HOMEWORK 3

(First draft is due on April 12, 2021)

Problems:

(

- **3.** (i) Show that if $\langle \kappa_{\alpha} : \alpha < \beta \rangle$ is a strictly increasing sequence of cardinals and $\kappa = \bigcup_{\alpha < \beta} \kappa_{\alpha}$, then $cf(\kappa) = cf(\beta)$.
 - (ii) Let $\lambda < \lambda'$ be infinite cardinals. Use the statement in part (i) to construct a strictly increasing sequence $\langle \kappa_{\alpha} : \alpha < \beta \rangle$ of cardinals (for an appropriate choice of β) such that for $\kappa = \bigcup_{\alpha < \beta} \kappa_{\alpha}$ we have that

$$\kappa^{\lambda} < \kappa^{\lambda'}.$$

Proof. We prove (i). Let $A = \{\kappa_{\alpha} : \alpha < \beta\}$. Since $\langle \kappa_{\alpha} : \alpha < \beta \rangle$ is strictly increasing, *A* is order isomorphic to β . Then $cf(A) = cf(\beta)$. Now note that $\kappa = sup(A)$. So any unbounded set in *A* is also unbounded in κ . Hence $cf(\kappa) \leq cf(A)$.

Let $\lambda = cf(\kappa)$. Let $f : \lambda \to \kappa$ be a strict order preserving function such that $f[\lambda]$ is unbounded in κ . The existence of such a function is asserted in Theorem 4.11(i). We define $\mathbf{G} : \lambda \times \mathbf{V} \to A \cup \emptyset$ as follows.

$$\mathbf{G}(\alpha, x) = \begin{cases} \min\{a \in A : a > x(\gamma), \ \forall \gamma < \alpha \text{ and } a > f(\alpha)\} & \text{if } \alpha < \lambda \text{ and} \\ x \text{ is a function with domain } \alpha \text{ and} \\ \{a \in A : a > x(\gamma), \ \forall \gamma < \alpha \\ \text{ and } a > f(\alpha)\} \neq \emptyset \\ \emptyset & \text{ otherwise} \end{cases}$$

By the Transfinite Recursion Theorem, there exists a class function $\mathbf{F} : \lambda \to A \cup \emptyset$ such that $\mathbf{F}(\alpha) = \mathbf{G}(\alpha, \mathbf{F} \upharpoonright \alpha)$ for $\alpha < \lambda$. We have that $\mathbf{F}(\alpha) \in A$ for all $\alpha < \lambda$. We prove this by transfinite induction. Assume $\alpha < \lambda$ and $\mathbf{F}(\gamma) \in A$ for all $\gamma < \alpha$. To prove $\mathbf{F}(\alpha) \in A$, it suffices to show the set $\{a \in A : a > \mathbf{F}(\gamma), \forall \gamma < \alpha \text{ and } a > f(\alpha)\}$ is nonempty. The set $\mathbf{F}[\alpha]$ has cardinality at most $|\alpha| < \lambda \leq cf(A)$. $\mathbf{F}[\alpha]$ cannot be unbounded in A, so $\mathbf{F}[\alpha]$ has an upper bound in A, say κ_{τ} , where $\tau < \beta$. Also, $f(\alpha) \in \kappa$, meaning $f(\alpha) \in \kappa_{\sigma}$ for some $\sigma < \beta$. Then $\max\{\kappa_{\tau+1}, \kappa_{\sigma+1}\} \in \{a \in A : a > \mathbf{F}(\gamma), \forall \gamma < \alpha \text{ and } a > f(\alpha)\}$ and $\mathbf{F}(\alpha) \neq \emptyset$. We have that \mathbf{F} is strictly increasing. Take any $\alpha < \alpha'$. Then $\mathbf{F}(\alpha') = \min\{a \in A : a > \mathbf{F}(\gamma), \forall \gamma < \alpha' \text{ and } a > f(\alpha')\} > \mathbf{F}(\alpha)$.

Now we want to show that $\mathbf{F}[\lambda]$ is unbounded in A. Suppose there exists some $a \in A$ such that $a > \mathbf{F}(\alpha)$ for all $\alpha < \lambda$. We have that

$$\mathbf{F}(\alpha) = \min\{a \in A : a > x(\gamma), \forall \gamma < \alpha \text{ and } a > f(\alpha)\} > f(\alpha)$$

for all $\alpha < \lambda$. So $a > \mathbf{F}(\alpha) > f(\alpha)$ for all $\alpha \in \lambda$. Then $a < \kappa$ is an upper bound of $f[\lambda]$, a contradiction. Hence there can be no such bound $a \in A$. So we have that $\mathbf{F}[\lambda]$ is an unbounded subset of A with cardinality at most $\lambda = cf(\kappa)$. Then $cf(A) \leq cf(\kappa)$.

We now construct the example in (ii). Let $\lambda < \lambda'$ be a pair of fixed infinite cardinals. We define $\mathbf{G} : \lambda^+ \times \mathbf{V} \to \mathbf{On}$ as follows

$$\mathbf{G}(\alpha, x) = \begin{cases} \lambda' & \text{if } \alpha = 0\\ (x(\gamma)^{\lambda})^{+} & \text{if } \alpha = \gamma + 1 < \lambda^{+}\\ & \text{and } x \text{ is a function with domain } \alpha \text{ and cardinal values}\\ \bigcup_{\gamma < \alpha} x(\gamma) & \text{if } \alpha < \lambda^{+} \text{ is a limit ordinal}\\ & \text{and } x \text{ is a function with domain } \alpha \text{ and cardinal values}\\ \emptyset & \text{otherwise} \end{cases}$$

By the Transfinite Recursion Theorem, there exists a class function $\mathbf{F} : \lambda^+ \to \mathbf{Card}$ such that $\mathbf{F}(\alpha) = \mathbf{G}(\alpha, \mathbf{F} \upharpoonright \alpha)$ for all $\alpha < \lambda^+$. All values of \mathbf{G} were cardinals, so \mathbf{F} has cardinal values. Note that \mathbf{F} is continuous since for limit ordinals α we have that $\mathbf{F}(\alpha) = \bigcup_{\gamma < \alpha} \mathbf{F}(\gamma)$. Also, for every successor ordinal $\alpha + 1$, we have $\mathbf{F}(\alpha + 1) = (\mathbf{F}(\alpha)^{\lambda})^+ > \mathbf{F}(\alpha)$. Then by Theorem 5.2(ii) of the ordinal lecture notes, we have that \mathbf{F} is strictly increasing.

Denote $\mathbf{F}(\alpha)$ by κ_{α} for $\alpha < \lambda^+$. Let $\kappa = \bigcup_{\alpha < \lambda^+} \kappa_{\alpha}$. Clearly, $\kappa > 2$ and $\kappa > \lambda' > \lambda$. Let $\mu < \kappa$ be a cardinal. Then there must exist some $\alpha < \lambda^+$ with $\kappa_{\alpha} > \mu$. Then $\mu^{\lambda} \leq \kappa_{\alpha}^{\lambda} < \kappa_{\alpha+1} < \kappa$. By part (i), we have that $\mathrm{cf}(\kappa) = \mathrm{cf}(\lambda^+) = \lambda^+ > \lambda$. By the Main Theorem of Cardinal Arithmetic(iii)₂ we have that $\kappa^{\lambda} = \kappa$. Since $\mathrm{cf}(\kappa) = \lambda^+ \leq \lambda'$, by the Main Theorem of Cardinal Arithmetic(iii)₁ we have $\kappa^{\lambda'} = \kappa^{\mathrm{cf}(\kappa)} = \kappa^{\lambda^+}$. So using König's Theorem on cofinality, we have $\kappa^{\lambda} = \kappa < \kappa^{\mathrm{cf}(\kappa)} = \kappa^{\lambda^+} \leq \kappa^{\lambda'}$, as desired. \Box