Nick Jamesson

Set Theory Homework 2
Problem 5
We will find all pairs of cardinals (κ, λ) such that $\kappa+_{o} \lambda=\kappa+{ }_{c} \lambda$ where $+_{o}$ denotes ordinal addition and $+_{c}$ denotes cardinal addition. First, we note that if either κ or λ is 0 , then ordinal and cardinal addition agree. Indeed, we know $\kappa+_{o} 0=\kappa$ by theorem 5.3 and $0+{ }_{o} \lambda=\lambda$ by theorem 5.4 (iii). Also, prop 11.22 in Monk shows that if both λ and κ are finite, then ordinal and cardinal addition agree. So we may assume one of κ, λ is infinite and that $\kappa \geq 1$ and $\lambda \geq 1$ to check the remaining cases.

Suppose $\kappa \geq \lambda$. We claim that $\kappa+_{o} \lambda \neq \kappa+_{c} \lambda$. Note that if κ were finite, then λ would be finite, contradicting our assumptions. So κ is infinite, and therefore $\kappa+{ }_{c} \lambda=\max (\kappa, \lambda)=\kappa$. On the other hand, $\kappa+_{o} \lambda \geq \kappa+_{o} 1>\kappa$ since $\lambda \geq 1$. The leftmost inequality follows from Th. 9.21 (ii) in Monk. Therefore $\kappa+_{o} \lambda>\kappa+{ }_{c} \lambda$.

For the remaining case, we suppose $\kappa<\lambda$. In this case we claim that $\kappa+_{o} \lambda=\kappa{ }_{c} \lambda$. If λ were finite, then κ would also be finite, a contradiction to our assumptions. So λ is infinite, which implies that $\kappa+{ }_{c} \lambda=\max (\kappa, \lambda)=\lambda$. Now since λ is a cardinal, it is a limit ordinal, hence we have

$$
(*) \quad \kappa+_{o} \lambda=\bigcup_{\alpha<\lambda}\left(\kappa+_{o} \alpha\right)
$$

We want to show that $\lambda=\kappa+_{o} \lambda$. We have $\lambda \leq \kappa+_{o} \lambda$ (by Th. 9.21 (v) in Monk) so it suffices to show that $\kappa+_{o} \lambda \leq \lambda$. Let $\beta \in \kappa+_{o} \lambda$ so that it suffices to show that $\beta \in \lambda$. From (*), we know that $\beta \in \kappa+_{o} \alpha$ for some $\alpha<\lambda$. Suppose towards a contradiction that $\lambda \leq \beta$. Then $\lambda \leq \beta<\kappa+_{o} \alpha \Rightarrow \lambda \leq \kappa+_{o} \alpha$. Therefore $\lambda=|\lambda| \leq\left|\kappa+_{o} \alpha\right|$.

Now we claim that $\left|\kappa+_{o} \alpha\right|=|\kappa|+_{c}|\alpha|$. If we have this claim and both κ and α are finite, then $\left|\kappa+_{o} \alpha\right|$ is finite and $\lambda \leq\left|\kappa+_{o} \alpha\right|$, which gives us our contradiction. If we have this claim and one of κ, α is infinite, then $\left|\kappa+_{o} \alpha\right|=\max (|\kappa|,|\alpha|)$. But we have both $\kappa<\lambda$ and $\alpha<\lambda$, so because λ is a cardinal, we have $|\kappa|<\lambda$ and $|\alpha|<\lambda$. This gives us our desired contradiction again. So if we can prove the claim, we are done.

We can use transfinite induction to prove the claim. Fix κ and note that $\left|\kappa+_{o} 0\right|=|\kappa|=|\kappa|+{ }_{c} 0$.
Now suppose that $\left|\kappa+_{o} \gamma\right|=|\kappa|+_{c}|\gamma|$. Recall that for finite ordinals ξ, we know that $\left|\xi+_{o} 1\right|=|\xi|+_{c} 1$ and that for infinite ordinals ξ, we have $\left|\xi+{ }_{o} 1\right|=|\xi|=|\xi|+_{c} 1$. That is, $\left|\xi+{ }_{o} 1\right|=|\xi|+{ }_{c} 1$ for any ordinal ξ. Therefore

$$
\begin{aligned}
\left|\kappa+_{o}\left(\gamma+{ }_{o} 1\right)\right| & \left.=\mid\left(\kappa+_{o} \gamma\right)+_{o} 1\right) \mid \\
& =\left|\kappa+_{o} \gamma\right|+{ }_{c} 1 \\
& =|\kappa|++_{c}|\gamma|+_{c} 1 \quad \text { by the inductive hypothesis } \\
& =|\kappa|+_{c}\left|\gamma+{ }_{o} 1\right| .
\end{aligned}
$$

Now suppose δ is a limit ordinal and for all $\gamma<\delta$ that $\left|\kappa+_{o} \gamma\right|=|\kappa|+_{c}|\gamma|$. We want to show that
$\left|\kappa+{ }_{o} \delta\right|=|\kappa|{ }_{+}|\delta|$. We have

$$
\begin{aligned}
\left|\kappa+_{o} \delta\right| & =\left|\bigcup_{\gamma<\delta} \kappa+_{o} \gamma\right| \\
& \leq \sum_{\gamma<\delta}\left|\kappa+_{o} \gamma\right| \\
& =\sum_{\gamma<\delta}\left(|\kappa|+_{c}|\gamma|\right) \quad \text { by the inductive hypothesis . }
\end{aligned}
$$

Now note that if $\kappa \geq \delta$, then $|\kappa|+_{c}|\delta|=|\kappa|$ and also $|\kappa|+{ }_{c}|\gamma|=|\kappa|$ for all $\gamma<\delta$. So the above relations tell us that $\left|\kappa+_{o} \delta\right| \leq \sum_{\gamma<\delta}|\kappa|=|\kappa| \cdot|\delta|=\max (|\kappa|,|\delta|)=|\kappa|$. But $\kappa \leq \kappa+_{o} \delta$ by Th. 9.21 (ii) in Monk. Therefore, $|\kappa| \leq\left|\kappa+_{o} \delta\right|$ so that $|\kappa|=\left|\kappa+_{o} \delta\right| \Rightarrow|\kappa|+_{c}|\delta|=\left|\kappa+_{o} \delta\right|$ as desired.

On the other hand, if $\kappa<\delta$, then $|\kappa| \leq|\delta|$. Hence $|\kappa|+_{c}|\delta|=|\delta|$ and $|\kappa|+_{c}|\gamma| \leq|\delta|$ for $\gamma<\delta$. So the above relations imply that $\left|\kappa+_{o} \delta\right| \leq \sum_{\gamma<\delta}|\delta|=|\delta| \cdot|\delta|=|\delta|$. But we have $\delta \leq \kappa+_{o} \delta$ by Th 9.21 (v) in Monk. Therefore $|\delta| \leq\left|\kappa+_{o} \delta\right|$ so that $|\delta|=\left|\kappa+_{o} \delta\right|$. Therefore $\left|\kappa+_{o} \delta\right|=|\kappa|+_{c}|\delta|$ as desired. This concludes the proof of the claim.

We summarize the results as follows: if (κ, λ) is an ordered pair of cardinals, then $|\kappa|+_{o}|\lambda|=|\kappa|+_{c}|\lambda|$ iff one of the following hold:
(1) One of κ or λ is 0 .
(2) Both κ and λ are finite.
(3) λ is infinite and $\kappa<\lambda$.

