Set Theory (MATH 6730)

HOMEWORK 3

(First draft is due on April 12, 2021)

Problems:

3. (i) Show that if $\left\langle\kappa_{\alpha}: \alpha<\beta\right\rangle$ is a strictly increasing sequence of cardinals and $\kappa=\bigcup_{\alpha<\beta} \kappa_{\alpha}$, then $\operatorname{cf}(\kappa)=\operatorname{cf}(\beta)$.
(ii) Let $\lambda<\lambda^{\prime}$ be infinite cardinals. Use the statement in part (i) to construct a strictly increasing sequence $\left\langle\kappa_{\alpha}: \alpha<\beta\right\rangle$ of cardinals (for an appropriate choice of β) such that for $\kappa=\bigcup_{\alpha<\beta} \kappa_{\alpha}$ we have that

$$
\kappa^{\lambda}<\kappa^{\lambda^{\prime}}
$$

Proof. We prove (i). Let $A=\left\{\kappa_{\alpha}: \alpha<\beta\right\}$. Since $\left\langle\kappa_{\alpha}: \alpha<\beta\right\rangle$ is strictly increasing, A is order isomorphic to β. Then $\operatorname{cf}(A)=\operatorname{cf}(\beta)$. Now note that $\kappa=\sup (A)$. So any unbounded set in A is also unbounded in κ. Hence $\operatorname{cf}(\kappa) \leq \operatorname{cf}(A)$.
Let $\lambda=\operatorname{cf}(\kappa)$. Let $f: \lambda \rightarrow \kappa$ be a strict order preserving function such that $f[\lambda]$ is unbounded in κ. The existence of such a function is asserted in Theorem 4.11(i). We define $\mathbf{G}: \lambda \times \mathbf{V} \rightarrow A \cup \emptyset$ as follows.
$\mathbf{G}(\alpha, x)= \begin{cases}\min \{a \in A: a>x(\gamma), \forall \gamma<\alpha \text { and } a>f(\alpha)\} \quad & \text { if } \alpha<\lambda \text { and } \\ & x \text { is a function with domain } \alpha \text { and } \\ & \{a \in A: a>x(\gamma), \forall \gamma<\alpha \\ \emptyset & \text { and } a>f(\alpha)\} \neq \emptyset \\ & \text { otherwise }\end{cases}$
By the Transfinite Recursion Theorem, there exists a class function $\mathbf{F}: \lambda \rightarrow A \cup \emptyset$ such that $\mathbf{F}(\alpha)=\mathbf{G}(\alpha, \mathbf{F} \upharpoonright \alpha)$ for $\alpha<\lambda$. We have that $\mathbf{F}(\alpha) \in A$ for all $\alpha<\lambda$. We prove this by transfinite induction. Assume $\alpha<\lambda$ and $\mathbf{F}(\gamma) \in A$ for all $\gamma<\alpha$. To prove $\mathbf{F}(\alpha) \in A$, it suffices to show the set $\{a \in A: a>\mathbf{F}(\gamma), \forall \gamma<\alpha$ and $a>f(\alpha)\}$ is nonempty. The set $\mathbf{F}[\alpha]$ has cardinality at most $|\alpha|<\lambda \leq \operatorname{cf}(A) . \mathbf{F}[\alpha]$ cannot be unbounded in A, so $\mathbf{F}[\alpha]$ has an upper bound in A, say κ_{τ}, where $\tau<\beta$. Also, $f(\alpha) \in \kappa$, meaning $f(\alpha) \in \kappa_{\sigma}$ for some $\sigma<\beta$. Then $\max \left\{\kappa_{\tau+1}, \kappa_{\sigma+1}\right\} \in\{a \in A: a>$ $\mathbf{F}(\gamma), \forall \gamma<\alpha$ and $a>f(\alpha)\}$ and $\mathbf{F}(\alpha) \neq \emptyset$. We have that \mathbf{F} is strictly increasing. Take any $\alpha<\alpha^{\prime}$. Then $\mathbf{F}\left(\alpha^{\prime}\right)=\min \left\{a \in A: a>\mathbf{F}(\gamma), \forall \gamma<\alpha^{\prime}\right.$ and $\left.a>f\left(\alpha^{\prime}\right)\right\}>$ $\mathbf{F}(\alpha)$.

Now we want to show that $\mathbf{F}[\lambda]$ is unbounded in A. Suppose there exists some $a \in A$ such that $a>\mathbf{F}(\alpha)$ for all $\alpha<\lambda$. We have that

$$
\mathbf{F}(\alpha)=\min \{a \in A: a>x(\gamma), \forall \gamma<\alpha \text { and } a>f(\alpha)\}>f(\alpha)
$$

for all $\alpha<\lambda$. So $a>\mathbf{F}(\alpha)>f(\alpha)$ for all $\alpha \in \lambda$. Then $a<\kappa$ is an upper bound of $f[\lambda]$, a contradiction. Hence there can be no such bound $a \in A$. So we have that $\mathbf{F}[\lambda]$ is an unbounded subset of A with cardinality at most $\lambda=\operatorname{cf}(\kappa)$. Then $\operatorname{cf}(A) \leq \operatorname{cf}(\kappa)$.

We now construct the example in (ii). Let $\lambda<\lambda^{\prime}$ be a pair of fixed infinite cardinals. We define $\mathbf{G}: \lambda^{+} \times \mathbf{V} \rightarrow \mathbf{O n}$ as follows

$$
\mathbf{G}(\alpha, x)= \begin{cases} & \text { if } \alpha=0 \\ \lambda^{\prime} & \text { if } \alpha=\gamma+1<\lambda^{+} \\ \left(x(\gamma)^{\lambda}\right)^{+} & \text {and } x \text { is a function with domain } \alpha \text { and cardinal values } \\ \bigcup_{\gamma<\alpha} x(\gamma) & \text { if } \alpha<\lambda^{+} \text {is a limit ordinal } \\ \emptyset & \text { and } x \text { is a function with domain } \alpha \text { and cardinal values } \\ \emptyset & \text { otherwise }\end{cases}
$$

By the Transfinite Recursion Theorem, there exists a class function $\mathbf{F}: \lambda^{+} \rightarrow \mathbf{C a r d}$ such that $\mathbf{F}(\alpha)=\mathbf{G}(\alpha, \mathbf{F} \upharpoonright \alpha)$ for all $\alpha<\lambda^{+}$. All values of \mathbf{G} were cardinals, so \mathbf{F} has cardinal values. Note that \mathbf{F} is continuous since for limit ordinals α we have that $\mathbf{F}(\alpha)=\bigcup_{\gamma<\alpha} \mathbf{F}(\gamma)$. Also, for every successor ordinal $\alpha+1$, we have $\mathbf{F}(\alpha+1)=\left(\mathbf{F}(\alpha)^{\lambda}\right)^{+}>\mathbf{F}(\alpha)$. Then by Theorem 5.2(ii) of the ordinal lecture notes, we have that \mathbf{F} is strictly increasing.

Denote $\mathbf{F}(\alpha)$ by κ_{α} for $\alpha<\lambda^{+}$. Let $\kappa=\bigcup_{\alpha<\lambda^{+}} \kappa_{\alpha}$. Clearly, $\kappa>2$ and $\kappa>\lambda^{\prime}>\lambda$. Let $\mu<\kappa$ be a cardinal. Then there must exist some $\alpha<\lambda^{+}$with $\kappa_{\alpha}>\mu$. Then $\mu^{\lambda} \leq \kappa_{\alpha}^{\lambda}<\kappa_{\alpha+1}<\kappa$. By part (i), we have that $\operatorname{cf}(\kappa)=\operatorname{cf}\left(\lambda^{+}\right)=\lambda^{+}>\lambda$. By the Main Theorem of Cardinal Arithmetic (iii) ${ }_{2}$ we have that $\kappa^{\lambda}=\kappa$. Since $\operatorname{cf}(\kappa)=\lambda^{+} \leq \lambda^{\prime}$, by the Main Theorem of Cardinal Arithmetic (iii) $)_{1}$ we have $\kappa^{\lambda^{\prime}}=\kappa^{\mathrm{cf}(\kappa)}=\kappa^{\lambda^{+}}$. So using König's Theorem on cofinality, we have $\kappa^{\lambda}=\kappa<\kappa^{\operatorname{cf}(\kappa)}=\kappa^{\lambda^{+}} \leq \kappa^{\lambda^{\prime}}$, as desired.

