HOMEWORK 2

(First draft is due on March 17, 2021)

Problems:

1. Raymond

Prove that the following statements are equivalent in $ZFC \setminus {Fnd}$ (ZFC without the Axiom of Foundation):

- (a) Fnd (the Axiom of Foundation);
- (b) there is no function f with domain ω such that $f(n+1) \in f(n)$ for all $n \in \omega$.

2. Dale

Prove the following statement in ZF

For every finite set A of nonempty sets there exists a choice function for A.

3. Mateo

- (i) Prove in ZF that $\omega \times \omega$ and $n \times \omega$ $(n \in \omega \setminus \{0\})$ are equipotent with ω .
- (ii) Prove in ZF that the union of a finite set of countable sets is countable. (You may use the statement proved in Problem 2.)
- (iii) Modify your arguent for (ii) to prove in ZFC that the union of a countable set of countable sets is countable.

4. Connor

Prove that for every infinite set A, the set of all bijections $A \to A$ has cardinality $2^{|A|}$.

5. Nick

Find all ordered pairs (κ, λ) of cardinal numbers such that their sum $\kappa +_o \lambda$ in the ordinal sense equals their sum $\kappa +_c \lambda$ in the cardinal sense.

6. Toby

Let μ be an infinite cardinal, and let \prec be the well-ordering of $\mu \times \mu$ we used earlier¹, which is defined as follows: for any $\delta, \varepsilon, \delta', \varepsilon' \in \mu$,

$$\begin{aligned} (\delta,\varepsilon)\prec(\delta',\varepsilon') &\iff &\max(\delta,\varepsilon)<\max(\delta',\varepsilon'), \text{ or }\\ &\max(\delta,\varepsilon)=\max(\delta',\varepsilon') \text{ and } \delta<\delta', \text{ or }\\ &\max(\delta,\varepsilon)=\max(\delta',\varepsilon'), \ \delta=\delta' \text{ and } \varepsilon<\varepsilon'. \end{aligned}$$

- (i) Show that $(\mu \times \mu, \prec)$ and $(\mu, <)$ are isomorphic well-ordered sets.
- (ii) Use the statement in part (i) and the General Associative Law for cardinal multiplication to prove Theorem 4.7 on the handout "The Axiom of Choice. Cardinals and Cardinal Arithmetic".

¹See the proof of Theorem 4.1 on the handout "The Axiom of Choice. Cardinals and Cardinal Arithmetic".

7. Chase

Prove that GCH is equivalent (in ZFC) to the following statement: (*) $\kappa^{cf(\kappa)} = \kappa^+$ for all infinite cardinals κ .

Please write your solution in T_EX , include your name at the top of the first page, and email your solution to me (szendrei@colorado.edu) as a pdf file so that the file name includes the string

hw2prk

where k is the problem number.

 $\mathbf{2}$