ A) ` ϕ, then we are done by applying fact 1 again. To show
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this, note that by definition of ∃, it suffices to show that

∀x(x ∈ d↔ x ⊆ A) ` ¬∀P¬∀x(x ∈ P ↔ x ⊆ A).

It suffices by the contraposition metatheorem to show that

∀P¬∀x(x ∈ P ↔ x ⊆ A) ` ¬∀x(x ∈ d↔ x ⊆ A).

Here is a deduction that shows the above:

(1) ∀P¬∀x(x ∈ P ↔ x ⊆ A) by hypothesis.
(2) ∀P¬∀x(x ∈ P ↔ x ⊆ A)→ ¬∀x(x ∈ d↔ x ⊆ A) by Ax. 2.
(3) ¬∀x(x ∈ d↔ x ⊆ A) by (1), (2) and modus ponens.

This concludes the proof that {Cmpr,Pset} ` Pset].
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