SET THEORY HOMEWORK 2

CHASE MEADORS

Problem (7). Prove that GCH is equivalent (in ZFC) to the following statement: (*) $\kappa^{\text{cf}(\kappa)} = \kappa^+$ for all infinite cardinals κ .

In ZFC we have, for any infinite cardinal κ ,

$$\kappa^+ \le \kappa^{\mathrm{cf}(\kappa)} \le 2^{\kappa} (= \kappa^{\kappa})$$

It's clear that if GCH holds, then all inequalities collapse and $\kappa^+ = \kappa^{cf(\kappa)} = 2^{\kappa}$ for all κ ; thus GCH \rightarrow (*).

Conversely, suppose (*). For any regular κ , we again have $\kappa^+ = \kappa^{\mathrm{cf}(\kappa)} = 2^{\kappa}$, since $\mathrm{cf}(\kappa) = \kappa$, and GCH holds for κ . It remains to show GCH holds for the singular cardinals as well. So suppose κ is singular, and let $\langle \lambda_{\alpha} : \alpha < \mathrm{cf}(\kappa) \rangle$ be a sequence of infinite successor cardinals so that $\kappa = \sum_{\alpha < \mathrm{cf}(\kappa)} \lambda_{\alpha}$. Then we have

$$2^{\kappa} = 2^{\sum_{\alpha < cf(\kappa)} \lambda_{\alpha}} = \prod_{\alpha < cf(\kappa)} 2^{\lambda_{\alpha}} = \prod_{\alpha < cf(\kappa)} \lambda_{\alpha}^{cf(\lambda_{\alpha})} = \prod_{\alpha < cf(\kappa)} \lambda_{\alpha}^{+} \leq^{3} \prod_{\alpha < cf(\kappa)} \kappa = \kappa^{cf(\kappa)} = \kappa^{+}$$

Here, (1) holds because since the λ_{α} are successor cardinals and thus regular. Of course (2) holds by (*). Finally, (3) holds since κ is singular and necessarily a limit cardinal; in particular, $\lambda^+ < \kappa$ for any $\lambda < \kappa$. So in fact $2^{\kappa} = \kappa^+$ and GCH holds for a singular κ as well; thus (*) \rightarrow GCH.