Set Theory (MATH 6730)

HOMEWORK 2

Problems:

3. Mateo

(i) Prove in ZF that $\omega \times \omega$ and $n \times \omega(n \in \omega \backslash\{0\})$ are equipotent with ω.
(ii) Prove in ZF that the union of a finite set of countable sets is countable. (You may use the statement proved in Problem 2.)
(iii) Modify your arguent for (ii) to prove in ZFC that the union of a countable set of countable sets is countable.
Proof. We start (i) by proving the equipotence of $\omega \times \omega$ and ω. We have for every $n \in \omega \backslash\{0\}, n=2^{x_{n}}\left(2 y_{n}+1\right)$ for uniquely determined $x_{n}, y_{n} \in \omega$. Therefore we have a well-defined function $f: \omega \backslash\{0\} \rightarrow \omega \times \omega$ defined by $f(n)=\left(x_{n}, y_{n}\right)$ for all $n \in \omega \backslash\{0\}$. To show that f is injective, suppose $f(n)=f(m)$. Then $\left(x_{n}, y_{n}\right)=\left(x_{m}, y_{m}\right)$, hence $n=2^{x_{n}}\left(2 y_{n}+1\right)=2^{x_{m}}\left(2 y_{m}+1\right)=m . f$ is also surjective, because for any $(x, y) \in \omega \times \omega$, we have that $2^{x}(2 y+1)$ is a nonzero natural number and $f\left(2^{x}(2 y+1)\right)=(x, y)$. Of course, the bijection we want is $g: \omega \rightarrow \omega \times \omega$ where $g(n)=f(n+1)$. We know the successor function $n \mapsto n+1$ is a bijection between ω and $\omega \backslash\{0\}$, so we have that g is a bijection between ω and $\omega \times \omega$.

Now we fix an $n \in \omega \backslash\{0\}$ and prove the equipotence of n and ω. For every $m \in \omega$, there exists unique $(r, q) \in n \times \omega$ such that $r+n q=m$, by the Divsion Algorithm. So the assignment $m \rightarrow(r, q)$ yields a function $h: \omega \rightarrow n \times \omega$. If $f(x)=\left(x_{1}, x_{2}\right)=\left(y_{1}, y_{2}\right)=f(y)$, then $x=x_{1}+n x_{2}=y_{1}+n y_{2}=y$, so f is injective. For every $(x, y)=n \times \omega$, we have $f(x+n y)=(x, y)$, hence f is surjective. So f is a bijection between ω and $n \times \omega$.

We prove (ii). Here we say a set S is countable if and only if there exists a surjection $g: \omega \rightarrow S$. Let A be a finite set of countable sets. Since A is finite, there exists $n \in \omega$ and a bijection $\varphi: n \rightarrow A$. For each $i \in n$, let $A_{i}:=\varphi(i)$. Thus, $A=\left\{A_{i}: i \in n\right\}$ and each A_{i} is countable. Let $A^{\prime}=\cup A$, the set whose existence is guaranteed by the axiom of union. Then we want to show there exists a surjection $g: \omega \rightarrow A^{\prime}$. Since the composition of surjective functions is surjective, and we showed in (i) there exists a surjection $\omega \rightarrow n \times \omega$, it will suffice to show there exist a surjection $g: n \times \omega \rightarrow A^{\prime}$. Define $\psi(x, y)$ to be the first-order formula that says y is the set of all functions such that $\operatorname{dom}(f)=\omega$ and $\operatorname{ran}(f)=x$, i.e.
$\psi(x, y) \equiv \forall f(f \in y \leftrightarrow((f$ is a function $) \wedge(\operatorname{dom}(f)$ is the least inductive set $) \wedge(\operatorname{ran}(f)=x)))$. Here " f is a function", "dom (f) is the least inductive set", and "ran $(f)=x$ " are abbreviations . For example, "dom (f) is the least inductive set" can be further expanded as follows.

$$
\forall z(z \in \operatorname{dom}(f) \leftrightarrow \forall v(v \text { is inductive } \rightarrow z \in v))
$$

$\psi(x, y)$ defines a class function $\mathbb{J}: \mathbb{V} \rightarrow \mathbb{V}$ that maps each $x \in \mathbb{V}$ to the set of all surjections $\omega \rightarrow x$. Let $H_{i}=\mathbb{J}\left(A_{i}\right)$ for all $i \in n$. By the axioms of replacement and comprehension, we have that $\mathbb{J}[A]=\left\{H_{i}: i \in n\right\}$ is a set. To simplify notation, we denote this set by H. Each H_{i} is non-empty by assumption that each A_{i} is countable. A choice function for H is a function F with domain H such that $F\left(H_{i}\right) \in H_{i}$ for all $i \in n . H$ is finite, so such a choice function exists by Problem 2. Let $h_{i}=F\left(H_{i}\right)$ for each $i \in n$. Then we define the function $g: n \times \omega \rightarrow A^{\prime}$ via $g(x, y)=h_{x}(y)$ for all $x \in n$ and $y \in \omega$. The function g is surjective, for take any $a \in A^{\prime}$. Then for some $x \in n, a \in A_{x}$ and $h_{x}: \omega \rightarrow A_{x}$ is a surjective function. There exists some $y \in \omega$ such that $g(x, y)=h_{x}(y)=a$ and we are done.

We prove (iii). Assume the axiom of choice, or more efficiently, assume the axiom of countable choice. Let A be a countable set of countable sets. We have shown the case where A is finite, so here we assume that there exists a bijection $\varphi: \omega \rightarrow A$. Let $A_{i}=\varphi(i)$ for every $i \in \omega$. Thus $A=\left\{A_{i}: i \in \omega\right\}$ and each A_{i} is countable. Let $A^{\prime}=\bigcup A$, which is a set by the axiom of union. Then we want to show there exists a surjection $\omega \rightarrow A^{\prime}$. It suffices to show there exists a surjection $\omega \times \omega \rightarrow A^{\prime}$, by (i). Define $\psi(x, y)$ as before so that it defines the same class function \mathbb{J}. Let $H_{i}=\mathbb{J}\left(A_{i}\right)$ for all $i \in \omega$. By the axioms of replacement and comprehension, we have that $\mathbb{J}[A]=\left\{H_{i}: i \in \omega\right\}$ is a set. To simplify notation, we denote this set H. A choice function for H is a function F with domain H such that $F\left(H_{i}\right) \in H_{i}$ for all $i \in \omega$. Such a choice function exists by the axiom of countable choice. Let $h_{i}=F\left(H_{i}\right)$ for each $i \in \omega$. Then the function $g: \omega \times \omega \rightarrow A^{\prime}$ defined by $g(x, y)=h_{x}(y)$ is a surjection for the same reasons as before.

