Set Theory (MATH 6730)

HOMEWORK 3

(First draft is due on April 12, 2021)
Definition. Let A be a set.

- A is called Dedekind finite if A is not equipotent with a proper subset of A (i.e., if there is no bijection between A and a proper subset of A).
- A is Dedekind infinite if it is not Dedekind finite.

Problems:

1. Connor

Prove in ZF that a set A is Dedekind infinite if and only if there exists a one-to-one function $\omega \rightarrow A$.

2. Nick

Use the result of Problem 1 to prove in ZF that if \mathcal{A} is a Dedekind finite set of pairwise disjoint Dedekind finite sets, then $\bigcup \mathcal{A}$ is Dedekind finite. Explain why your proof would not work in ZF if the disjointness assumption was omitted.

3. Mateo

(i) Show that if $\left\langle\kappa_{\alpha}: \alpha<\beta\right\rangle$ is a strictly increasing sequence of cardinals and $\kappa=\bigcup_{\alpha<\beta} \kappa_{\alpha}$, then $\operatorname{cf}(\kappa)=\operatorname{cf}(\beta)$.
(ii) Let $\lambda<\lambda^{\prime}$ be infinite cardinals. Use the statement in part (i) to construct a strictly increasing sequence $\left\langle\kappa_{\alpha}: \alpha<\beta\right\rangle$ of cardinals (for an appropriate choice of β) such that for $\kappa=\bigcup_{\alpha<\beta} \kappa_{\alpha}$ we have that

$$
\kappa^{\lambda}<\kappa^{\lambda^{\prime}}
$$

4. Dale

Prove that every Suslin tree has exactly 2^{ω} branches.

5. Toby

Let (S, \subset) be the Aronszajn tree constructed in the proof of Theorem 9 in the lecture notes "Trees". Show that there exists a function f mapping S into the set of real numbers such that for all $s, t \in S$ with $s<t$ we have $f(s)<f(t)$.

6. Chase

Let κ be an uncountable regular cardinal, and view κ as a topological space where the open sets are the unions of intervals ${ }^{1}$. Prove that for every metric space X and continuous function $h: \kappa \rightarrow X$ there is a $\beta<\kappa$ such that $h(\alpha)=h(\beta)$ for all $\alpha \geq \beta$. Hint: Let S be the set of limit ordinals in κ. Find regressive functions $f_{n}: S \rightarrow \kappa$ $(n \in \omega)$ such that all subsets of X of the form $\left\{h(\alpha): f_{n}(\xi) \leq \alpha \leq \xi\right\}(\xi<\kappa)$ have diameter $<1 / n$.

[^0]
7. Raymond

Let (\mathbb{R}, \leq) be the set of reals with the usual ordering. We will say that a subset B of \mathbb{R} is well-ordered if the restriction of $<$ to B is a well-order on B. Let us fix an n-ary function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}(n \in \omega \backslash\{0\})$ which is (weak) order preserving; i.e., satisfies $f\left(x_{0}, \ldots, x_{n-1}\right) \leq f\left(y_{0}, \ldots, y_{n-1}\right)$ whenever $x_{0}, \ldots, x_{n-1}, y_{0}, \ldots, y_{n-1} \in \mathbb{R}$ are such that $x_{0} \leq y_{0}, \ldots, x_{n-1} \leq y_{n-1}$.

Prove that if A_{0}, \ldots, A_{n-1} are well-ordered subsets of \mathbb{R}, then the subset

$$
f\left[A_{0}, \ldots, A_{n-1}\right]=\left\{f\left(a_{0}, \ldots, a_{n-1}\right): a_{0} \in A_{0}, \ldots, a_{n-1} \in A_{n-1}\right\}
$$

of \mathbb{R} is also well-ordered.

Please write your solution in $T_{E} X$, include your name at the top of the first page, and email your solution to me (szendrei@colorado.edu) as a pdf file so that the file name includes the string
hw3prk
where k is the problem number.

[^0]: ${ }^{1}$ See Definition 16 in the lecture notes "Trees".

