HOMEWORK 1

RAYMOND BAKER

PROVE THE FOLLOWING STATEMENTS TO BE EQUIVALENT IN ZFC\{FND}

Fnd

 $\phi \equiv \neg \exists f(f \text{ is a function} \land \operatorname{dmn}(f) = \omega \land \forall n \in \omega(f(n+1) \in f(n)))$

Proof. To prove that these to statements are equivalent under ZFC\{Fnd}, we will see that $ZFC \setminus Fnd \cup Fnd = ZFC \vdash \phi$ and $ZFC \setminus Fnd \cup \{\phi\} \vdash Fnd$. To prove the former, we will utilize a proof by contradiction and show that $ZFC \cup \{\neg\phi\}$ is inconsistent.

Take the set of premises $\operatorname{ZFC} \cup \{\neg \phi\}$. From $\neg \phi$ it follows that $\exists f(f \text{ is a function } \wedge \operatorname{dmn}(f) = \omega \land \forall n(n \in \omega \to f(n+1) \in f(n)))$. But $\operatorname{rng}(f)$ is also a set. Since, the domain is ω , we know that $\operatorname{rng}(f)$ is non-empty. So, applying the axiom of foundations to f, we see that there is some $x \in \operatorname{rng}(f)$ such that $x \cap \operatorname{rng}(f) = \emptyset$. But, we have that x = f(n) for some $n \in \omega$. By the definition of f, $f(n+1) \in x$. But $f(n+1) \in \operatorname{rng}(f)$ implying $f(n+1) \in x \cap \operatorname{rng}(f) \neq \emptyset$, a contradiction. Since $\operatorname{ZFC} \cup \{\neg \phi\}$ is inconsistent, we may conclude that $\operatorname{ZFC} \vdash \neg \neg \phi$, i.e. $\operatorname{ZFC} \vdash \phi$.

Now, to prove that $\operatorname{ZFC}\{\operatorname{Fnd}\} \cup \{\phi\} \vdash \operatorname{Fnd}$, we will prove the contrapositive, i.e. demonstrating that $\operatorname{ZFC}\{\operatorname{Fnd}\} \cup \{\neg\operatorname{Fnd}\} \vdash \neg \phi$. So, take the premises $\operatorname{ZFC}\{\operatorname{Fnd}\} \cup \{\neg\operatorname{Fnd}\}$. From $\neg\operatorname{Fnd}$, it follows that $\exists x (x \neq \emptyset \land \forall y \in x (y \cap x \neq \emptyset))$. Denote such a set with the symbol A. Using the General Recursion Theorem, we will construct a function f with $\operatorname{rng}(f) \subseteq A$ satisfying $\neg \phi$. In order to construct this function, we will invoke the axiom of choice. We will use the Choice Function Principle, shown to be equivalent to the axiom of choice. Since A is non-empty, $\mathscr{P}(A)\setminus\{\emptyset\}$ is a family of non-empty subsets of A. Let C be a choice function on $\mathscr{P}(A)\setminus\{\emptyset\}$. Define $G:\omega \times V \to V$ by

$$G(n,v) = \begin{cases} A & \text{if } n = 0\\ C(v(m) \cap A) & \text{if } n = m+1, v \text{ is a function with dmn} = n, \text{ and } v(m) \cap A \neq \emptyset\\ \emptyset & \text{otherwise} \end{cases}$$

By the recursion theorem, there exists an $f: \omega \to V$ such that $f(n) = G(n, f \upharpoonright_n)$, for all $n \in \omega$. Clearly f is a function and $dmn(f) = \omega$. We will prove by induction that f satisfies $\forall n \in \omega(f(n+1) \in f(n))$. Consider the set $S = \{n \in \omega : f(n+1) \in f(n)\}$. We have that f(0) = A. Additionally, $f(1) = G(1, f \upharpoonright_1)$. Clearly 1 = 0 + 1, $f \upharpoonright_1$ is a function with domain 1 and $f(0) \cap A = A$ is non-empty, so $f(1) = C(f \upharpoonright_1(0) \cap A) = C(A) \in A$. Thus $f(1) \in f(0)$ and $0 \in S$. Take $n \neq 0$ and assume that $n \in S$. Since $f(n+1) \in f(n) \neq \emptyset$, we may conclude that $f(n) = G(n, f \upharpoonright_n) = C(f \upharpoonright_n(m) \cap A)$,

where n = m + 1. Thus $f(n) \in A$. By the selection of A, $f(n) \cap A \neq \emptyset$. It follows that $f(n+1) = G(n+1, f \upharpoonright_{(n+1)}) = C(f \upharpoonright_{(n+1)}(n) \cap A)$. So $f(n+1) \in A$. It follows that $f(n+1) \cap A \neq \emptyset$. Now consider $f(n+2) = G(n+2, f \upharpoonright_{(n+2)})$. Clearly n+2 = (n+1)+1, $f \upharpoonright_{(n+2)}$ is a function with dmn= n+2, and $f \upharpoonright_{(n+2)}(n+1) \cap A \neq \emptyset$. So, $f(n+2) = C(f \upharpoonright_{(n+2)}(n+1) \cap A)$. It follows that $f(n+2) \in f(n+1)$. Thus, $n+1 \in S$. By the inductive principle for ω , $S = \omega$. So, $\forall n \in \omega(f(n+1) \in f(n))$. Therefore, $\exists f(f \text{ is a function } \wedge \dim(f) = \omega \wedge \forall n \in \omega(f(n+1) \in f(n)))$, which implies $\neg \neg \exists f(f \text{ is a function } \wedge \dim(f) = \omega \wedge \forall n \in \omega(f(n+1) \in f(n)))$. Thus, $ZFC \setminus \{Fnd\} \cup \{\phi\} \vdash Fnd$.

Consequently, Fnd and ϕ are equivalent under ZFC\{Fnd}. \Box